
Package ‘gasanalyzer’
December 4, 2024

Type Package

Title Import, Recompute and Analyze Data from Portable Gas Analyzers

Version 0.4.2

Date 2024-12-02

Description The gasanalyzer R package offers methods for importing, preprocessing,
and analyzing data related to photosynthetic characteristics (gas exchange,
chlorophyll fluorescence and isotope ratios). It translates variable names
into a standard format, and can recalculate derived, physiological
quantities using imported or predefined equations. The package also allows
users to assess the sensitivity of their results to different assumptions
used in the calculations.
See also Tholen (2024) <doi:10.1093/aobpla/plae035>.

License GPL-3

URL https://gitlab.com/plantphys/gasanalyzer

Depends R (>= 4.3.0)

Imports jsonify, methods, stats, stringi, tibble, tidyxl (>= 1.0.8),
tools, units, utils, vctrs, xml2

Suggests knitr, rmarkdown, spelling, graphics, ggplot2, gridExtra,
photosynthesis, testthat (>= 3.0.0)

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation no

Author Danny Tholen [aut, cre] (<https://orcid.org/0000-0002-9517-0939>,
University of Natural Resources and Life Sciences, Vienna)

Maintainer Danny Tholen <thalecress+p@gmail.com>

Repository CRAN

Date/Publication 2024-12-03 23:10:12 UTC

1

https://doi.org/10.1093/aobpla/plae035
https://gitlab.com/plantphys/gasanalyzer
https://orcid.org/0000-0002-9517-0939

2 create_equations

Contents
create_equations . 2
export_ess_dive . 3
get_factory_cals . 4
import_factory_cals . 5
modify_equations . 6
permutate . 7
read_6400_txt . 8
read_6800_equations . 9
read_6800_txt . 10
read_6800_xlsx . 11
read_ciras4 . 12
read_gasexchange . 13
read_gfs . 14
recalculate . 15
var2label . 16
write_gasexchange . 17

Index 18

create_equations Create a list of equations for recalculating gasanalyzer data.

Description

This function creates a list of equations that can be used to recalculate gas-exchange data by passing
the resulting object to the recalculate() method. Various useflags can be defined to tune the
equations. In addition, custom equations can be defined as arguments. Note that the calculations
may fail if commons are missing in the gas-exchange data.

Usage

create_equations(useflags = "default", ...)

Arguments

useflags character vector with the type of equations to create (such as c("li6800", "gfs3000")).
Leave empty to obtain the default set. An unknown flag returns an empty list,
and a warning listing all valid flags.

... custom equations. the arguments must tagged function expressions. Note that
the function body must be wrapped in curly brackets. The tags will be matched
against the names of a data frame when applying the return value with recalculate().

Value

A list of language objects with equations

export_ess_dive 3

See Also

read_6800_equations()

Examples

exampledir <- system.file("extdata", package = "gasanalyzer")

import factory calibration for example data:
import_factory_cals(exampledir)

read data from a txt file:
li6800 <- read_6800_txt(file.path(exampledir, "lowo2"))

passing an invalid flags shows which flags are valid:
create_equations("help")

create a default set of gas-exchange equations, for the 6800, but overwrite
the default calculation of leaf light absorption with a custom value:
Eqs <- create_equations(c("default", "li6800"), LeafQ.alpha = \() {0.86})

#apply:
li6800_recalc <- recalculate(li6800, Eqs)

li6800$LeafQ.alpha
li6800_recalc$LeafQ.alpha

export_ess_dive Export a subset of the data into the ESS-DIVE reporting format for
leaf-level gas exchange data.

Description

Ely et al. (2021) proposed a standardized nomenclature for reporting gas-exchange data and meta-
data within the framework of the Environmental System Science Data Infrastructure for a Vir-
tual Ecosystem (ESS-DIVE) repository. This method converts data frames or tibbles created with
gasanalyzer to this standardized format. Note that the scope of the proposed standard is limited,
and therefore only a subset of the data is exported. Users should add relevant additional columns
and provide relevant metadata.

Usage

export_ess_dive(df, filename = "", extra_cols = NULL)

Arguments

df a tibble with gas-exchange data.
filename path to the output file. If none provided the method returns the data as a tibble.
extra_cols a character vector specifying additional columns (not specified in the standard

specified by Ely et al. 2021) to include in the returned data or saved files.

4 get_factory_cals

Details

If a filename is given as argument, the data is written into a comma separated, UTF-8 encoded file
without BOM and with CRLF line headings. In addition, a data dictionary file ("_dd" is inserted at
the end of the filename, before the file extension). If no filename is provided, the converted data is
returned.

Value

Nothing if a filename is provided. Otherwise, a tibble with variables and headings specified by the
ESS-DIVE gas-exchange standard is returned.

References

Ely KS, Rogers A, Agarwal DA, et al (2021) A reporting format for leaf-level gas exchange data
and metadata. Ecol Inform 61:101232. https://doi.org/10.1016/j.ecoinf.2021.101232

Examples

example <- system.file("extdata", "d13C.tsv", package = "gasanalyzer")

read data and recalculate using default gas-exchange equations:
df <- read_gasexchange(example) |>

recalculate(create_equations("default"))

view df in ess_dive format:
export_ess_dive(df)

save the data and a data dictionary:
export_ess_dive(df, "ess_dive_test.csv")
read and show the dictionary:
readLines("ess_dive_test_dd.csv")

get_factory_cals Returns a matrix with factory calibration information for given instru-
ment serial numbers and calibration dates.

Description

The factory calibration of the 6800 can be used to calculate concentrations from raw values. If
calibration information is available in the package environment it can be retrieved by this method.

Usage

get_factory_cals(sn = NULL, datetime = NULL)

import_factory_cals 5

Arguments

sn a character vector with an instrument serial number. If named, the names are
kept in the output.

datetime a POSIXct time vector indicating the latest possible time for the calibration data
that is to be returned. If no calibration before datetime is found, the oldest
available calibration is returned.

Details

The datetime option can be used to make sure that newer calibration files are not used in combination
with older datafiles.

Value

A character matrix with factory calibration data. If no datetime is provided, the newest calibration
is returned.

Examples

exampledir <- system.file("extdata", package = "gasanalyzer")

import factory cals for example data:
import_factory_cals(exampledir)

show calibration data for a specific instrument serial numbers, closest to
the current time:
get_factory_cals(sn = "68H-422400", datetime=Sys.time())

import_factory_cals Import instrument-specific factory calibration files from a folder.

Description

The factory calibration of the 6800 can be used to calculate concentrations from raw values. The
calibration files are found in subfolders of /home/licor/.factory on the instrument. They can be
copied to a computer and imported to the package configuration files using this method.

Usage

import_factory_cals(
folder = tools::R_user_dir("gasanalyzer", which = "config"),
keep = FALSE

)

Arguments

folder A folder where calibration files are to be found.
keep Copies valid calibration files to a package-specific configuration folder. Will

result in automatic import of the data in the future. Will overwrite files.

6 modify_equations

Details

The function will also load the calibration into the package environment, where they can be retrieved
by get_factory_cals().

This method assumes the files are named with serial number and calibration date, separated by an
underscore.

Value

Calibration data is stored in the package environment.

See Also

get_factory_cals()

Examples

exampledir <- system.file("extdata", package = "gasanalyzer")

show calibration data
get_factory_cals()

import factory calibration for example data:
import_factory_cals(exampledir)

show calibration data
get_factory_cals()

modify_equations Modify an existing list of equations with specific user-specified equa-
tions.

Description

This method allows replacing a specific equations in a list with custom versions. Although it is
possible to add custom equations using create_equations(), it can be useful to modify existing
sets. It can also be used to modify equations imported from an xlsx file.

Usage

modify_equations(eqs, ...)

Arguments

eqs a list of calls for recomputing gasanalyzer equations.
... custom equations. the arguments must tagged function expressions. The tags

will be matched against the equation list specified in eqs, and matching expres-
sions will be replaced. Additional expressions will be added to the list. Note
that the function body must be wrapped in curly brackets.

permutate 7

Value

A modified list of calls containing equations to recalculate gasanalyzer data.

See Also

read_6800_equations()

Examples

exampledir <- system.file("extdata", package = "gasanalyzer")

import factory calibration for example data:
import_factory_cals(exampledir)

read data from a txt file:
li6800 <- read_6800_txt(file.path(exampledir, "lowo2"))

create a default set of gas-exchange equations, for the Li-6800:
Eqs <- create_equations(c("default", "li6800"))

replace the value for the leaf light absorptance:
Eqs <- modify_equations(Eqs, LeafQ.alpha = \() {0.86})

apply:
li6800_recalc <- recalculate(li6800, Eqs)

li6800$LeafQ.alpha
li6800_recalc$LeafQ.alpha

permutate Expand a data frame with all possible combinations of the values in a
column.

Description

For sensitivity analyses, it is useful to permutate the values in a single column, whilst keeping all
other values constant. After creating such a permutation, recalculate() should be used to analyze
the effect of the change in the column of interest. If the effect of changes in multiple columns is to
be analyzed, this function can be called in series.

Usage

permutate(df, ...)

Arguments

df a dataframe or tibble
... a name-value pair. The name gives the name of the column in the input that is

to be changed. The value is a vector specifying all values that are desired in the
output. For every value in this vector, all other rows are duplicated.

8 read_6400_txt

Value

a data frame containing all possible combinations of the input df and the vector specified in ...

Note that the units and classes of the columns in the input data frame are applied to the replacement
values. Unexpected behavior may occur when providing incompatible classes or units.

Examples

example <- system.file("extdata", "6400-testfile", package = "gasanalyzer")

read data:
li6400 <- read_6400_txt(example)

expand the data frame for a range of leaf areas, and recalculate the data:
li6400 <- permutate(li6400, Const.S = seq(1, 8)) |>

recalculate(create_equations(c("default", "li6400")))

if (interactive()) {
require(units)
require(graphics)

observe that changing the leaf area enclosed in the chamber would have a
nonlinear effect on the rate of photosynthesis:
aggregate(list(A = li6400$GasEx.A), list(Area = (li6400$Const.S)), mean) |>
plot()

}

read_6400_txt Reads 6400XT text files and creates a tibble with gas-exchange data

Description

The text files stored by the 6400 contain measured and calculated values that are read by this
function and formatted in a large tibble for use with R. Constants and metadata are also added
as columns. Note that no recalculation of derived variables is performed, although it is possible to
so using recalculate() after importing the data.

Usage

read_6400_txt(filename, tz = Sys.timezone())

Arguments

filename an text file containing 6400XT gas-exchange data.

tz a character string specifying the timezone for the loaded file. If omitted, the
current time zone is used. Invalid values are typically treated as UTC, on some
platforms with a warning.

read_6800_equations 9

Details

Multiple files can be loaded by calling the function with lapply() or purrr::map() to merge
multiple files. In this case, it is important to ensure that the column names will match.

Value

A tibble with gas-exchange data in columns.

See Also

recalculate

Examples

example <- system.file("extdata", "6400-testfile", package = "gasanalyzer")

read data
li6400data <- read_6400_txt(example)

#View
li6400data

read_6800_equations Read gas-exchange equations directly from 6800 xlsx files.

Description

It is recommended to use create_equations() for recalculating gas-exchange data, but under
some conditions, it may be useful to apply exactly the same equations as used in the xlsx data file.

Usage

read_6800_equations(filename)

Arguments

filename an xlsx file containing 6800 gas-exchange data

Details

Currently, this only works for xlsx files stored by the 6800. this function extracts xlsx formulas
from the file and stores them in a list for use by the recalculate() function. Note there is no
guarantee that the extracted equations work on any other data files. Since newer versions of the
6800 firmware allows defining custom equations, it is not guaranteed that all equations can be
extracted successfully.

10 read_6800_txt

Value

A list of gas-equations.

In principle, this can be made to work for the 6400 as well, but since that instrument uses a variation
of the older xls format, it is hard to get working in practice.

See Also

create_equations()

Examples

example <- system.file("extdata", "lowo2.xlsx", package = "gasanalyzer")

get equations stored in the xlsx file
Eqs <- read_6800_equations(example)

#Inpect how stomatal conductance is calculated:
Eqs$GasEx.gsw

read_6800_txt Reads 6800 text files and creates a tibble with gas-exchange data.

Description

The text files stored by the 6800 contain measured and calculated values that are read by this func-
tion and formatted in a large tibble for use with R. Constants and metadata (such as calibration in-
formation) are also added as columns. Note that no recalculation of derived variables is performed,
although it is possible to so using recalculate() after importing the data.

Usage

read_6800_txt(filename)

Arguments

filename an text file containing 6800 gas-exchange data.

Details

Multiple files can be loaded by calling the function with lapply() or purrr::map() to merge
multiple files. In this case, it is important to ensure that the column names will match.

Value

A tibble with gas-exchange data in columns.

See Also

recalculate()

read_6800_xlsx 11

Examples

exampledir <- system.file("extdata", package = "gasanalyzer")
import factory calibration for example data:
import_factory_cals(exampledir)

read data
li6800 <- read_6800_xlsx(file.path(exampledir, "lowo2.xlsx"))
li6800_txt <- read_6800_txt(file.path(exampledir, "/lowo2"))

compare all except equations. Note txt file reports some NAs as zero:
columns_to_check <- names(li6800)[!names(li6800) %in%

c("gasanalyzer.Equations")]
all.equal(li6800[columns_to_check],

li6800_txt[columns_to_check],
tol = 0.01)

read_6800_xlsx Reads 6800 xlsx files and creates a tibble with gas-exchange data.

Description

The xlsx files stored by the 6800 contain measured and calculated values that are read by this
function and formatted in a large tibble for use with R. Constants and metadata (such as calibration
information) are also added as columns.

Usage

read_6800_xlsx(filename, recalculate = TRUE)

Arguments

filename an xlsx file containing 6800 gas-exchange data.

recalculate character string indicating whether or not to recalculate data using equations
from the xlsx file.

Details

Note that values for many derived gas-exchange parameters are not stored in the files, but are calcu-
lated by equations stored in the xlsx. These values are 0 after importing, unless setting recalculate
= TRUE. It is also possible to calculate this parameters after importing using the recalculate()
function.

Multiple files can be loaded by calling the function with lapply() or purrr::map() to merge
multiple files. In this case, it is important to ensure that the column names will match. Recalculation
can be disabled for speed, and instead applied to the merged data using recalculate().

12 read_ciras4

Value

A tibble with gas-exchange data in columns.

See Also

recalculate()

Examples

exampledir <- system.file("extdata", package = "gasanalyzer")
import factory calibration for example data:
import_factory_cals(exampledir)

read data:
li6800 <- read_6800_xlsx(file.path(exampledir, "lowo2.xlsx"))
li6800_norecalc <- read_6800_xlsx(file.path(exampledir, "lowo2.xlsx"),

recalculate = FALSE)
li6800_norecalc$gasanalyzer.Equations <-

list(read_6800_equations(file.path(exampledir, "lowo2.xlsx")))

all.equal(li6800, recalculate(li6800_norecalc), check.attributes = FALSE)

read_ciras4 Reads CIRAS-4 csv files and creates a tibble with gas-exchange data

Description

The csv files stored by the CIRAS-4 contain measured and calculated values that are read by this
function and formatted in a large tibble for use with R. Note that no recalculation of derived vari-
ables are performed, although it is possible to do so using recalculate() after importing the data.

Usage

read_ciras4(filename)

Arguments

filename a csv file containing gas-exchange data.

Details

Multiple files can be loaded by calling the function with lapply() or purrr::map() to merge
multiple files. In this case, it is important to ensure that the column names will match.

Value

a tibble with gas-exchange data in columns.

read_gasexchange 13

See Also

recalculate()

Examples

example <- system.file("extdata", "ciras4.csv", package = "gasanalyzer")

Read using unified column names:
cir4 <- read_ciras4(example)

Recalculate data using default gas exchange equations:
cir4_recalc <- recalculate(cir4, create_equations(c("default", "ciras4")))

View differences:
all.equal(cir4, cir4_recalc[names(cir4)], tol = 0.001)

read_gasexchange Read gas-exchange data from a text file.

Description

Data stored by write_gasexchange() can be read by this method. The first row is the header,
the second row specify the units. File encoding must be UTF-16LE (use the export as unicode txt
option in Microsoft Excel).

Usage

read_gasexchange(filename, delim = "\t")

Arguments

filename path to the input file

delim delimiter to use for the file

Value

a tibble with gas-exchange data

Examples

example <- system.file("extdata", "d13C.tsv", package = "gasanalyzer")

read data
read_gasexchange(example)

14 read_gfs

read_gfs Reads GFS-3000 text files and creates a tibble with gas-exchange data

Description

The text files stored by the GFS-3000 contain measured and calculated values that are read by
this function and formatted in a large tibble for use with R. Note that no recalculation of derived
variables is performed, although it is possible to do so using recalculate() after importing the
data.

Usage

read_gfs(
filename,
tz = Sys.timezone(),
unified_names = TRUE,
skip_to_data = 2,
delim = ";"

)

Arguments

filename an xlsx file containing 6800 gas-exchange data.

tz a character string specifying the timezone for the loaded file. If omitted, the
current time zone is used. Invalid values are typically treated as UTC, on some
platforms with a warning.

unified_names = TRUE, use unified column names. This is necessary for further processing of
the data using this package.

skip_to_data use skip=4 if the file has a double header.

delim = ";" Allows specified the delimiter used in the files. Re-saved data may use a
comma as delimiter.

Details

Multiple files can be loaded by calling the function with lapply() or purrr::map() to merge
multiple files. In this case, it is important to ensure that the column names will match.

Value

a tibble with gas-exchange data in columns and equations as attribute.

See Also

recalculate()

recalculate 15

Examples

example <- system.file("extdata", "aci1.csv", package = "gasanalyzer")

Read using GFS-3000 names and formatting:
gfs3000_old <- read_gfs(example, unified_names = FALSE)
Read using unified column names:
gfs3000 <- read_gfs(example)

Inspect the intercellular CO2:
gfs3000_old$ci
gfs3000$GasEx.Ci

Recalculate data using default gas exchange equations:
gfs3000 <- recalculate(gfs3000, create_equations(c("default", "gfs3000")))
gfs3000$GasEx.Ci

recalculate Recalculate gas-exchange data based on a set of equations.

Description

The recalculation uses equations in a list of quosures provided as argument. This list can be obtained
from create_equations() or read_6800_equations().

Usage

recalculate(df, eqs = NULL)

Arguments

df A data frame or an extension thereof (e.g. a tibble).

eqs a list of quosures that define how the df will be altered.

Value

A tibble with recalculated columns as specified by the eqs argument

Examples

exampledir <- system.file("extdata", package = "gasanalyzer")
import factory calibration for example data:
import_factory_cals(exampledir)

read data:
li6800 <- read_6800_xlsx(file.path(exampledir, "lowo2.xlsx"))

recalculate using xlsx equations:
li6800 <- recalculate(li6800)

16 var2label

recalculate using gasanalyzer default equations for the li6800:
li6800_ge <- recalculate(li6800, create_equations(c("default", "li6800")))

the difference is that units have been enforced using gasanalyzer, which
has been recorded in a column:
all.equal(li6800, li6800_ge[names(li6800)], tol = 0.01)

var2label Render gasanalyzer variables or values using mathematical notation.

Description

The argument is converted to a plotmath expression that can be used using plot or ggplot2. If
there is no known plotmath expression defined, the argument is returned as is.

Usage

var2label(varname, use_units = FALSE, val = NULL, ...)

Arguments

varname a character list or vector argument with variable names.
use_units whether or not to append default units to the resulting. expression. It is better

to rely on the units in the actual data, which is handled automatically by newer
ggplot2 versions.

val a value to display rather than the variable name. Needs to be of the same length
as varname and if not a character vector it should be coercible to one. NAs are
replaced with the plotmath expressions.

... options passed on to make_unit_label.

Value

a list of plotmath expressions.

See Also

plotmath

Examples

make labels
lbls <- var2label(c("GasEx.Ci", "GasEx.A"), use_units = TRUE)
print(lbls)

plot
plot(1, type = "n", xlab = lbls[[1]], ylab = lbls[[2]])
add temperature as title, removing [] from the units:
title(main = var2label("Meas.Tleaf",use_units = TRUE, val = 25,

group = c("", ""))[[1]])

write_gasexchange 17

write_gasexchange Write a gas-exchange tibble to a text file.

Description

The column names and column units are saved as a two-row header. The files use UTF-16LE and
CRLF line headings for compatibility. By default, tabs are used as delimiter. If you intend to open
the file in a spreadsheet program, it may be helpful to use csv as file extension.

Usage

write_gasexchange(df, filename, delim = "\t")

Arguments

df a tibble with gas-exchange data

filename path to the output file

delim delimiter to use for the file

Details

Note that for data-exchange between R sessions, saveRDS() and readRDS() are faster, and support
saving and loading list columns (such as calibration information and equations). This method is
primarily meant for exchanging data with other software packages.

Value

No return value. If there a problems writing the file, a warning or error will be shown.

Examples

example <- system.file("extdata", "d13C.tsv", package = "gasanalyzer")

read data and recalculate using default gas-exchange equations:
df <- read_gasexchange(example) |>

recalculate(create_equations("default"))

write recaculated data
write_gasexchange(df, "d13C_recalculated.tsv")

Index

create_equations, 2
create_equations(), 6, 9, 10, 15

export_ess_dive, 3

get_factory_cals, 4
get_factory_cals(), 6

import_factory_cals, 5

lapply(), 9–12, 14

modify_equations, 6

permutate, 7
purrr::map(), 9–12, 14

read_6400_txt, 8
read_6800_equations, 9
read_6800_equations(), 3, 7, 15
read_6800_txt, 10
read_6800_xlsx, 11
read_ciras4, 12
read_gasexchange, 13
read_gfs, 14
readRDS(), 17
recalculate, 15
recalculate(), 2, 7–14

saveRDS(), 17

var2label, 16

write_gasexchange, 17
write_gasexchange(), 13

18

	create_equations
	export_ess_dive
	get_factory_cals
	import_factory_cals
	modify_equations
	permutate
	read_6400_txt
	read_6800_equations
	read_6800_txt
	read_6800_xlsx
	read_ciras4
	read_gasexchange
	read_gfs
	recalculate
	var2label
	write_gasexchange
	Index

