
Package ‘gmoTree’
December 7, 2024

Title Get and Modify 'oTree' Data

Version 1.3.1

Date 2024-12-06

Description Efficiently manage and process data from 'oTree' experiments.
Import 'oTree' data and clean them by using functions that handle
messy data, dropouts, and other problematic cases. Create IDs,
calculate the time, transfer variables between app data frames, and
delete sensitive information. Review your experimental data prior to
running the experiment and automatically generate a detailed summary
of the variables used in your 'oTree' code. Information on 'oTree' is
found in Chen, D. L., Schonger, M., & Wickens, C. (2016)
<doi:10.1016/j.jbef.2015.12.001>.

License GPL (>= 3)

URL https://zauchnerp.github.io/gmoTree/,

https://github.com/ZauchnerP/gmoTree/,

https://github.com/ZauchnerP/gmoTree

BugReports https://github.com/ZauchnerP/gmoTree/issues

Depends R (>= 4.4.0)

Imports data.table (>= 1.15.4), dplyr (>= 1.1.4), knitr (>= 1.47),
openxlsx (>= 4.2.5.2), pander (>= 0.6.5), plyr (>= 1.8.9),
rlang (>= 1.1.4), rlist (>= 0.4.6.2), rmarkdown (>= 2.27),
stringr (>= 1.5.1)

Suggests testthat (>= 3.2.1), withr (>= 3.0.0)

VignetteBuilder knitr

BuildVignettes true

Config/testthat/edition 3

Encoding UTF-8

LazyData true

NeedsCompilation no

RoxygenNote 7.3.2

1

https://doi.org/10.1016/j.jbef.2015.12.001
https://zauchnerp.github.io/gmoTree/
https://github.com/ZauchnerP/gmoTree/
https://github.com/ZauchnerP/gmoTree
https://github.com/ZauchnerP/gmoTree/issues

2 apptime

Author Patricia F. Zauchner [aut, trl, cre, cph]
(<https://orcid.org/0000-0002-5938-1683>, University of Bremen)

Maintainer Patricia F. Zauchner <patricia.zauchner@gmx.at>

Repository CRAN

Date/Publication 2024-12-07 00:20:07 UTC

Contents
apptime . 2
assignv . 4
assignv_to_aaw . 5
codebook . 6
delete_cases . 11
delete_dropouts . 13
delete_duplicate . 16
delete_plabels . 17
delete_sessions . 18
extime . 20
import_otree . 22
make_ids . 24
messy_chat . 26
messy_time . 28
oTree . 29
pagesec . 30
show_constant . 31
show_dropouts . 31

Index 34

apptime Calculate the time that was spent on an app

Description

Calculate the time spent on one app or several apps.

Usage

apptime(
oTree,
apps = NULL,
pcode = NULL,
plabel = NULL,
group_id = NULL,
seconds = FALSE,
rounded = TRUE,

https://orcid.org/0000-0002-5938-1683

apptime 3

digits = 2,
sinfo = "session_code",
combine = FALSE

)

Arguments

oTree A list of data frames that were created by import_otree

apps Character. Name(s) of the app(s) for which the time should be calculated.

pcode Character. The value of the participant.code variable if the time should only
be calculated for one specified participant.

plabel Character. The value of the participant.label variable if the time should
only be calculated for one specified participant.

group_id Integer. The value of the group_id variable if the time should only be calculated
for one specified group. The group_id variable can be created with make_ids.

seconds Logical. TRUE if the output should be in seconds instead of minutes.

rounded Logical. TRUE if the output should be rounded.

digits Integer. The number of digits to which the output should be rounded. This
parameter has no effect unless rounded = TRUE.

sinfo Character. "session_id" to use session ID for additional information in the
data frame of single durations, "session_code" to use session codes, or NULL
if no session column should be shown.

combine Logical. TRUE if all variables relating to epoch time should be merged, and all
variables relating to participant code should be merged when data from multiple
versions of oTree are used.

Value

This function returns a list for each app containing information on the mean, the minimum, and
maximum time the participants spent on the app, a data frame with information on the time each
participant spent on the app, and eventually, vectors of relevant background information on these
numbers.

If the experiment’s duration is only calculated for one participant, the output returns an NA (per app)
if the person did not make it to the app(s).

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

Show how much time all participants spent on app "survey"
apptime(oTree, apps = "survey")

Show how much time the participant "a7dppel1" spent on
the app "survey"
apptime(oTree, pcode = "a7dppel1", apps = "survey")

4 assignv

Show how much time the participants in group 4 spent on
the app "survey"
oTree <- make_ids(oTree,

gmake = TRUE,
from_var = "dictator.1.group.id_in_subsession"

)
apptime(oTree, group_id = 4, apps = "survey")

Show how much time all participants spent on all apps
apptime(oTree)

assignv Assign a variable from all_apps_wide

Description

Assign a variable from $all_apps_wide to the other app data frames.

Usage

assignv(oTree, variable, newvar)

Arguments

oTree A list of data frames that were created by import_otree

variable Character. The variable in the $all_apps_wide data frame that should be as-
signed to all other apps.

newvar Character. The name of the newly created variable.

Value

This function returns a duplicate of the original oTree list of data frames but with an additional
column in all data frames. The additional column contains data from the specified variable found
in $all_apps_wide.

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

Assign variable "survey.1.player.gender" and name it "gender"
oTree <- assignv(oTree = oTree,

variable = "survey.1.player.gender",
newvar = "gender")

Show the new variable in some of the other app data frames
oTree$dictator$gender
oTree$chatapp$gender

assignv_to_aaw 5

The variable is now duplicated in app "survey" because it is obtained from
there (This can be avoided by naming the new variable the same as the old
variable)
oTree$survey$gender
oTree$survey$player.gender

In app "all_apps_wide," the variable is also there twice (This can be
avoided by naming the new variable the same as the old variable)
oTreeall_apps_widegender
oTreeall_apps_widesurvey.1.player.gender

assignv_to_aaw Assign a variable to all_apps_wide

Description

Assign a variable from one of the app data frames to $all_apps_wide.

Usage

assignv_to_aaw(oTree, app, variable, newvar, resafter = NULL)

Arguments

oTree A list of data frames that were created by import_otree.

app Character. The data frame from which the variable is taken.

variable Character. The name of the variable that should be assigned to $all_apps_wide.

newvar Character. The name of the newly created variable in the $all_apps_wide data
frame.

resafter Character. The name of the variable that precedes the new variable. If NULL, the
new variable will be placed at the end of the data frame.

Value

This function returns a duplicate of the original oTree list of data frames but with an additional
column in the $all_apps_wide data frame that contains the variable in question.

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

Check out the old variable
oTree$survey$player.age

Create a new variable
oTree$survey$younger30 <- ifelse(oTree$survey$player.age < 30, 1, 0)

6 codebook

Assign the variable younger30 to all_apps_wide
oTree2 <- assignv_to_aaw(

oTree = oTree,
app = "survey",
variable = "younger30",
newvar = "younger30")

Show the new variable in the all_apps_wide data frame
oTree2all_apps_wideyounger30

Check the position of the new variable
match("younger30",names(oTree2$all_apps_wide))

Place the new variable immediately after the "survey.1.player.age" variable
oTree2 <- assignv_to_aaw(oTree,

app = "survey",
variable = "younger30",
newvar = "younger30",
resafter = "survey.1.player.age")

Show the new variable in the all_apps_wide data frame
oTree2all_apps_wideyounger30

Show the position of the new variable
match("younger30", names(oTree2$all_apps_wide))

codebook Create a codebook for the oTree code

Description

Create a codebook of your oTree code by automatically scanning your project folder and retrieving
all variables’ information.

Usage

codebook(
path = ".",
fsource = "init",
output = "both",
output_dir = NULL,
output_file = "codebook",
output_format = "pdf_document_simple",
output_open = TRUE,
app_doc = TRUE,
app = NULL,
app_rm = NULL,
doc_info = TRUE,
sort = NULL,

codebook 7

settings_replace = "global",
user_settings = NULL,
include_cons = TRUE,
preamb = FALSE,
encoding = "UTF-8",
title = "Codebook",
subtitle = "created with gmoTree",
params = NULL,
date = "today",
splitvarname = FALSE,
sep_list = "newline",
initial = TRUE

)

Arguments

path Character. Path of the oTree experiment.

fsource Character. "init" if information should be taken from the init.py files (newer
oTree code with 5.x format). "models" (or "model") if the information should
be taken from the models.py files (older oTree code with 3.x format).

output Character. "list" if the output should contain a list of variables and their in-
formation. "file" if the output should be a file such as a Word or PDF file.
"both" if the output should contain a file and a list.

output_dir Character. The absolute path where the function’s output will be saved. Only
absolute paths are allowed for this parameter. Relative paths can be specified in
the output_file parameter.

output_file Character. The name of the output file generated by the function. The file name
can be provided with or without an extension. Relative paths are also allowed in
the file name.

output_format Character. Specifies the format of the file output. This value is passed to the
output_format argument of rmarkdown::render. Allowed options are: "html_document",
"word_document", "odt_document", "rtf_document", "md_document", "latex_document",
"pdf_document", "pdf_document_simple", or their short forms "html", "word",
"odt", "rtf", "md", "latex", "pdf", "pdf_simple". Important: The "pdf_document"
format uses xelatex for PDF generation. If your document does not require ad-
vanced LaTeX features, it is recommended to use "pdf_document_simple".

output_open Logical. TRUE if file output should be opened after creation.

app_doc Logical. TRUE if app documentation should be included in the output file.

app Character. Name of the included app(s). Default is to use all apps. Cannot be
used simultaneously with app_rm.

app_rm Character. Name of the excluded app(s). Default is to exclude no apps. Cannot
be used simultaneously with app.

doc_info Logical. TRUE if a message with information on all variables without documen-
tation should also be returned. FALSE if this message should be suppressed.

sort Character vector. Vector that specifies the order of the apps in the codebook.

8 codebook

settings_replace

Character or NULL. Specifies how to handle references to settings variables.
Use "global" to replace references with the global settings variables defined
in settings.py. Use "user" to replace references with the variables pro-
vided in the user_settings argument. Use NULL to leave references to settings
variables unchanged. Caution: This function does not use variables defined
in SESSION_CONFIGS. If you vary settings variables in SESSION_CONFIGS, set
settings_replace to "user" and manually replace them using the user_settings
argument.

user_settings List. List of variables in the settings.py file that are used to replace set-
ting variable references. This is only used if settings_replace = "user" and
should be used when setting variables are defined within the SESSION_CONFIGS.

include_cons Logical. TRUE if there should be a section for the constants in the codebook.
preamb Logical. TRUE if a preamble should be printed that explains how oTree saves

variables.
encoding Character. Encoding of the created Markdown file. As in knitr::knit, this argu-

ment is always assumed to be UTF-8 and ignored.
title Character. Title of output file.
subtitle Character. Subtitle of output file.
params List. List of variable name and value pairs to be passed to the RmD file. Only

relevant if argument output "file" or "both" if chosen.
date Character or NULL. Date that is passed to the Rmd file. Either "today", NULL,

or a user defined date. Only relevant if argument output "file" or "both" if
chosen.

splitvarname Logical. TRUE if long variable names should be split across multiple lines in
the output file tables. If FALSE, table columns should adjust to fit the longest
variable names.

sep_list Character. Determines how sub-lists are displayed in the file output. Use "newline"
to separate sub-lists with newline characters (‘\n‘), or "vector" to display them
as strings in ‘c(...)‘ format.

initial Logical. TRUE if initial values should be included in the output file. FALSE if
they should not be included.

Details

This code works only when there are no dictionaries used (for example in the session configurations
in settings.py).

Caution 1: Multiline comments are ignored, meaning that all variables commented out in this man-
ner will nevertheless be included in the codebook. In contrast, variables commented out with line
comments will not appear in the codebook.

Caution 2: If there are commas in the value strings, they might be used to split the text. Please
manually insert a backslash symbol in front of the commas to avoid that (i.e., escape them). E.g.
"Yes, I will" -> "Yes\, I will".

Caution 3: This code cannot interpret variables that were imported from other files (for example
CSV files) and that have special formatting included (e.g., special string formatting in Python such
as float(1.4) to represent a float number).

codebook 9

Caution 4: This code was developed and tested with basic oTree codes and has not been verified for
compatibility with oTree versions later than 5.4.0. If you experience issues with newer versions or
more complex code structures, please open an issue on GitHub.

Caution 5: Custom exports are not part of the codebook.

Further info: None values are presented as "None" (i.e. as a string) in the list and in the codebook.

Value

The function returns two main types of outputs:

(a) a list of variables along with their information

(b) a file containing the codebook for the experiment

If doc_info is TRUE it also returns a message containing the names of all variables that have no
documentation.

Examples

The examples use a slightly modified version of the official oTree sample codes.

Make a codebook and resort the apps
combined_codebook <- codebook(

path = system.file("extdata/ocode_new", package = "gmoTree"),
output = "list",
fsource = "init",
doc_info = FALSE)

Show the structure of the codebook
str(combined_codebook, 1)
str(combined_codebook$bargaining$Player, 1)

Make a codebook with only the "bargaining" app
combined_codebook <- codebook(

path = system.file("extdata/ocode_new", package = "gmoTree"),
output = "list",
fsource = "init",
app = "bargaining",
doc_info = FALSE)

Show the structure of the codebook
str(combined_codebook, 1)
str(combined_codebook$bargaining$Player, 1)

Make a codebook with all but the "bargaining" app
combined_codebook <- codebook(

path = system.file("extdata/ocode_new", package = "gmoTree"),
output = "list",
fsource = "init",
app_rm = "bargaining",
doc_info = FALSE)

Show the structure of the codebook

10 codebook

str(combined_codebook, 1)
str(combined_codebook$bargaining$Player, 1)

Use oTree code in 3.x format
combined_codebook <- codebook(

path = system.file("extdata/ocode_z", package = "gmoTree"),
fsource = "model",
output = "list",
doc_info = FALSE)

Show the structure of the codebook
str(combined_codebook, 1)

Show information on missing documentation or complex code
combined_codebook <- codebook(

path = system.file("extdata/ocode_new", package = "gmoTree"),
fsource = "init",
output = "list",
app_rm = "bargaining",
doc_info = TRUE)

Not run:

Create a codebook PDF with authors' names and todays' date
codebook(

path = system.file("extdata/ocode_z", package = "gmoTree"),
fsource = "init",
doc_info = FALSE,
output = "file",
output_format = "pdf_document",
date = "today",
title = "My Codebook",
subtitle = "codebook created with gmoTree",
params = list(author = c("Max Mustermann", "John Doe"))
)

Create a codebook PDF and save it in a subfolder of the
current folder:
"C:/Users/pzauchner/Nextcloud/R_analyses/cb/cb.pdf"
getwd() # "C:/Users/pzauchner/Nextcloud/R_analyses"
dir.create("cb")
combined_codebook <- gmoTree::codebook(

path = "C:/Users/pzauchner/Nextcloud/R_analyses/oTree",
fsource = "models",
output = "both",
output_file = "cb/cb.pdf",
output_format = "pdf_document")

You can also omit *.pdf after the file name
combined_codebook <- gmoTree::codebook(

path = "C:/Users/pzauchner/Nextcloud/R_analyses/oTree",
fsource = "models",
output = "both",

delete_cases 11

output_file = "cb/cb",
output_format = "pdf_document")

End(Not run)

delete_cases Delete specific cases

Description

Delete specific cases from all data frames in the oTree list.

Caution 1: This function does not delete cases from the original CSV and Excel files!

Caution 2: This function does not delete cases from custom exports and custom data frames if these
data frames do not have a variable named participant.code!

Caution 3: This function does not delete any data from the $Chats data frame! (As the interpretation
of chat data depends on how participants engage with each other, the data must be deleted with more
care than deleting data in other apps. Hence, this function does not delete data in this data frame.
Please do this manually if necessary!)

Usage

delete_cases(
oTree,
pcodes = NULL,
plabels = NULL,
saved_vars = NULL,
reason,
omit = FALSE,
info = FALSE

)

Arguments

oTree A list of data frames that were created by import_otree.
pcodes Character. The value(s) of the participant.code variable of the participants whose

data should be removed.
plabels Character. The value(s) of the participant.label variable of the participants whose

data should be removed.
saved_vars Character. The name(s) of variable(s) that need(s) to be stored in the list of

information on deleted cases in $info$deleted_cases.
reason Character. The reason for deletion that should be stored in the list of information

on deleted cases in $info$deleted_cases.
omit Logical. TRUE if the deleted cases should not be added to the information on

deleted cases in $info$deleted_cases.
info Logical. TRUE if a brief information on the case deletion process should be

printed.

12 delete_cases

Value

This function returns a duplicate of the original oTree list of data frames that do not include the
deleted cases.

It adds information on the deleted cases to $info$deleted_cases. (This list is also filled by other
functions.)

In this list, you can find the following information:

- $codes = A vector with the participant codes of all deleted cases.

- $count = The number of participants in $codes.

- $full and $unique = The data frames $full and $unique contain information on each deleted
participant and the reason why they were deleted. The entries to the $full and the $unique data
frames are the same. Columns "end_app" and "end_page" are left empty intentionally because
they are only filled by the delete_dropouts function.

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

Delete only one case
oTree2 <- delete_cases(oTree,

pcodes = "xmxl46rm",
reason = "requested")

Show changes in row numbers
print(paste("Row numbers before deletion: ", nrow(oTree$all_apps_wide), nrow(oTree$survey),
nrow(oTree$Time), nrow(oTree$Chats)))

print(paste("Row numbers after deletion: ", nrow(oTree2$all_apps_wide), nrow(oTree2$survey),
nrow(oTree2$Time), nrow(oTree2$Chats)))

Delete several cases
deletionlist <- c("4zhzdmzo", "xmxl46rm")
oTree2 <- delete_cases(oTree,

pcodes = deletionlist,
reason = "requested")

Show row numbers again
print(paste(nrow(oTree2$all_apps_wide), nrow(oTree2$survey),
nrow(oTree2$Time), nrow(oTree2$Chats)))

Show information on all deleted cases (also dropouts):
oTree2$info$deleted_cases$full

Save one variable
oTree2 <- delete_cases(oTree,

pcodes = deletionlist,
reason = "requested",
saved_vars = "participant._index_in_pages")

delete_dropouts 13

Show row numbers again
print(paste(nrow(oTree2$all_apps_wide), nrow(oTree2$survey),
nrow(oTree2$Time), nrow(oTree2$Chats)))

Check the "full" deletion information
oTree2$info$deleted_cases$full

Save some variables
oTree2 <- delete_cases(oTree,

pcodes = deletionlist,
reason = "requested",
saved_vars = c(
"participant._index_in_pages",
"participant._max_page_index"))

Show row numbers again
print(paste(nrow(oTree2$all_apps_wide), nrow(oTree2$survey),
nrow(oTree2$Time), nrow(oTree2$Chats)))

Check the "full" deletion information
oTree2$info$deleted_cases$full

Get a list of all deleted cases
(If there is already a list, the new list is added to it)
oTree2$info$deleted_cases$codes

Show number of all deleted cases
length(oTree2$info$deleted_cases$codes)
oTree2$info$deleted_cases$count

Delete a session and delete a single case from another session
oTree2 <- delete_sessions(oTree,

scodes = c("vd1h01iv"),
reason = "Server Crash",
saved_vars = "dictator.1.group.id_in_subsession")

oTree2 <- delete_cases(oTree2,
pcodes = "4zhzdmzo",
reason = "requested")

Check the "full" deletion information
oTree2$info$deleted_cases$full

See codes of deleted variables
oTree2$info$deleted_cases$codes

See number of deleted variables
oTree2$info$deleted_cases$count

delete_dropouts Delete dropouts

14 delete_dropouts

Description

Delete the data of all participants who did not end the experiment at (a) certain page(s) and/or
app(s).

Caution 1: This function does not delete cases from the original CSV and Excel files!

Caution 2: This function does not delete cases from custom exports if the custom exports do not
have a variable named participant.code and a variable named session.code!

Caution 3: This function does not delete any data from the $Chats data frame! (As the interpretation
of chat data depends on how participants engage with each other, the data must be deleted with more
care than deleting data in other apps. Hence, this function does not delete data in this data frame.
Please do this manually if necessary!)

Usage

delete_dropouts(
oTree,
final_apps = NULL,
final_pages = NULL,
saved_vars = NULL,
inconsistent = NULL,
reason = "ENC",
info = FALSE

)

Arguments

oTree A list of data frames that were created by import_otree

final_apps Character. The name(s) of the app(s) at which the participants have to finish the
experiment.

final_pages Character. The name(s) of the page(s) at which the participants have to finish
the experiment.

saved_vars Character. The name(s) of variable(s) that need(s) to be stored in the list of
information on deleted cases in $info$deleted_cases.

inconsistent Character. Should the function continue or be stopped if at least one participant
has inconsistent end_pages, inconsistent end_apps, or both? To continue, type
"yes", to stop the function, type "no".

reason Character. The reason for deletion that should be stored in the list of information
on deleted cases in $info$deleted_cases.

info Logical. TRUE if a brief information on the dropout deletion process should be
printed.

Value

This function returns a duplicate of the original oTree list of data frames but without the deleted
cases.

It adds information on the deleted cases to $info$deleted_cases. (This list is also filled by other
functions.)

delete_dropouts 15

In this list, you can find the following information:

- $full = A data frame that contains information on all participants who did not finish the study; it
shows their participant codes, the names of the apps in which they left the experiment, the names
of the pages in which they left the experiment, the names of the app data frames in which this infor-
mation was found, and the dropout reason ("ENC", experiment not completed, combined with the
name of the data frame in which the dropout was observed). Because participants usually appear in
multiple app data frames, the $info$deleted_cases$full data frame may contain several entries
for each person.

- $unique = A data frame that contains similar information as the $full data frame but with only
one row per participant and no information on the data frame in which the dropout was observed.

- $all_end = A table that provides information on the app and page combinations where partici-
pants ended the experiment. This table also includes information for participants who did not drop
out of the experiment. The $all_end table is only shown if an $all_apps_wide data frame exists.

- $codes = A vector containing the participant codes of all deleted participants.

- $count = The number of all deleted participants.

It is important to note that if only the argument final_pages is set, this function does not distin-
guish between page names that reoccur in different apps.

If the columns end_app and end_page in the output are empty, these variables were not saved by
oTree for the specific participants. This could be because empty rows were not deleted. This can be
done by using the argument del_empty = TRUE when using import_otree.

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

First, show some row numbers
print(paste(nrow(oTree$all_apps_wide), nrow(oTree$survey),
nrow(oTree$Time), nrow(oTree$Chats)))

Delete all cases that didn't end the experiment on the page "Demographics"
within the app "survey"
oTree2 <- delete_dropouts(oTree,

final_apps = c("survey"),
final_pages = c("Demographics"))

Show row numbers again
print(paste(nrow(oTree2$all_apps_wide), nrow(oTree2$survey),
nrow(oTree2$Time), nrow(oTree2$Chats)))

Delete all cases that didn't end the experiment on the page "Demographics"
This page can be in any app
oTree2 <- delete_dropouts(oTree, final_pages = "Demographics")

Show row numbers again
print(paste(nrow(oTree2$all_apps_wide), nrow(oTree2$survey),
nrow(oTree2$Time), nrow(oTree2$Chats)))

Delete all cases that didn't end the experiment on

16 delete_duplicate

any page in the app "survey"
oTree <- delete_dropouts(oTree, final_apps = "survey")

Show row numbers again
print(paste(nrow(oTree2$all_apps_wide), nrow(oTree2$survey),
nrow(oTree2$Time), nrow(oTree2$Chats)))

Get list of information on all deleted cases
(If there is already a list, the new list is added to it!)
oTree2$info$deleted_cases

delete_duplicate Delete duplicate data

Description

Delete duplicate rows from all oTree app data frames and $all_apps_wide.

Usage

delete_duplicate(oTree)

Arguments

oTree A list of data frames that were created by import_otree.

Value

This function returns a duplicate of the original oTree list of data frames but without duplicate rows
in all app data frames and $all_apps_wide. This function has no effect on the data frames $Time
and $Chats.

This function does NOT add information to $info$deleted_cases, because it does not delete any
important information but only cleans up a messy data import.

However, the function adjusts $info$initial_n, if an $all_apps_wide data frame exists.

Examples

Set data folder first
withr::with_dir(system.file("extdata", package = "gmoTree"), {

Import all oTree files in this folder and its subfolders
oTree <- import_otree()
})

First, show some row numbers
print(paste(nrow(oTree$all_apps_wide), nrow(oTree$survey),
nrow(oTree$Time), nrow(oTree$Chats)))

Delete duplicate rows

delete_plabels 17

oTree <- delete_duplicate(oTree)

Show row numbers again
print(paste(nrow(oTree$all_apps_wide), nrow(oTree$survey),
nrow(oTree$Time), nrow(oTree$Chats)))

delete_plabels Delete participant labels in all apps

Description

If you work with MTurk, the MTurk IDs will be stored in the participant labels variable. This func-
tion deletes this variable in $all_apps_wide and every app data frame in the list of data frames that
was created by import_otree and/or all variables referring to MTurk, such as participant.mturk_worker_id.

Caution: This function does not delete the variables from the original CSV and Excel files!

Usage

delete_plabels(oTree, del_plabel = TRUE, del_mturk = TRUE)

Arguments

oTree A list of data frames that were created by import_otree.

del_plabel Logical. TRUE if all participant labels should be deleted.

del_mturk Logical. TRUE if all MTurk variables should be deleted.

Value

This function returns a duplicate of the original oTree list of data frames that do not include the
participant labels and/or the MTurk variables.

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

Show participant labels
oTreeall_apps_wideparticipant.label
oTree$survey$participant.label

Delete all participant labels
oTree2 <- delete_plabels(oTree)

Show participant labels again
oTree2all_apps_wideparticipant.label
oTree2$survey$participant.label

18 delete_sessions

delete_sessions Delete all cases of one session

Description

Delete cases from specific sessions in all data frames in the oTree list of data frames.

Caution 1: This function does not delete cases from the original CSV and Excel files!

Caution 2: This function does not delete cases from custom exports if the custom exports do not
have a variable named participant.code and a variable named session.code!

Usage

delete_sessions(oTree, scodes, saved_vars = NULL, reason, info = FALSE)

Arguments

oTree A list of data frames that were created by import_otree.

scodes Character. The session.code(s) of the session(s) whose data should be removed.

saved_vars Character. The name(s) of variable(s) that need(s) to be stored in the list of
information on deleted cases in $info$deleted_cases.

reason Character. The reason for deletion that should be stored in the list of information
on deleted cases in $info$deleted_cases.

info Logical. TRUE if a brief information on the session deletion process should be
printed.

Value

This function returns a duplicate of the original oTree list of data frames that do not include the
deleted sessions.

It adds information on the deleted cases to $info$deleted_cases. (This list is also filled by other
functions.)

In this list, you can find the following information:

- $full and $unique = The data frames $full and $unique contain information on all participants
whose data were deleted. The entries to the $full and the $unique data frames in this list are the
same. Columns end_app and end_page are left empty intentionally because they are only filled by
the delete_dropouts function. Columns participant.code and reason are filled.

- $codes = A vector containing the participant codes of all deleted participants.

- $count = The number of all deleted participants.

delete_sessions 19

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

Delete one session
oTree2 <- delete_sessions(oTree,

scodes = "7bfqtokx",
reason = "Only tests")

Show changes in row numbers
print(paste("Row numbers before deletion: ", nrow(oTree$all_apps_wide), nrow(oTree$survey),
nrow(oTree$Time), nrow(oTree$Chats)))

print(paste("Row numbers after deletion: ", nrow(oTree2$all_apps_wide), nrow(oTree2$survey),
nrow(oTree2$Time), nrow(oTree2$Chats)))

Delete two sessions and show deletion message
oTree2 <- delete_sessions(oTree,

scodes = c("7bfqtokx", "vd1h01iv"),
reason = "Only tests",
info = TRUE)

Show row numbers again
print(paste(nrow(oTree2$all_apps_wide), nrow(oTree2$survey),
nrow(oTree2$Time), nrow(oTree2$Chats)))

Delete session and save variable to the info list
oTree2 <- delete_sessions(oTree,

scodes = c("7bfqtokx", "vd1h01iv"),
reason = "Server Crash",
saved_vars = "dictator.1.group.id_in_subsession")

Check the "full" deletion information
oTree2$info$deleted_cases$full

See codes of deleted variables
oTree2$info$deleted_cases$codes

See number of deleted variables
oTree2$info$deleted_cases$count

Delete a single case and then delete a session
oTree2 <- delete_cases(oTree,

pcodes = "4zhzdmzo",
reason = "requested")

oTree2 <- delete_sessions(oTree2,
scodes = c("vd1h01iv"),
reason = "Server Crash",
saved_vars = "dictator.1.group.id_in_subsession")

Check the "full" deletion information
oTree2$info$deleted_cases$full

20 extime

See codes of deleted variables
oTree2$info$deleted_cases$codes

See number of deleted variables
oTree2$info$deleted_cases$count

extime Calculate the time that was spent on the whole experiment

Description

Calculate the time spent on the experiment. If not stated otherwise, the calculation only starts at the
end of the first page!

Usage

extime(
oTree,
pcode = NULL,
plabel = NULL,
group_id = NULL,
seconds = FALSE,
rounded = TRUE,
digits = 2L,
startat = 1L,
tz = "UTC",
sinfo = "session_code",
combine = TRUE

)

Arguments

oTree A list of data frames that were created by import_otree.

pcode Character. The value of the participant.code variable if the time should only
be calculated for one specified participant.

plabel Character. The value of the participant.label variable if the time should
only be calculated for one specified participant.

group_id Integer. The value of the group_id variable if the time should only be calculated
for one specified group. The group_id variable can be created with make_ids.

seconds Logical. TRUE if the output should be in seconds instead of minutes.

rounded Logical. TRUE if the output should be rounded.

digits Integer. The number of digits to which the output should be rounded. This
parameter has no effect unless rounded = TRUE.

extime 21

startat Integer or character string "real" Whether the start of the experiment should be
taken from the time at a certain index of each person’s vector of page_indexes in
the $Time data frame or from the time_started variable in $all_apps_wide
("real"). Important: If integer, it represents the position within the page index
sequence, not the numeric value of the page_index variable.

tz Character. Time zone.

sinfo Character. "session_id" to use session ID for additional information in the
data frame of single durations, "session_code" to use session codes, or NULL
if no session column should be shown.

combine Logical. TRUE if all variables referring to epoch time should be merged, and all
variables referring to participant code should be merged in case data of several
versions of oTree are used. If FALSE, the function returns an error if several
oTree versions’ data are present.

Details

This functions calculates the time spent on the experiment by using the variable that refers to the
time stamp. If that variable is not present, the function alternatively uses seconds_on_page2, which
can be created with the pagesec function.

Value

This function returns either a single value if only the data of one person is calculated or a list of
information on the time several participants spent on the experiment.

In this list, you can find the following information:

- $mean_duration = The experiment’s average duration.

- $min_duration = The experiment’s minimum duration.

- $max_duration = The experiment’s maximum duration.

- $single_durations = A data frame of all durations that are used for calculating the min, max,
and mean duration.

- $messages = All important notes to the calculations.

- $only_one_page = A vector of all individuals who only have one time stamp.

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

Show time for one participant
extime(oTree, pcode = "wk247s9w")

Make a data frame of durations
extime(oTree)

Make a data frame of durations (beginning from the end of the second page)
extime(oTree, startat = 2)

22 import_otree

import_otree Import oTree data

Description

Import data files that were created by oTree. All files containing the pattern YYYY-MM-DD at
the end of their file names are considered oTree files. Bot outputs are saved by oTree without the
date included. Hence, to import bot data, you must either rename the original bot files using the
YYYY-MM-DD format or use the argument onlybots = TRUE. By using the second option, only
data of bot files are imported.

Caution! Data can be downloaded from within the session and globally at the same time. If both
files are downloaded, this can lead to the $all_apps_wide data being there twice! You can remove
duplicate data by using delete_duplicate.

Caution! When importing Excel files, this function does not check for erroneous data structures
and will combine all data frames with the same file name patterns. Before using the CSV = FALSE
argument, clean up your data appropriately.

Usage

import_otree(
path = ".",
file_names = NULL,
final_apps = NULL,
final_pages = NULL,
recursive = TRUE,
csv = TRUE,
onlybots = FALSE,
del_empty = TRUE,
info = FALSE,
encoding = "UTF-8"

)

Arguments

path Character. The path to the files (default is the working directory).

file_names Character. The name(s) of the file(s) to be imported. If not specified, all files in
the path and subfolders are imported.

final_apps Character. The name(s) of the app(s) at which the participants have to finish the
experiment. If the argument final_apps is left empty, you can still call for delet-
ing the participants who did not finish the experiment with delete_dropouts.

final_pages Character. The name(s) of the page(s) at which the participants have to finish the
experiment. If the argument final_pages is left empty, you can still call for delet-
ing the participants who did not finish the experiment with delete_dropouts.

recursive Logical. TRUE if the files in the path’s subfolders should also be imported.

import_otree 23

csv Logical. TRUE if only CSV files should be imported. FALSE if only Excel files
should be imported.

onlybots Logical. TRUE if only bot-created files should be imported.

del_empty Logical. TRUE if all empty cases should be deleted from the $all_apps_wide
or normal app data frames (not Time or Chats).

info Logical. TRUE if a brief information on the data import should be printed.

encoding Character. Encoding of the CSV files that are imported. Default is "UTF-8".

Value

Returns a list of data frames (one data frame for each app and $all_apps_wide) and a list of
information on this list of data frames in $info.

See detailed information on the imported files in $info$imported_files.

If $all_apps_wide is imported, see the number of imported cases in $info$initial_n. In this
number, empty rows are already considered. So, if empty rows are deleted with del_empty=TRUE,
initial_n counts all rows that are not empty. Cases that are deleted because the participants did
not make it to the last page and/or app are not subtracted from this number.

Information: Empty rows are rows without the participant._current_app_name variable set.
Empty rows are deleted from all app data frames and $all_apps_wide when using del_empty =
TRUE. Empty rows in the $Chats and $Time data frames are not deleted.

If old and new oTree versions are combined, the $Time data frame contains variables called participant_code
and participant__code (the difference is in the underscores). Caution! If there is an unusual
amount of NAs, check if everything got imported correctly. Sometimes, the CSV or Excel file may
be corrupted, and all information is only found in one column.

Examples

Set data folder first
withr::with_dir(system.file("extdata", package = "gmoTree"), {

Import all oTree files in this folder and its subfolders
oTree <- import_otree()

Show the structure of the import
str(oTree, max.level = 1)

Show the names of all imported files
oTree$info$imported_files

Delete empty cases and delete every case of a person
who didn't end the experiment in the app "survey"
oTree <- import_otree(

del_empty = TRUE,
final_apps = "survey",
info = TRUE)

Show the structure of the import
str(oTree, max.level = 1)

24 make_ids

Import bot files
import_otree(

path = "./bot_data",
onlybots = TRUE,
csv = TRUE,
info = TRUE)

Show the structure of the import
str(oTree, max.level = 1)

Import with file names (path separately)
oTree2 <- import_otree(

del_empty = TRUE,
path = "./exp_data",
file_names = c("all_apps_wide-2023-03-27.csv",

"ChatMessages-2023-03-27.csv",
"PageTimes-2023-03-27.csv"),

onlybots = FALSE,
csv = TRUE,
info = TRUE)

Show the structure of the import
str(oTree, max.level = 1)

Import with file names (without path separately)
oTree2 <- import_otree(

del_empty = TRUE,
file_names = c("exp_data/all_apps_wide-2023-03-27.csv",

"exp_data/ChatMessages-2023-03-27.csv",
"exp_data/PageTimes-2023-03-27.csv"),

onlybots = FALSE,
csv = TRUE,
info = TRUE)

Show the structure of the import
str(oTree, max.level = 1)
})

make_ids Make IDs

Description

Make session IDs and, optionally, group IDs and participant IDs that span across all data frames
created by import_otree. Information for these IDs is taken from $all_apps_wide but can be
defined otherwise.

Note: Older versions of oTree may already contain a variable called session_id in their $Time data
frames. This variable is overwritten by this function!

Important: Combine duplicate data before running this function!

make_ids 25

Usage

make_ids(
oTree,
gmake = FALSE,
pmake = TRUE,
from_app = "all_apps_wide",
from_var = NULL,
sstart = 1L,
gstart = 1L,
pstart = 1L,
emptyrows = NULL,
icw = FALSE

)

Arguments

oTree A list of data frames that were created by import_otree.

gmake Logical. TRUE if a variable called group_id should be made. If from_var is not
NULL, gmake is automatically set to TRUE.

pmake Logical. TRUE if a variable called participant_id should be made.

from_app Character. Name of the data frame from which the session, group, and partici-
pant information should be taken. All normal app data frames and $all_apps_wide
are allowed.

from_var Character. Name of the variable from which the group information should
be taken. This argument is only relevant when $all_apps_wide is used as
from_app and has group information that contradicts each other.

sstart Integer. The number that serves as a starting point for session IDs.

gstart Integer. The number that serves as a starting point for group IDs.

pstart Integer. The number that serves as a starting point for participant IDs.

emptyrows Character. "no" if the function should stop if there are empty rows in from_app.
"yes" if the function should continue to make IDs.

icw Logical. TRUE if the warning message should be ignored that states that IDs
cannot be made because of an oTree bug.

Value

ID variables are made in $all_apps_wide, all app data frames, the $Time data frame, and the
$Chats data frame. See list of the additional ID variables in $info$additional_variables.

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

Make session IDs only
oTree2 <- make_ids(oTree)

26 messy_chat

Show new variables
oTree2all_apps_widesession_id

Make session IDs and group IDs
Not working with this data set because group ID is not the same in all apps
Not run:

oTree2 <- make_ids(oTree, gmake = TRUE)

Show new variables
oTree2all_apps_widesession_id
oTree2all_apps_widegroup_id

End(Not run)

Get IDs from variable "dictator.1.group.id_in_subsession"
in the data frame "all_apps_wide"
oTree2 <- make_ids(oTree,

gmake = TRUE,
from_var = "dictator.1.group.id_in_subsession")

Show new variables
oTree2all_apps_widesession_id
oTree2all_apps_widegroup_id

Get IDs from another app than all_apps_wide
oTree2 <- make_ids(oTree, gmake = TRUE, from_app = "dictator")

Show new variables
oTree2all_apps_widesession_id
oTree2all_apps_widegroup_id

messy_chat Check if the Chats data frame is messy

Description

Check if the $Chats data frame includes both session-related variables and participant-related vari-
ables that appear multiple times. This may occur when data from different oTree versions, which
use different variable names, are combined.

If desired, the function can merge these variables, storing the data using the newer oTree version’s
variable names and removing the outdated variables.

Usage

messy_chat(
oTree,
combine = FALSE,
session = TRUE,

messy_chat 27

participant = TRUE,
info = FALSE

)

Arguments

oTree A list of data frames that were created by import_otree.

combine Logical. TRUE if all variables referring to the session code should be merged
and/or all variables referring to participant code should be merged in case data
of several versions of oTree are used.

session Logical. TRUE if all variables referring to the session code should be checked
and merged. Merging only works if combine = TRUE.

participant Logical. TRUE if all variables referring to the participant code should be checked
and merged. Merging only works if combine = TRUE.

info Logical. TRUE if a brief information on the process should be printed.

Value

This function searches for multiple variables related to the session code or the participant code in
the $Chats data frame. which can occur when data from both old and new oTree versions are used.

If combine = FALSE, the function will throw an error if such variables are found.

If combine = TRUE, the function will not throw an error if such variables are found. Instead, it
automatically combines the variables into new variables and adds them to the original $Chats data
frame. This function then returns a duplicate of the original oTree list but with the $Chats data
frame modified.

The new variables are called participant_code and session_code.

Examples

Set data folder first
withr::with_dir(system.file("extdata", package = "gmoTree"), {

Import all oTree files in this folder and its subfolders
oTree <- import_otree()
})

Show all Chats column names
print(colnames(oTree$Chats))

Run function
oTree <- messy_chat(oTree, combine = TRUE)

Show all Chats column names again
print(colnames(oTree$Chats))

28 messy_time

messy_time Check if the Time data frame is messy

Description

Checks if the Time data frame includes both participant-related variables and time stamp variables
that appear multiple times. This may occur when data from different oTree versions, which use
different variable names, are combined.

If desired, the function can merge these variables, storing the data using the newer oTree version’s
variable names and removing the outdated variables.

Usage

messy_time(
oTree,
combine = FALSE,
epoch_time = TRUE,
participant = TRUE,
info = FALSE

)

Arguments

oTree A list of data frames that were created by import_otree.

combine Logical. TRUE if all variables referring to epoch time should be merged and/or all
variables referring to participant code should be merged in case data of several
versions of oTree are used.

epoch_time Logical. TRUE if all variables referring to the time stamp should be checked and
merged. Only works if combine = TRUE.

participant Logical. TRUE if all variables referring to the participant code should be checked
and merged. Only works if combine = TRUE.

info Logical. TRUE if a brief information on the process should be printed.

Value

This function searches for multiple variables related to the time stamp or the participant code in the
$Time data frame, which can occur when data from both old and new oTree versions are used.

If combine = FALSE, the function will throw an error if such variables are found.

If combine = TRUE, the function will not throw an error if such variables are found. Instead, it
automatically combines the variables into new variables and adds them to the original $Time data
frame. This function then returns a duplicate of the original oTree list but with the $Time data frame
modified.

The new variables are called epoch_time_completed and participant_code.

oTree 29

Examples

Set data folder first
withr::with_dir(system.file("extdata", package = "gmoTree"), {

Import all oTree files in this folder and its subfolders
oTree <- import_otree()
})

Show all Time column names
print(colnames(oTree$Time))

Run function
oTree <- messy_time(oTree, combine = TRUE)

Show all Time column names again
print(colnames(oTree$Time))

oTree Sample experimental data

Description

Sample experimental data

Usage

oTree

Format

A list of data frames created by import_otree().

Source

The data set was created by using modified versions of the official oTree sample experiments that
can be downloaded when installing oTree. In detail, the following apps were used: "start," "dicta-
tor," "chatapp," "survey."

30 pagesec

pagesec Calculate the seconds spent on each page

Description

Create a new variable in the $Time data frame that contains the time spent on each page.

Usage

pagesec(oTree, rounded = TRUE, digits = 2, minutes = FALSE, combine = FALSE)

Arguments

oTree A list of data frames that were created by import_otree.

rounded Logical. TRUE if the output should be rounded.

digits Integer. The number of digits to which the output should be rounded. This
parameter has no effect unless rounded = TRUE.

minutes Logical. TRUE if the output should be minutes instead of seconds.

combine Logical. TRUE if all variables referring to epoch time should be merged, and all
variables referring to participant code should be merged in case data of several
versions of oTree are used.

Value

This function returns a duplicate of the original oTree list of data frames that also contains a column
in the $Time data frame named seconds_on_page2 or minutes_on_page.

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

Create two new columns: seconds_on_page2 and minutes_on_page
oTree <- pagesec(oTree, rounded = TRUE, minutes = TRUE)

Show the Time data frame
head(oTree$Time, n = 30)

show_constant 31

show_constant Show constant columns

Description

Show all columns with no variation in their values for each data frame in the oTree list of data
frames (except the ones in the info list). This function is helpful before running an experiment to
check if there are unnecessary variables. You can check for columns that have any unchanging
possible value or for columns containing only a specific value.

Usage

show_constant(oTree, value = "any")

Arguments

oTree A list of data frames that were created by import_otree.

value The value that is controlled to be the same within a column. If the value is set to
"any", the function checks for columns where any possible values are identical.

Value

This function returns a list of vectors, one for each app, $all_apps_wide, the $Time and/or the
$Chats data frame. Each vector contains the names of all variables with constant values. If there
are no variables with constant values, the vector is empty.

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

Show all columns that contain only NAs
show_constant(oTree = oTree)
show_constant(oTree = oTree, value = NA)

Show all columns that contain only -99
show_constant(oTree = oTree, value = -99)

show_dropouts Show participants who did not finish the experiment

Description

Show information on the people who did not finish the experiment at (a) certain page(s) and/or
app(s).

32 show_dropouts

Usage

show_dropouts(oTree, final_apps = NULL, final_pages = NULL, saved_vars = NULL)

Arguments

oTree A list of data frames that were created by import_otree.

final_apps Character. The name(s) of the app(s) at which the participants have to finish the
experiment.

final_pages Character. The name(s) of the page(s) at which the participants have to finish
the experiment.

saved_vars The name(s) of variable(s) that need(s) to be shown in the list of information on
dropout cases.

Value

This function returns a list of information on participants who did not finish the experiment.

In this list, you can find the following information:

- $full = A data frame that contains information on all participants who did not finish the study; it
shows their participant codes, the names of the apps in which they left the experiment, the names
of the pages in which they left the experiment, the names of the app data frames in which this
information was found, and the dropout reason ("ENC", experiment not completed, combined with
the name of the data frame in which the dropout was observed). Because participants usually appear
in multiple app data frames, the $full data frame may contain several entries for each person.

- $unique = A data frame that contains similar information as the $full data frame but with only
one row per participant and no information on the data frame in which the dropout was observed.

- $all_end = A table that provides information on the app and page combinations where partici-
pants ended the experiment. This table also includes information on participants who did not drop
out of the experiment. The $all_end table is only shown if an $all_apps_wide data frame exists.

- $codes = A vector containing the participant codes of all participants who did not finish the
experiment.

- $count = The number of all participants who did not finish the experiment.

It is important to note that if only the argument final_pages is set, this function does not distin-
guish between page names that reoccur in different apps.

If the columns end_app and end_page in the output are empty, these variables were not saved by
oTree for the specific participants. This could be because empty rows were not deleted. This can be
done by using the argument del_empty = TRUE" when using import_otree.

Examples

Use package-internal list of oTree data frames
oTree <- gmoTree::oTree

Show everyone who did not finish with the app "survey"
show_dropouts(oTree, final_apps = "survey")

Show everyone who did not finish with the page "Demographics"

show_dropouts 33

show_dropouts(oTree, final_pages = "Demographics")

Show everyone who finished with the following apps: "survey," "dictator"
final_apps <- unique(oTreeall_apps_wideparticipant._current_app_name)
final_apps <- final_apps[final_apps != "survey"]
final_apps <- final_apps[final_apps != "dictator"]
show_dropouts(oTree, final_apps = final_apps)

Index

∗ datasets
oTree, 29

∗ oTree
apptime, 2
delete_cases, 11
delete_dropouts, 13
delete_duplicate, 16
delete_sessions, 18
extime, 20
import_otree, 22
make_ids, 24
messy_chat, 26
messy_time, 28
pagesec, 30
show_constant, 31
show_dropouts, 31

apptime, 2
assignv, 4
assignv_to_aaw, 5

codebook, 6

delete_cases, 11
delete_dropouts, 12, 13, 18, 22
delete_duplicate, 16, 22
delete_plabels, 17
delete_sessions, 18

extime, 20

import_otree, 3–5, 11, 14–18, 20, 22, 24, 25,
27, 28, 30–32

knitr::knit, 8

make_ids, 3, 20, 24
messy_chat, 26
messy_time, 28

oTree, 29

pagesec, 21, 30

rmarkdown::render, 7

show_constant, 31
show_dropouts, 31

34

	apptime
	assignv
	assignv_to_aaw
	codebook
	delete_cases
	delete_dropouts
	delete_duplicate
	delete_plabels
	delete_sessions
	extime
	import_otree
	make_ids
	messy_chat
	messy_time
	oTree
	pagesec
	show_constant
	show_dropouts
	Index

