missForest: Nonparametric Missing Value Imputation using Random Forest
The function 'missForest' in this package is used to
    impute missing values particularly in the case of mixed-type
    data. It uses a random forest (via 'ranger' or 'randomForest') trained on the observed values of
    a data matrix to predict the missing values. It can be used to
    impute continuous and/or categorical data including complex
    interactions and non-linear relations. It yields an out-of-bag
    (OOB) imputation error estimate without the need of a test set
    or elaborate cross-validation. It can be run in parallel to 
    save computation time.
| Version: | 
1.6.1 | 
| Imports: | 
randomForest, ranger, foreach, iterators, itertools, doRNG, stats, Rdpack | 
| Suggests: | 
doParallel, knitr, rmarkdown | 
| Published: | 
2025-10-26 | 
| DOI: | 
10.32614/CRAN.package.missForest | 
| Author: | 
Daniel J. Stekhoven [aut, cre] | 
| Maintainer: | 
Daniel J. Stekhoven  <stekhoven at nexus.ethz.ch> | 
| BugReports: | 
https://github.com/stekhoven/missForest/issues | 
| License: | 
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | 
https://www.r-project.org, https://github.com/stekhoven/missForest | 
| NeedsCompilation: | 
no | 
| Citation: | 
missForest citation info  | 
| Materials: | 
README, NEWS  | 
| In views: | 
MissingData | 
| CRAN checks: | 
missForest results | 
Documentation:
Downloads:
Reverse dependencies:
| Reverse depends: | 
bartMachine, imp4p | 
| Reverse imports: | 
ADAPTS, bartXViz, compIndexBuilder, fastml, funspace, FuzzyImputationTest, GenoPop, highMLR, imanr, KarsTS, longit, MAI, MERO, metamorphr, missCompare, MSPrep, obliqueRSF, pmp, promor, simputation, SmartPhos, speaq, streamDAG | 
| Reverse suggests: | 
CALIBERrfimpute, DepInfeR, hdImpute, mrIML, MsCoreUtils, mvs, notame, qmtools, tidyLPA | 
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=missForest
to link to this page.