### R code from vignette source 'survival.Rnw' ################################################### ### code chunk number 1: survival.Rnw:39-83 ################################################### options(continue=" ", width=70) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=10) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #ensure default library("survival") palette(c("#000000", "#D95F02", "#1B9E77", "#7570B3", "#E7298A", "#66A61E")) # These functions are used in the document, but not discussed until the end crisk <- function(what, horizontal = TRUE, ...) { nstate <- length(what) connect <- matrix(0, nstate, nstate, dimnames=list(what, what)) connect[1,-1] <- 1 # an arrow from state 1 to each of the others if (horizontal) statefig(c(1, nstate-1), connect, ...) else statefig(matrix(c(1, nstate-1), ncol=1), connect, ...) } state3 <- function(what, horizontal=TRUE, ...) { if (length(what) != 3) stop("Should be 3 states") connect <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3,3, dimnames=list(what, what)) if (horizontal) statefig(1:2, connect, ...) else statefig(matrix(1:2, ncol=1), connect, ...) } state4 <- function() { sname <- c("Entry", "CR", "Transplant", "Transplant") layout <- cbind(c(1/2, 3/4, 1/4, 3/4), c(5/6, 1/2, 1/2, 1/6)) connect <- matrix(0,4,4, dimnames=list(sname, sname)) connect[1, 2:3] <- 1 connect[2,4] <- 1 statefig(layout, connect) } state5 <- function(what, ...) { sname <- c("Entry", "CR", "Tx", "Rel", "Death") connect <- matrix(0, 5, 5, dimnames=list(sname, sname)) connect[1, -1] <- c(1,1,1, 1.4) connect[2, 3:5] <- c(1, 1.4, 1) connect[3, c(2,4,5)] <- 1 connect[4, c(3,5)] <- 1 statefig(matrix(c(1,3,1)), connect, cex=.8,...) } ################################################### ### code chunk number 2: states ################################################### getOption("SweaveHooks")[["fig"]]() oldpar <- par(mar=c(.1, .1, .1, .1), mfrow=c(2,2)) sname1 <- c("Alive", "Dead") cmat1 <- matrix(c(0,0,1,0), nrow=2, dimnames=list(sname1, sname1)) statefig(c(1,1), cmat1) sname2 <- c("0", "1", "2", "...") cmat2 <- matrix(0, 4,4, dimnames= list(sname2, sname2)) cmat2[1,2] <- cmat2[2,3] <- cmat2[3,4] <- 1 statefig(c(1,1,1,1), cmat2, bcol=c(1,1,1,0)) sname3 <- c("Entry", "Transplant", "Withdrawal", "Death") cmat3 <- matrix(0, 4,4, dimnames=list(sname3, sname3)) cmat3[1, -1] <- 1 statefig(c(1,3), cmat3) sname4 <- c("Health", "Illness", "Death") cmat4 <- matrix(0, 3, 3, dimnames = list(sname4, sname4)) cmat4[1,2] <- cmat4[2,1] <- cmat4[-3, 3] <- 1 statefig(c(1,2), cmat4, offset=.03) par(oldpar) ################################################### ### code chunk number 3: survfit1 ################################################### fit1 <- survfit(Surv(futime, fustat) ~ resid.ds, data=ovarian) print(fit1, rmean= 730) summary(fit1, times= (0:4)*182.5, scale=365) ################################################### ### code chunk number 4: survfit2 ################################################### getOption("SweaveHooks")[["fig"]]() plot(fit1, col=1:2, xscale=365.25, lwd=2, mark.time=TRUE, xlab="Years since study entry", ylab="Survival") legend(750, .9, c("No residual disease", "Residual disease"), col=1:2, lwd=2, bty='n') ################################################### ### code chunk number 5: survfit3 ################################################### getOption("SweaveHooks")[["fig"]]() fit2 <- survfit(Surv(time, status) ~ sex + ph.ecog, data=lung) fit2 plot(fit2[1:3], lty=1:3, lwd=2, xscale=365.25, fun='event', xlab="Years after enrollment", ylab="Survival") legend(550, .6, paste("Performance Score", 0:2, sep=' ='), lty=1:3, lwd=2, bty='n') text(400, .95, "Males", cex=2) ################################################### ### code chunk number 6: survival.Rnw:576-578 ################################################### data.frame(id=rep(392,3), time1=c(0, 258, 328), time2=c(258, 328, 377), status=c(1,1,0)) ################################################### ### code chunk number 7: survival4 ################################################### vdata <- with(valveSeat, data.frame(id=id, time2=time, status=status)) first <- !duplicated(vdata$id) vdata$time1 <- ifelse(first, 0, c(0, vdata$time[-nrow(vdata)])) double <- which(vdata$time1 == vdata$time2) vdata$time1[double] <- vdata$time1[double] -.01 vdata$time2[double-1] <- vdata$time1[double] vdata[1:7, c("id", "time1", "time2", "status")] survcheck(Surv(time1, time2, status) ~ 1, id=id, data=vdata) ################################################### ### code chunk number 8: survival5 ################################################### getOption("SweaveHooks")[["fig"]]() vfit <- survfit(Surv(time1, time2, status) ~1, data=vdata, id=id) plot(vfit, cumhaz=TRUE, xlab="Days", ylab="Cumulative hazard") ################################################### ### code chunk number 9: cgd1d ################################################### getOption("SweaveHooks")[["fig"]]() cgdsurv <- survfit(Surv(tstart, tstop, status) ~ treat, cgd, id=id) plot(cgdsurv, cumhaz=TRUE, col=1:2, conf.times=c(100, 200, 300, 400), xlab="Days since randomization", ylab="Cumulative hazard") ################################################### ### code chunk number 10: simple1 ################################################### crdata <- data.frame(time= c(1:8, 6:8), endpoint=factor(c(1,1,2,0,1,1,3,0,2,3,0), labels=c("censor", "a", "b", "c")), istate=rep("entry", 11), id= LETTERS[1:11]) tfit <- survfit(Surv(time, endpoint) ~ 1, data=crdata, id=id, istate=istate) dim(tfit) summary(tfit) ################################################### ### code chunk number 11: survival.Rnw:696-697 ################################################### getOption("SweaveHooks")[["fig"]]() plot(tfit, col=1:4, lty=1:4, lwd=2, ylab="Probability in state") ################################################### ### code chunk number 12: survival.Rnw:710-712 ################################################### dim(tfit) tfit$states ################################################### ### code chunk number 13: mgus1 ################################################### mgus2[55:59, -(4:7)] ################################################### ### code chunk number 14: mgus2 ################################################### getOption("SweaveHooks")[["fig"]]() event <- with(mgus2, ifelse(pstat==1, 1, 2*death)) event <- factor(event, 0:2, c("censored", "progression", "death")) etime <- with(mgus2, ifelse(pstat==1, ptime, futime)) crfit <- survfit(Surv(etime, event) ~ sex, mgus2) crfit plot(crfit, col=1:2, noplot="", lty=c(3,3,2,2,1,1), lwd=2, xscale=12, xlab="Years post diagnosis", ylab="P(state)") legend(240, .65, c("Female, death", "Male, death", "malignancy", "(s0)"), lty=c(1,1,2,3), col=c(1,2,1,1), bty='n', lwd=2) ################################################### ### code chunk number 15: mgus3 ################################################### getOption("SweaveHooks")[["fig"]]() pcmbad <- survfit(Surv(etime, pstat) ~ sex, data=mgus2) plot(pcmbad[2], mark.time=FALSE, lwd=2, fun="event", conf.int=FALSE, xscale=12, xlab="Years post diagnosis", ylab="Fraction with PCM") lines(crfit[2,2], lty=2, lwd=2, mark.time=FALSE, conf.int=FALSE) legend(0, .25, c("Males, PCM, incorrect curve", "Males, PCM, competing risk"), col=1, lwd=2, lty=c(1,2), bty='n') ################################################### ### code chunk number 16: survival.Rnw:844-847 ################################################### dim(crfit) crfit$strata crfit$states ################################################### ### code chunk number 17: overall ################################################### myeloid[1:5,] ################################################### ### code chunk number 18: sfit0 ################################################### getOption("SweaveHooks")[["fig"]]() sfit0 <- survfit(Surv(futime, death) ~ trt, myeloid) plot(sfit0, xscale=365.25, xaxs='r', col=1:2, lwd=2, xlab="Years post enrollment", ylab="Survival") legend(20, .4, c("Arm A", "Arm B"), col=1:2, lwd=2, bty='n') ################################################### ### code chunk number 19: sfit0a ################################################### mdata <- tmerge(myeloid[,1:2], myeloid, id=id, death= event(futime, death), sct = event(txtime), cr = event(crtime), relapse = event(rltime)) temp <- with(mdata, cr + 2*sct + 4*relapse + 8*death) table(temp) ################################################### ### code chunk number 20: sfit0b ################################################### tdata <- myeloid # temporary working copy tied <- with(tdata, (!is.na(crtime) & !is.na(txtime) & crtime==txtime)) tdata$crtime[tied] <- tdata$crtime[tied] -1 mdata <- tmerge(tdata[,1:2], tdata, id=id, death= event(futime, death), sct = event(txtime), cr = event(crtime), relapse = event(rltime), priorcr = tdc(crtime), priortx = tdc(txtime)) temp <- with(mdata, cr + 2*sct + 4*relapse + 8*death) table(temp) mdata$event <- factor(temp, c(0,1,2,4,8), c("none", "CR", "SCT", "relapse", "death")) mdata[1:7, c("id", "trt", "tstart", "tstop", "event", "priorcr", "priortx")] ################################################### ### code chunk number 21: survival.Rnw:982-983 ################################################### survcheck(Surv(tstart, tstop, event) ~1, mdata, id=id) ################################################### ### code chunk number 22: newevent ################################################### levels(mdata$event) temp1 <- with(mdata, ifelse(priorcr, 0, c(0,1,0,0,2)[event])) mdata$crstat <- factor(temp1, 0:2, c("none", "CR", "death")) temp2 <- with(mdata, ifelse(priortx, 0, c(0,0,1,0,2)[event])) mdata$txstat <- factor(temp2, 0:2, c("censor", "SCT", "death")) temp3 <- with(mdata, c(0,0,1,0,2)[event] + priortx) mdata$tx2 <- factor(temp3, 0:3, c("censor", "SCT", "death w/o SCT", "death after SCT")) ################################################### ### code chunk number 23: curve1 ################################################### getOption("SweaveHooks")[["fig"]]() # I want to have the plots in months, it is simpler to fix time # once rather than repeat xscale many times tdata$futime <- tdata$futime * 12 /365.25 mdata$tstart <- mdata$tstart * 12 /365.25 mdata$tstop <- mdata$tstop * 12 /365.25 sfit1 <- survfit(Surv(futime, death) ~ trt, tdata) # survival sfit2 <- survfit(Surv(tstart, tstop, crstat) ~ trt, data= mdata, id = id) # CR sfit3 <- survfit(Surv(tstart, tstop, txstat) ~ trt, data= mdata, id =id) # SCT layout(matrix(c(1,1,1,2,3,4), 3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) mlim <- c(0, 48) # and only show the first 4 years plot(sfit2[,"CR"], xlim=mlim, lty=3, lwd=2, col=1:2, xaxt='n', xlab="Months post enrollment", ylab="Fraction with the endpoint") lines(sfit1, mark.time=FALSE, xlim=mlim, fun='event', col=1:2, lwd=2) lines(sfit3[,"SCT"], xlim=mlim, col=1:2, lty=2, lwd=2) xtime <- c(0, 6, 12, 24, 36, 48) axis(1, xtime, xtime) #axis marks every year rather than 10 months temp <- outer(c("A", "B"), c("CR", "transplant", "death"), paste) temp[7] <- "" legend(25, .3, temp[c(1,2,7,3,4,7,5,6,7)], lty=c(3,3,3, 2,2,2 ,1,1,1), col=c(1,2,0), bty='n', lwd=2) abline(v=2, lty=2, col=3) # add the state space diagrams par(mar=c(4,.1,1,1)) crisk(c("Entry", "CR", "Death"), alty=3) crisk(c("Entry", "Tx", "Death"), alty=2) crisk(c("Entry","Death")) par(oldpar) layout(1) ################################################### ### code chunk number 24: badfit ################################################### getOption("SweaveHooks")[["fig"]]() badfit <- survfit(Surv(tstart, tstop, event=="SCT") ~ trt, id=id, mdata, subset=(priortx==0)) layout(matrix(c(1,1,1,2,3,4), 3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) plot(badfit, fun="event", xmax=48, xaxt='n', col=1:2, lty=2, lwd=2, xlab="Months from enrollment", ylab="P(state)") axis(1, xtime, xtime) lines(sfit3[,2], xmax=48, col=1:2, lwd=2) legend(24, .3, c("Arm A", "Arm B"), lty=1, lwd=2, col=1:2, bty='n', cex=1.2) par(mar=c(4,.1,1,1)) crisk(c("Entry", "transplant"), alty=2, cex=1.2) crisk(c("Entry","transplant", "Death"), cex=1.2) par(oldpar) layout(1) ################################################### ### code chunk number 25: cr2 ################################################### getOption("SweaveHooks")[["fig"]]() cr2 <- mdata$event cr2[cr2=="SCT"] <- "none" # ignore transplants crsurv <- survfit(Surv(tstart, tstop, cr2) ~ trt, data= mdata, id=id, influence=TRUE) layout(matrix(c(1,1,2,3), 2,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) plot(sfit2[,2], lty=3, lwd=2, col=1:2, xmax=12, xlab="Months", ylab="CR") lines(crsurv[,2], lty=1, lwd=2, col=1:2) par(mar=c(4, .1, 1, 1)) crisk( c("Entry","CR", "Death"), alty=3) state3(c("Entry", "CR", "Death/Relapse")) par(oldpar) layout(1) ################################################### ### code chunk number 26: cr2b ################################################### print(crsurv, rmean=48, digits=2) ################################################### ### code chunk number 27: cr2c ################################################### temp <- summary(crsurv, rmean=48)$table delta <- round(temp[4,3] - temp[3,3], 2) ################################################### ### code chunk number 28: txsurv ################################################### getOption("SweaveHooks")[["fig"]]() event2 <- with(mdata, ifelse(event=="SCT" & priorcr==1, 6, as.numeric(event))) event2 <- factor(event2, 1:6, c(levels(mdata$event), "SCT after CR")) txsurv <- survfit(Surv(tstart, tstop, event2) ~ trt, mdata, id=id, subset=(priortx ==0)) dim(txsurv) # number of strata by number of states txsurv$states # Names of states layout(matrix(c(1,1,1,2,2,0),3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1,.1)) plot(txsurv[,c(3,6)], col=1:2, lty=c(1,1,2,2), lwd=2, xmax=48, xaxt='n', xlab="Months", ylab="Transplanted") axis(1, xtime, xtime) legend(15, .13, c("A, transplant without CR", "B, transplant without CR", "A, transplant after CR", "B, transplant after CR"), col=1:2, lty=c(1,1,2,2), lwd=2, bty='n') state4() # add the state figure par(oldpar) ################################################### ### code chunk number 29: sfit4 ################################################### getOption("SweaveHooks")[["fig"]]() sfit4 <- survfit(Surv(tstart, tstop, event) ~ trt, mdata, id=id) sfit4$transitions layout(matrix(1:2,1,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1,.1)) plot(sfit4, col=rep(1:4,each=2), lwd=2, lty=1:2, xmax=48, xaxt='n', xlab="Months", ylab="Current state") axis(1, xtime, xtime) text(c(40, 40, 40, 40), c(.51, .13, .32, .01), c("Death", "CR", "Transplant", "Recurrence"), col=c(4,1,2,3)) par(mar=c(5.1, .1, 1, .1)) state5() par(oldpar) ################################################### ### code chunk number 30: reprise ################################################### crsurv <- survfit(Surv(tstart, tstop, cr2) ~ trt, data= mdata, id=id, influence=TRUE) curveA <- crsurv[1,] # select treatment A dim(curveA) # P matrix for treatement A curveA$states dim(curveA$pstate) # 426 time points, 5 states dim(curveA$influence) # influence matrix for treatment A table(myeloid$trt) ################################################### ### code chunk number 31: meantime ################################################### t48 <- pmin(48, curveA$time) delta <- diff(c(t48, 48)) # width of intervals rfun <- function(pmat, delta) colSums(pmat * delta) #area under the curve rmean <- rfun(curveA$pstate, delta) # Apply the same calculation to each subject's influence slice inf <- apply(curveA$influence, 1, rfun, delta=delta) # inf is now a 5 state by 310 subject matrix, containing the IJ estimates # on the AUC or mean time. The sum of squares is a variance. se.rmean <- sqrt(rowSums(inf^2)) round(rbind(rmean, se.rmean), 2) print(curveA, rmean=48, digits=2) ################################################### ### code chunk number 32: survdiff ################################################### survdiff(Surv(time, status) ~ x, aml) ################################################### ### code chunk number 33: crisk ################################################### crisk <- function(what, horizontal = TRUE, ...) { nstate <- length(what) connect <- matrix(0, nstate, nstate, dimnames=list(what, what)) connect[1,-1] <- 1 # an arrow from state 1 to each of the others if (horizontal) statefig(c(1, nstate-1), connect, ...) else statefig(matrix(c(1, nstate-1), ncol=1), connect, ...) } ################################################### ### code chunk number 34: state3 ################################################### state3 <- function(what, horizontal=TRUE, ...) { if (length(what) != 3) stop("Should be 3 states") connect <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3,3, dimnames=list(what, what)) if (horizontal) statefig(1:2, connect, ...) else statefig(matrix(1:2, ncol=1), connect, ...) } ################################################### ### code chunk number 35: state5 ################################################### state5 <- function(what, ...) { sname <- c("Entry", "CR", "Tx", "Rel", "Death") connect <- matrix(0, 5, 5, dimnames=list(sname, sname)) connect[1, -1] <- c(1,1,1, 1.4) connect[2, 3:5] <- c(1, 1.4, 1) connect[3, c(2,4,5)] <- 1 connect[4, c(3,5)] <- 1 statefig(matrix(c(1,3,1)), connect, cex=.8, ...) } ################################################### ### code chunk number 36: state4 ################################################### state4 <- function() { sname <- c("Entry", "CR", "Transplant", "Transplant") layout <- cbind(x =c(1/2, 3/4, 1/4, 3/4), y =c(5/6, 1/2, 1/2, 1/6)) connect <- matrix(0,4,4, dimnames=list(sname, sname)) connect[1, 2:3] <- 1 connect[2,4] <- 1 statefig(layout, connect) } ################################################### ### code chunk number 37: lung1 ################################################### options(show.signif.stars=FALSE) # display statistical intelligence cfit1 <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung) print(cfit1, digits=3) summary(cfit1, digits=3) anova(cfit1) ################################################### ### code chunk number 38: na.action ################################################### cfit1a <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung, na.action = na.omit) cfit1b <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung, na.action = na.exclude) r1 <- residuals(cfit1a) r2 <- residuals(cfit1b) length(r1) length(r2) ################################################### ### code chunk number 39: cox12 ################################################### cfit2 <- coxph(Surv(time, status) ~ age + sex + wt.loss + strata(inst), data=lung) round(cbind(simple= coef(cfit1), stratified=coef(cfit2)), 4) ################################################### ### code chunk number 40: cox13 ################################################### getOption("SweaveHooks")[["fig"]]() dummy <- expand.grid(age=c(50, 60), sex=1, wt.loss=5) dummy csurv1 <- survfit(cfit1, newdata=dummy) csurv2 <- survfit(cfit2, newdata=dummy) dim(csurv1) dim(csurv2) plot(csurv1, col=1:2, xscale=365.25, xlab="Years", ylab="Survival") dummy2 <- data.frame(age=c(50, 60), sex=1:2, wt.loss=5, inst=c(6,11)) csurv3 <- survfit(cfit2, newdata=dummy2) dim(csurv3) ################################################### ### code chunk number 41: lung2 ################################################### getOption("SweaveHooks")[["fig"]]() zp1 <- cox.zph(cfit1) zp1 plot(zp1[2], resid=FALSE) abline(coef(cfit1)[2] ,0, lty=3) ################################################### ### code chunk number 42: lung3 ################################################### getOption("SweaveHooks")[["fig"]]() cfit3 <- coxph(Surv(time, status) ~ pspline(age) + sex + wt.loss, lung) print(cfit3, digits=2) termplot(cfit3, term=1, se=TRUE) cfit4 <- update(cfit1, . ~ . + age*sex) anova(cfit1, cfit4) ################################################### ### code chunk number 43: cgd1 ################################################### cfit1 <- coxph(Surv(tstart, tstop, status) ~ treat + inherit + steroids + age + strata(hos.cat), data=cgd) print(cfit1, digits=2) ################################################### ### code chunk number 44: cgd1b ################################################### cfit2 <- coxph(Surv(tstart, tstop, status) ~ treat + inherit+ age + strata(hos.cat), data=cgd) print(cfit2, digits=2) ################################################### ### code chunk number 45: cgd3 ################################################### getOption("SweaveHooks")[["fig"]]() dummy <- expand.grid(age=c(6,12), inherit='X-linked', treat=levels(cgd$treat)) dummy csurv <- survfit(cfit2, newdata=dummy) dim(csurv) plot(csurv[1,], fun="event", col=1:2, lty=c(1,1,2,2), xlab="Days on study", ylab="Pr( any infection )") ################################################### ### code chunk number 46: cfit4 ################################################### getOption("SweaveHooks")[["fig"]]() plot(csurv[1,], cumhaz=TRUE, col=1:2, lty=c(1,1,2,2), lwd=2, xlab="Days on study", ylab="E( number of infections )") legend(20, 1.5, c("Age 6, control", "Age 12, control", "Age 6, gamma interferon", "Age 12, gamma interferon"), lty=c(2,2,1,1), col=c(1,2,1,2), lwd=2, bty='n') ################################################### ### code chunk number 47: survfit-mgus1 ################################################### getOption("SweaveHooks")[["fig"]]() mgus2[56:59,] sname <- c("MGUS", "Malignancy", "Death") smat <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3, 3, dimnames = list(sname, sname)) statefig(c(1,2), smat) ################################################### ### code chunk number 48: survfit-mgus2 ################################################### crdata <- mgus2 crdata$etime <- pmin(crdata$ptime, crdata$futime) crdata$event <- ifelse(crdata$pstat==1, 1, 2*crdata$death) crdata$event <- factor(crdata$event, 0:2, c("censor", "PCM", "death")) quantile(crdata$age, na.rm=TRUE) table(crdata$sex) quantile(crdata$mspike, na.rm=TRUE) cfit <- coxph(Surv(etime, event) ~ I(age/10) + sex + mspike, id = id, crdata) print(cfit, digits=1) # narrow the printout a bit ################################################### ### code chunk number 49: PCMcurve ################################################### getOption("SweaveHooks")[["fig"]]() dummy <- expand.grid(sex=c("F", "M"), age=c(60, 80), mspike=1.2) csurv <- survfit(cfit, newdata=dummy) plot(csurv[,2], xmax=20*12, xscale=12, xlab="Years after MGUS diagnosis", ylab="Pr(has entered PCM state)", col=1:2, lty=c(1,1,2,2), lwd=2) legend(100, .04, outer(c("female,", "male, "), c("diagnosis at age 60", "diagnosis at age 80"), paste), col=1:2, lty=c(1,1,2,2), bty='n', lwd=2) ################################################### ### code chunk number 50: mrate ################################################### mpfit <- glm(pstat ~ sex -1 + offset(log(ptime)), data=mgus2, poisson) exp(coef(mpfit)) * 12 # rate per year ################################################### ### code chunk number 51: msingle ################################################### getOption("SweaveHooks")[["fig"]]() sfit <- coxph(Surv(etime, event=="PCM") ~ I(age/10) + sex + mspike, crdata) rbind(single = coef(sfit), multi = coef(cfit)[1:3]) #par(mfrow=c(1,2)) ssurv <- survfit(sfit, newdata=dummy) plot(ssurv[3:4], col=1:2, lty=2, xscale=12, xmax=12*20, lwd=2, fun="event", xlab="Years from diagnosis", ylab= "Pr(has entered PCM state)") lines(csurv[3:4, 2], col=1:2, lty=1, lwd=2) legend(20, .22, outer(c("80 year old female,", "80 year old male,"), c("incorrect", "correct"), paste), col=1:2, lty=c(2,2,1,1), lwd=2, bty='n') ################################################### ### code chunk number 52: state5 ################################################### getOption("SweaveHooks")[["fig"]]() state5 <- c("0MC", "1MC", "2MC", "3MC", "death") tmat <- matrix(0L, 5, 5, dimnames=list(state5, state5)) tmat[1,2] <- tmat[2,3] <- tmat[3,4] <- 1 tmat[-5,5] <- 1 statefig(rbind(4,1), tmat) ################################################### ### code chunk number 53: nafld1 ################################################### ndata <- tmerge(nafld1[,1:8], nafld1, id=id, death= event(futime, status)) ndata <- tmerge(ndata, subset(nafld3, event=="nafld"), id, nafld= tdc(days)) ndata <- tmerge(ndata, subset(nafld3, event=="diabetes"), id = id, diabetes = tdc(days), e1= cumevent(days)) ndata <- tmerge(ndata, subset(nafld3, event=="htn"), id = id, htn = tdc(days), e2 = cumevent(days)) ndata <- tmerge(ndata, subset(nafld3, event=="dyslipidemia"), id=id, lipid = tdc(days), e3= cumevent(days)) ndata <- tmerge(ndata, subset(nafld3, event %in% c("diabetes", "htn", "dyslipidemia")), id=id, comorbid= cumevent(days)) summary(ndata) ################################################### ### code chunk number 54: survival.Rnw:2034-2037 ################################################### tc <- attr(ndata, 'tcount') # shorter name for use in Sexpr below icount <- table(table(nafld3$id)) #number with 1, 2, ... intervals ncount <- sum(nafld3$event=="nafld") ################################################### ### code chunk number 55: nafld2 ################################################### with(ndata, if (any(e1>1 | e2>1 | e3>1)) stop("multiple events")) ndata$cstate <- with(ndata, factor(diabetes + htn + lipid, 0:3, c("0mc", "1mc", "2mc", "3mc"))) temp <- with(ndata, ifelse(death, 4, comorbid)) ndata$event <- factor(temp, 0:4, c("censored", "1mc", "2mc", "3mc", "death")) ndata$age1 <- ndata$age + ndata$tstart/365.25 # analysis on age scale ndata$age2 <- ndata$age + ndata$tstop/365.25 check1 <- survcheck(Surv(age1, age2, event) ~ nafld + male, data=ndata, id=id, istate=cstate) check1 ################################################### ### code chunk number 56: nafld3 ################################################### getOption("SweaveHooks")[["fig"]]() states <- c("No comorbidity", "1 comorbidity", "2 comorbidities", "3 comorbitities", "Death") cmat <- matrix(0, 5,5) cmat[,5] <- 1 cmat[1,2] <- cmat[2,3] <- cmat[3,4] <- 1 cmat[1,3] <- cmat[2,4] <- 1.6 cmat[1,4] <- 1.6 dimnames(cmat) <- list(states, states) statefig(cbind(4,1), cmat, alty=c(1,2,1,2,2,1,1,1,1,1,1)) ################################################### ### code chunk number 57: nafld4 ################################################### nfit1 <- coxph(list(Surv(age1, age2, event) ~ nafld + male, "0mc":state("1mc", "2mc", "3mc") ~ nafld+ male / common, 2:3 + 2:4 ~ nafld + male / common, 0:"death" ~ male / common), data=ndata, id=id, istate=cstate) nfit1$states nfit1$cmap ################################################### ### code chunk number 58: nafld5b ################################################### print(coef(nfit1), digits=3) print(coef(nfit1, matrix=TRUE), digits=3) # alternate form print(nfit1) ################################################### ### code chunk number 59: survival.Rnw:2232-2234 ################################################### options(show.signif.stars = FALSE) # display statistical maturity summary(nfit1, digits=3) ################################################### ### code chunk number 60: nafld5c ################################################### nfit2 <- coxph(list(Surv(age1, age2, event) ~ nafld + male, "0mc":state("1mc", "2mc", "3mc") ~ nafld+ male / common, 2:3 + 2:4 ~ nafld + male / common, 1:5 + 2:5 +3:5 ~ male / common + shared), data=ndata, id=id, istate=cstate) nfit2$cmap ################################################### ### code chunk number 61: timeline1 ################################################### ctime <- with(mgus2, ifelse(pstat==1, ptime, futime)) cstat <- with(mgus2, ifelse(pstat==1, 1, 2*death)) cstat <- factor(cstat, 0:2, c("censor", "PCM", "death")) tdata <- data.frame(id=mgus2$id, days=ctime, cstat=cstat) # counting process mdata1 <- tmerge(mgus2[,1:7], tdata, id, state=event(days, cstat)) mfit1 <- coxph(Surv(tstart, tstop, state) ~ age + sex, id=id, mdata1) # timeline mdata2 <- data.frame(mgus2[,1:7], days=0) mdata2 <- merge(mdata2, tdata, all=TRUE) mfit2 <- coxph(Surv2(days, cstat) ~ age + sex, id=id, mdata2) all.equal(coef(mfit1), coef(mfit2)) ################################################### ### code chunk number 62: timeline1b ################################################### mdata1[1:3,] print(mdata2[1:6,], na.print='.') ################################################### ### code chunk number 63: timeline2 ################################################### tldata <- data.frame(nafld1[,1:7], days= 0, death=0, iage=nafld1$age, nafld=0) tldata <- merge(tldata, with(nafld1, data.frame(id=id, days=futime, death=status)), all=TRUE) # Add in the comorbidities of interest. None of these 4 happen to have # duplicates (MI does, for instance). # Treat diabetes before day 0 as diabetes on day 0. tldata <- merge(tldata, with(subset(nafld3, event=="diabetes"), data.frame(id=id, days=pmax(0,days), diabetes=1)), all=TRUE, by=c("id", "days")) tldata <- merge(tldata, with(subset(nafld3, event=="htn"), data.frame(id=id, days=pmax(0,days), htn=1)), all=TRUE, by=c("id", "days")) tldata <- merge(tldata, with(subset(nafld3, event=="dyslipidemia"), data.frame(id=id, days= pmax(0, days), dyslipid=1)), all=TRUE, by=c("id", "days")) tldata <- merge(tldata, with(subset(nafld3, event=="nafld"), data.frame(id=id, days= pmax(0,days), nafld=1)), by=c("id", "days"), all=TRUE) tldata$nafld <- with(tldata, ifelse(is.na(nafld.y), nafld.x, nafld.y)) ################################################### ### code chunk number 64: timeline3 ################################################### # # For cumulative events within subject we use a helper function cumevent <- function(id, time, status, istate) { # do all the work on ordered data ord <- order(id, time) id2 <- id[ord] time2 <- time[ord] stat2 <- ifelse(is.na(status[ord]), 0, status[ord]) firstid <- !duplicated(id) csum <- cumsum(stat2) indx <- match(id2, id2) cstat<- csum + stat2[indx] - csum[indx] cstat[stat2==0] <- 0 if (!missing(istate)) cstat[firstid] <- istate keep <- (firstid | (!is.na(stat2)& stat2 !=0)) newdata <- data.frame(id=id2[keep], time=time2[keep], status=cstat[keep]) newdata } temp1 <- rowSums(tldata[,c('diabetes', 'htn', 'dyslipid')], na.rm=TRUE) temp2 <- with(tldata, cumevent(id, days, pmax(temp1, 4*death, na.rm=TRUE))) state <- factor(pmin(temp2$status, 4), -1:4, c("censor", paste0(0:3, "mc"), "death")) tldata <- merge(tldata, data.frame(id=temp2$id, days=temp2$time, state=state), all=TRUE) tldata$age <- with(tldata, days/365.25 + age[match(id, id)]) check2 <- survcheck(Surv2(days, state) ~ 1, id=id, tldata) check2$transitions nfit2 <- coxph(list(Surv2(age, state) ~ nafld + male, "0mc":state("1mc", "2mc", "3mc") ~ nafld+ male / common, 2:3 + 2:4 ~ nafld + male / common, 0:"death" ~ male / common), data=tldata, id=id) round(coef(nfit2), 3) ################################################### ### code chunk number 65: survival.Rnw:2435-2437 (eval = FALSE) ################################################### ## fit2 <- coxph(Surv(time, status) ~ trt + trt*time + celltype + karno, ## data = veteran) ################################################### ### code chunk number 66: zphcheck1 ################################################### dtime <- unique(veteran$time[veteran$status==1]) # unique times newdata <- survSplit(Surv(time, status) ~ trt + celltype + karno, data=veteran, cut=dtime) nrow(veteran) nrow(newdata) fit0 <- coxph(Surv(time, status) ~ trt + celltype + karno, veteran) fit1 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno, data=newdata) fit2 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + time:karno, newdata) fit2 fit2b <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + rank(time):karno, newdata) ################################################### ### code chunk number 67: zph2 ################################################### fit2 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + tt(karno), data =newdata, tt = function(x, t,...) x*t) ################################################### ### code chunk number 68: zph2 ################################################### getOption("SweaveHooks")[["fig"]]() zp0 <- cox.zph(fit0, transform='identity') zp0 zp1 <- cox.zph(fit0, transform='log') zp1 oldpar <- par(mfrow=c(2,2)) for (i in 1:3) {plot(zp1[i]); abline(0,0, lty=3)} plot(zp0[3]) par(oldpar) ################################################### ### code chunk number 69: profile1 ################################################### getOption("SweaveHooks")[["fig"]]() fit1 <- coxph(Surv(futime, fustat) ~ rx + age + resid.ds, ovarian) fit1 # create the profile plot imat <- solve(vcov(fit1)) #information matrix acoef <- seq(0, .25, length=100) profile <- matrix(0, 100, 2) for (i in 1:100) { icoef <- c(fit1$coef[1], acoef[i], fit1$coef[3]) tfit <- coxph(Surv(futime, fustat) ~ rx + offset(acoef[i]*age) + resid.ds, ovarian) profile[i,1] <- tfit$loglik[2] delta <- c(0, acoef[i]- fit1$coef[2], 0) profile[i,2] <- fit1$loglik[2] - delta%*% imat %*% delta/2 } matplot(acoef, profile*2, type='l', lwd=2, lty=1, xlab="Coefficient for age", ylab="2*loglik") abline(h = 2*fit1$loglik[2] - qchisq(.95, 1), lty=3) legend(.11, -58, c("Cox likelihood", "Wald approximation"), lty=1, lwd=2, col=1:2, bty='n') ################################################### ### code chunk number 70: profile2 ################################################### myfun <- function(beta) { icoef <- coef(fit1) icoef[2] <- beta tfit <- coxph(Surv(futime, fustat) ~ rx + offset(age*beta) + resid.ds, ovarian) (fit1$loglik - tfit$loglik)[2] - qchisq(.95, 1)/2 } uniroot(myfun, c (0, .2))$root # lower uniroot(myfun, c(.2, .5))$root # upper ################################################### ### code chunk number 71: survival.Rnw:3485-3486 ################################################### with(subset(aml, x=="Nonmaintained"), Surv(time, status)) ################################################### ### code chunk number 72: coarsen ################################################### getOption("SweaveHooks")[["fig"]]() tdata <- subset(colon, etype==1) # progression or death cmat <- matrix(0, 7, 6) for( i in 1:7) { if (i==1) scale <-1 else scale <- (i-1)*365/12 temp <- floor(tdata$time/scale) tfit <- coxph(Surv(temp, status) ~ node4 + extent, tdata) tfit2 <- coxph(Surv(temp, status) ~ node4 + extent, tdata, ties='breslow') tfit3 <- coxph(Surv(temp, status) ~ node4 + extent, tdata, ties='exact') cmat[i,] <- c(coef(tfit2), coef(tfit), coef(tfit3)) } matplot(1:7, cmat[,c(1,3,5)], xaxt='n', pch='bec', xlab="Time divisor", ylab="Coefficient for node4") axis(1, 1:7, c(1, floor(1:6 *365/12)))