
Package ‘rank’
December 1, 2024

Title Customisable Ranking of Numerical and Categorical Data

Version 0.1.1

Description Provides a flexible alternative to the built-in rank() function called smartrank().
Optionally rank categorical variables by frequency (instead of in alphabetical order), and con-
trol whether ranking is based on descending/ascending order.
smartrank() is suitable for both numerical and categorical data.

License MIT + file LICENSE

Suggests covr, dplyr, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 2

Encoding UTF-8

RoxygenNote 7.3.2

URL https://github.com/selkamand/rank,

https://selkamand.github.io/rank/

BugReports https://github.com/selkamand/rank/issues

VignetteBuilder knitr

NeedsCompilation no

Author Sam El-Kamand [aut, cre, cph] (<https://orcid.org/0000-0003-2270-8088>)

Maintainer Sam El-Kamand <sam.elkamand@gmail.com>

Repository CRAN

Date/Publication 2024-12-01 22:30:02 UTC

Contents

smartrank . 2

Index 5

1

https://github.com/selkamand/rank
https://selkamand.github.io/rank/
https://github.com/selkamand/rank/issues
https://orcid.org/0000-0003-2270-8088

2 smartrank

smartrank Rank a vector based on either alphabetical or frequency order

Description

This function acts as a drop-in replacement for the base rank() function with the added option to:

1. Rank categorical factors based on frequency instead of alphabetically

2. Rank in descending or ascending order

Usage

smartrank(
x,
sort_by = c("alphabetical", "frequency"),
desc = FALSE,
ties.method = "average",
na.last = TRUE,
verbose = TRUE

)

Arguments

x A numeric, character, or factor vector

sort_by Sort ranking either by "alphabetical" or "frequency" . Default is "alphabetical"

desc A logical indicating whether the ranking should be in descending (TRUE) or
ascending (FALSE) order. When input is numeric, ranking is always based on
numeric order.

ties.method a character string specifying how ties are treated, see ‘Details’; can be abbrevi-
ated.

na.last a logical or character string controlling the treatment of NAs. If TRUE, missing
values in the data are put last; if FALSE, they are put first; if NA, they are removed;
if "keep" they are kept with rank NA.

verbose verbose (flag)

Details

If x includes ‘ties’ (equal values), the ties.method argument determines how the rank value is
decided. Must be one of:

• average: replaces integer ranks of tied values with their average (default)

• first: first-occurring value is assumed to be the lower rank (closer to one)

• last: last-occurring value is assumed to be the lower rank (closer to one)

• max or min: integer ranks of tied values are replaced with their maximum and minimum
respectively (latter is typical in sports-ranking)

smartrank 3

• random which of the tied values are higher / lower rank is randomly decided.

NA values are never considered to be equal: for na.last = TRUE and na.last = FALSE they are given
distinct ranks in the order in which they occur in x.

Value

The ranked vector

Note

When sort_by = "frequency", ties based on frequency are broken by alphabetical order of the
terms

When sort_by = "frequency" and input is character, ties.method is ignored. each distinct element
level gets its own rank, and each rank is 1 unit away from the next element, irrespective of how
many duplicates

Examples

CATEGORICAL INPUT

fruits <- c("Apple", "Orange", "Apple", "Pear", "Orange")

rank alphabetically
smartrank(fruits)
#> [1] 1.5 3.5 1.5 5.0 3.5

rank based on frequency
smartrank(fruits, sort_by = "frequency")
#> [1] 2.5 4.5 2.5 1.0 4.5

rank based on descending order of frequency
smartrank(fruits, sort_by = "frequency", desc = TRUE)
#> [1] 1.5 3.5 1.5 5.0 3.5

sort fruits vector based on rank
ranks <- smartrank(fruits,sort_by = "frequency", desc = TRUE)
fruits[order(ranks)]
#> [1] "Apple" "Apple" "Orange" "Orange" "Pear"

NUMERICAL INPUT

rank numerically
smartrank(c(1, 3, 2))
#> [1] 1 3 2

rank numerically based on descending order

4 smartrank

smartrank(c(1, 3, 2), desc = TRUE)
#> [1] 3 1 2

always rank numeric vectors based on values, irrespective of sort_by
smartrank(c(1, 3, 2), sort_by = "frequency")
#> smartrank: Sorting a non-categorical variable. Ignoring `sort_by` and sorting numerically
#> [1] 1 3 2

Index

NA, 2

smartrank, 2

5

	smartrank
	Index

