--- title: "Introduction to healthbR" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to healthbR} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ``` ## Overview healthbR provides easy access to Brazilian public health data directly from R. The package downloads, caches, and processes data from official sources (Ministry of Health, IBGE, DATASUS), returning clean, analysis-ready tibbles following tidyverse conventions. The package currently supports **13 data sources** organized in two groups: **Surveys (IBGE / Ministry of Health)** | Module | Source | Years | |--------|--------|-------| | VIGITEL | Telephone survey on chronic disease risk factors | 2006--2024 | | PNS | National Health Survey (microdata + SIDRA API) | 2013, 2019 | | PNAD Continua | Continuous household survey (health supplements) | 2012--2024 | | POF | Household budget survey (food security, nutrition) | 2002--2018 | | Censo | Population denominators via SIDRA API | 1970--2022 | **DATASUS (Ministry of Health FTP)** | Module | Source | Granularity | Years | |--------|--------|-------------|-------| | SIM | Mortality (death certificates) | Annual/UF | 1996--2024 | | SINASC | Live births | Annual/UF | 1996--2024 | | SIH | Hospital admissions (AIH) | Monthly/UF | 2008--2024 | | SIA | Outpatient procedures (13 file types) | Monthly/UF | 2008--2024 | | SINAN | Notifiable diseases (31 diseases) | Annual/National | 2007--2024 | | CNES | Health facility registry (13 file types) | Monthly/UF | 2005--2024 | | SI-PNI | Vaccination (aggregated FTP + microdata API) | Annual/UF | 1994--2025 | | SISAB | Primary care coverage indicators (REST API) | Monthly | 2007--present | ## Getting started ```{r setup} library(healthbR) library(dplyr) ``` To see all available data sources at a glance: ```{r} list_sources() #> # A tibble: 13 x 5 #> source name description years status #> #> 1 vigitel VIGITEL Telephone survey on chronic... 2006-2024 available #> 2 pns PNS - Pesquisa Nacional ... National health survey (IBGE) 2013, 2019 available #> ... ``` All modules follow a consistent API pattern: - `*_years()` / `*_info()` -- metadata and available years - `*_variables()` / `*_dictionary()` -- variable names and category labels - `*_data()` -- download and load data - `*_cache_status()` / `*_clear_cache()` -- cache management ## VIGITEL -- Chronic disease risk factors VIGITEL is a telephone survey conducted annually in all 27 state capitals, monitoring risk and protective factors for chronic non-communicable diseases. ```{r} # check available years vigitel_years() # download data for a single year df <- vigitel_data(year = 2024) # explore the data dictionary dict <- vigitel_dictionary() # list variables vigitel_variables() ``` Key variables include `pesorake` (survey weight), `diab` (diabetes), `hart` (hypertension), `fumante` (smoker), and `imc` (BMI). ```{r} # weighted prevalence of diabetes by city using srvyr library(srvyr) df |> as_survey_design(weights = pesorake) |> group_by(cidade) |> summarize( prevalence = survey_mean(diab == 1, na.rm = TRUE), n = unweighted(n()) ) ``` ## PNS -- National Health Survey The PNS provides comprehensive data on health conditions, lifestyle, and healthcare access from ~100,000 households. ```{r} # microdata pns <- pns_data(year = 2019) # explore modules and variables pns_modules(year = 2019) pns_dictionary(year = 2019) # tabulated indicators from SIDRA API (no download needed) pns_sidra_search("diabetes") pns_sidra_data(table = 4487, territorial_level = "state", year = 2019) ``` ## PNAD Continua -- Household survey supplements PNAD Continua includes health-related supplementary modules on disability, housing conditions, primary health care (APS), and household characteristics. ```{r} # list available modules pnadc_modules() # download disability supplement defic <- pnadc_data(module = "deficiencia", year = 2019, quarter = 1) # explore variables pnadc_variables(module = "deficiencia") ``` ## POF -- Food security and nutrition The POF (Household Budget Survey) contains data on food insecurity (EBIA), individual food consumption, anthropometry, and health expenses. ```{r} # list available registers pof_registers(year = 2018) # food consumption microdata consumo <- pof_data(year = 2018, register = "consumo_alimentar") # food insecurity scale (EBIA) morador <- pof_data(year = 2018, register = "morador") # variable dictionary for a specific register pof_dictionary(year = 2018, register = "morador") ``` See `vignette("pof-health-data")` for a detailed walkthrough. ## Censo -- Population denominators The Census module queries the IBGE SIDRA API for population denominators, essential for calculating mortality rates, incidence, and other epidemiological indicators. ```{r} # population by state, sex, and age group (2022 Census) pop <- censo_populacao(year = 2022, territorial_level = "state") # intercensitary population estimates (for years between censuses) est <- censo_estimativa(year = 2020, territorial_level = "state") # query any Census SIDRA table directly censo_sidra_search("populacao") censo_sidra_data(table = 9514, territorial_level = "brazil", year = 2022) ``` See `vignette("censo-denominadores")` for epidemiological examples. ## SIM -- Mortality data SIM contains individual death records from death certificates (CID-10, 1996+). ```{r} # deaths in Acre, 2022 obitos <- sim_data(year = 2022, uf = "AC") # filter by cause of death (CID-10 prefix) obitos_cardio <- sim_data(year = 2022, uf = "AC", cause = "I") # explore variables and categories sim_variables() sim_dictionary("CAUSABAS") ``` ## SINASC -- Live births SINASC contains individual birth records including birth weight, gestational age, prenatal care, and congenital anomalies. ```{r} # births in Acre, 2022 nascimentos <- sinasc_data(year = 2022, uf = "AC") # filter by congenital anomaly (CID-10 prefix) anomalias <- sinasc_data(year = 2022, uf = "AC", anomaly = "Q") sinasc_variables() sinasc_dictionary("PARTO") ``` ## SIH -- Hospital admissions SIH contains hospital admission records (AIH) with diagnosis, procedures, length of stay, and costs. Data is organized monthly. ```{r} # admissions in Acre, January 2022 internacoes <- sih_data(year = 2022, month = 1, uf = "AC") # filter by principal diagnosis (CID-10 prefix) intern_resp <- sih_data(year = 2022, month = 1, uf = "AC", diagnosis = "J") sih_variables() sih_dictionary("DIAG_PRINC") ``` ## SIA -- Outpatient procedures SIA covers outpatient production data with 13 file types (BPA, APAC, RAAS). ```{r} # outpatient production in Acre, January 2022 (default type: PA) ambulatorial <- sia_data(year = 2022, month = 1, uf = "AC") # high-cost medications (APAC) medicamentos <- sia_data(year = 2022, month = 1, uf = "AC", type = "AM") # filter by procedure or diagnosis sia_data(year = 2022, month = 1, uf = "AC", procedure = "0301") sia_data(year = 2022, month = 1, uf = "AC", diagnosis = "E11") ``` ## SINAN -- Notifiable diseases SINAN contains individual notification records for 31 notifiable diseases including dengue, tuberculosis, chikungunya, zika, hepatitis, syphilis, and others. Files are **national** (not per-state), so each download covers all of Brazil for a given disease and year. ```{r} # list available diseases sinan_diseases() # search for a specific disease sinan_diseases(search = "dengue") # dengue notifications, 2022 dengue <- sinan_data(year = 2022, disease = "DENG") # tuberculosis, 2020-2022 tb <- sinan_data(year = 2020:2022, disease = "TUBE") # explore variables and categories sinan_variables() sinan_dictionary("EVOLUCAO") ``` Since SINAN files are national, filter by state after download using `SG_UF_NOT` (UF of notification) or `ID_MUNICIP` (municipality code): ```{r} dengue |> filter(SG_UF_NOT == "35") # Sao Paulo ``` ## CNES -- Health facility registry CNES is the national registry of health facilities, covering hospitals, clinics, primary care units, and all other health establishments. Data is organized monthly with 13 file types. ```{r} # see all file types cnes_info() # establishments in Acre, January 2023 estab <- cnes_data(year = 2023, month = 1, uf = "AC") # hospital beds leitos <- cnes_data(year = 2023, month = 1, uf = "AC", type = "LT") # health professionals prof <- cnes_data(year = 2023, month = 1, uf = "AC", type = "PF") # explore variables and categories cnes_variables() cnes_dictionary("TP_UNID") ``` See `vignette("datasus-modules")` for cross-module analysis examples. ## SI-PNI -- Vaccination data SI-PNI data comes from two sources: **FTP** (1994--2019) with aggregated dose counts and coverage rates, and the **OpenDataSUS API** (2020--2025) with individual-level microdata (one row per vaccination dose). `sipni_data()` routes transparently based on the requested year. ```{r} # module overview sipni_info() # FTP: doses applied in Acre, 2019 (aggregated) doses <- sipni_data(year = 2019, uf = "AC") # FTP: vaccination coverage cobertura <- sipni_data(year = 2019, type = "CPNI", uf = "AC") # API: microdata for Acre, January 2024 micro <- sipni_data(year = 2024, uf = "AC", month = 1) # explore variables for each data source sipni_variables() # FTP DPNI variables sipni_variables(type = "API") # API microdata variables sipni_dictionary("IMUNO") # FTP dictionary ``` ## SISAB -- Primary care coverage SISAB provides aggregated coverage indicators for primary care (Atencao Primaria) via a public REST API. Unlike other DATASUS modules, no FTP download or .dbc decompression is needed. ```{r} # module overview sisab_info() # APS coverage by state, January 2024 cobertura <- sisab_data(year = 2024, month = 1) # national total, full year 2023 sisab_data(year = 2023, level = "brazil") # oral health coverage sisab_data(year = 2024, type = "sb", month = 6) # municipality level for Sao Paulo sisab_data(year = 2024, level = "municipality", uf = "SP", month = 1) # explore variables sisab_variables() sisab_variables(type = "sb") ``` ## Caching All modules cache downloaded data automatically to avoid repeated downloads. Install `arrow` for optimized Parquet caching (recommended): ```{r} install.packages("arrow") ``` Cache management works the same across all modules: ```{r} # check what is cached sim_cache_status() vigitel_cache_status() # clear a module's cache sim_clear_cache() # use a custom cache directory (e.g., for temporary use) sim_data(year = 2022, uf = "AC", cache_dir = tempdir()) ``` ## Combining modules healthbR's real power comes from combining data across modules. For example, calculating mortality rates requires deaths (SIM) and population (Censo): ```{r} library(dplyr) # deaths by state deaths <- sim_data(year = 2022, uf = "AC") |> count(name = "deaths") # population by state pop <- censo_populacao(year = 2022, territorial_level = "state") |> filter(nivel_territorial_codigo == "12") # Acre # crude mortality rate deaths$deaths / pop$valor * 100000 ``` ## Additional resources - `vignette("pof-health-data")` -- Analyzing food security and nutrition from POF - `vignette("censo-denominadores")` -- Population denominators for epidemiology - `vignette("datasus-modules")` -- SIM, SINASC, SIH, SIA, SINAN, and CNES in depth - [Package website](https://sidneybissoli.github.io/healthbR/) - [GitHub repository](https://github.com/SidneyBissoli/healthbR)