
Package ‘frontmatter’
February 9, 2026

Title Parse Front Matter from Documents

Version 0.2.0

Description Extracts and parses structured metadata ('YAML' or 'TOML')
from the beginning of text documents. Front matter is a common pattern
in 'Quarto' documents, 'R Markdown' documents, static site generators,
documentation systems, content management tools and even 'Python' and
'R' scripts where metadata is placed at the top of a document,
separated from the main content by delimiter fences.

License MIT + file LICENSE

URL https://github.com/posit-dev/frontmatter,

https://posit-dev.github.io/frontmatter/

BugReports https://github.com/posit-dev/frontmatter/issues

Imports cpp11, rlang, tomledit, yaml12

Suggests testthat (>= 3.0.0), withr, yaml

LinkingTo cpp11

Config/Needs/website brand.yml

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Author Garrick Aden-Buie [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7111-0077>),

Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Garrick Aden-Buie <garrick@posit.co>

Repository CRAN

Date/Publication 2026-02-09 19:50:02 UTC

Contents
format_front_matter . 2
parse_front_matter . 5

1

https://github.com/posit-dev/frontmatter
https://posit-dev.github.io/frontmatter/
https://github.com/posit-dev/frontmatter/issues
https://orcid.org/0000-0002-7111-0077
https://ror.org/03wc8by49

2 format_front_matter

Index 8

format_front_matter Format and Write YAML or TOML Front Matter

Description

Serialize R data as YAML or TOML front matter and combine it with document content. format_front_matter()
returns the formatted document as a string, while write_front_matter() writes it to a file or prints
to the console. These functions are the inverse of parse_front_matter() and read_front_matter().

Usage

format_front_matter(
x,
delimiter = "yaml",
format = "auto",
format_yaml = NULL,
format_toml = NULL

)

write_front_matter(
x,
path = NULL,
delimiter = "yaml",
...,
format = "auto",
format_yaml = NULL,
format_toml = NULL

)

Arguments

x A list with data and body elements, typically as returned by parse_front_matter()
or read_front_matter(). The data element contains the metadata to serialize
(can be NULL to write body only), and body contains the document content (can
be NULL or empty).

delimiter A character string specifying the fence style, or a character vector for custom
delimiters. See Delimiter Formats for available options.

format The serialization format: "auto" (detect from delimiter), "yaml", or "toml".
Usually auto-detection works well.

format_yaml, format_toml
Custom formatter functions, or NULL to use defaults. Each function should ac-
cept an R object and return a character string.

path File path to write to, or NULL to print to the console

... Additional arguments passed to writeBin() when writing to a file (e.g., useBytes).

format_front_matter 3

Value

• format_front_matter(): A character string containing the formatted document with front
matter.

• write_front_matter(): Called for its side effect; returns NULL invisibly.

Functions

• format_front_matter(): Format front matter as a string
• write_front_matter(): Write front matter to a file or console

Delimiter Formats

The delimiter argument controls the fence style used to wrap the front matter. You can use these
built-in shortcuts:

Shortcut Format Opening Closing Use Case
"yaml" YAML — — Markdown, R Markdown, Quarto
"toml" TOML +++ +++ Hugo, some static site generators
"yaml_comment" YAML # — # — R scripts, Python scripts
"toml_comment" TOML # +++ # +++ R scripts, Python scripts
"yaml_roxy" YAML #’ — #’ — Roxygen2 documentation
"toml_roxy" TOML #’ +++ #’ +++ Roxygen2 documentation
"toml_pep723" TOML # /// script # /// Python PEP 723 inline metadata

For custom delimiters, pass a character vector of length 1, 2, or 3:

• Length 1: Used as both opener and closer, with no line prefix
• Length 2: c(opener, prefix) where opener is also used as closer
• Length 3: c(opener, prefix, closer) for full control

Custom Formatters

By default, the package uses yaml12::format_yaml() for YAML and tomledit::to_toml() for
TOML. You can provide custom formatter functions via format_yaml and format_toml to override
these defaults.

Custom formatters must accept an R object and return a character string containing the serialized
content.

YAML Specification Version

The default YAML formatter uses YAML 1.2 via yaml12::format_yaml(). To use YAML 1.1
formatting instead (via yaml::as.yaml()), set either:

• The R option frontmatter.serialize_yaml.spec to "1.1"

• The environment variable FRONTMATTER_SERIALIZE_YAML_SPEC to "1.1"

The option takes precedence over the environment variable. Valid values are "1.1" and "1.2" (the
default).

4 format_front_matter

Roundtrip Support

Documents formatted with these functions can be read back with parse_front_matter() or read_front_matter().
For comment-prefixed formats (like yaml_comment or yaml_roxy), a separator line is automatically
inserted between the closing fence and the body when the body starts with the same comment prefix,
ensuring clean roundtrip behavior.

See Also

parse_front_matter() and read_front_matter() for the inverse operations.

Examples

Create a document with YAML front matter
doc <- list(

data = list(title = "My Document", author = "Jane Doe"),
body = "Document content goes here."

)

Format as a string
format_front_matter(doc)

Write to a file
tmp <- tempfile(fileext = ".md")
write_front_matter(doc, tmp)
readLines(tmp)

Print to console (when path is NULL)
write_front_matter(doc)

Use TOML format
format_front_matter(doc, delimiter = "toml")

Use comment-wrapped format for R scripts
r_script <- list(

data = list(title = "Analysis Script"),
body = "# Load libraries\nlibrary(dplyr)"

)
format_front_matter(r_script, delimiter = "yaml_comment")

Roundtrip example: read, modify, write
original <- "---
title: Original

Content here"

doc <- parse_front_matter(original)
doc$data$title <- "Modified"
format_front_matter(doc)

parse_front_matter 5

parse_front_matter Parse YAML or TOML Front Matter

Description

Extract and parse YAML or TOML front matter from a file or a text string. Front matter is structured
metadata at the beginning of a document, delimited by fences (--- for YAML, +++ for TOML).
parse_front_matter() processes a character string, while read_front_matter() reads from a
file. Both functions return a list with the parsed front matter and the document body.

Usage

parse_front_matter(text, parse_yaml = NULL, parse_toml = NULL)

read_front_matter(path, parse_yaml = NULL, parse_toml = NULL)

Arguments

text A character string or vector containing the document text. If a vector with mul-
tiple elements, they are joined with newlines (as from readLines()).

parse_yaml, parse_toml
A function that takes a string and returns a parsed R object, or NULL to use the
default parser. Use identity to return the raw string without parsing.

path A character string specifying the path to a file. The file is assumed to be UTF-8
encoded. A UTF-8 BOM (byte order mark) at the start of the file is automatically
stripped if present.

Value

A named list with two elements:

• data: The parsed front matter as an R object, or NULL if no valid front matter was found.

• body: The document content after the front matter, with leading empty lines removed. If no
front matter is found, this is the original text.

Functions

• parse_front_matter(): Parse front matter from text

• read_front_matter(): Parse front matter from a file.

Custom Parsers

By default, the package uses yaml12::parse_yaml() for YAML and tomledit::parse_toml()
for TOML. You can provide custom parser functions via parse_yaml and parse_toml to override
these defaults.

Use identity to return the raw YAML or TOML string without parsing.

6 parse_front_matter

YAML Specification Version

The default YAML parser uses YAML 1.2 via yaml12::parse_yaml(). To use YAML 1.1 parsing
instead (via yaml::yaml.load()), set either:

• The R option frontmatter.parse_yaml.spec to "1.1"

• The environment variable FRONTMATTER_PARSE_YAML_SPEC to "1.1"

The option takes precedence over the environment variable. Valid values are "1.1" and "1.2" (the
default).

YAML 1.1 differs from YAML 1.2 in several ways, most notably in how it handles boolean values
(e.g., yes/no are booleans in 1.1 but strings in 1.2).

Examples

Parse YAML front matter
text <- "---
title: My Document
date: 2024-01-01

Document content here"

result <- parse_front_matter(text)
result$data$title # "My Document"
result$body # "Document content here"

Parse TOML front matter
text <- "+++
title = 'My Document'
date = 2024-01-01
+++
Document content"

result <- parse_front_matter(text)

Get raw YAML without parsing
result <- parse_front_matter(text, parse_yaml = identity)

Use a custom parser that adds metadata
result <- parse_front_matter(

text,
parse_yaml = function(x) {
data <- yaml12::parse_yaml(x)
data$parsed_at <- Sys.time()
data

}
)

Or read from a file
tmpfile <- tempfile(fileext = ".md")
writeLines(text, tmpfile)

parse_front_matter 7

read_front_matter(tmpfile)

Index

format_front_matter, 2

parse_front_matter, 5
parse_front_matter(), 2, 4

read_front_matter (parse_front_matter),
5

read_front_matter(), 2, 4

tomledit::parse_toml(), 5
tomledit::to_toml(), 3

write_front_matter
(format_front_matter), 2

writeBin(), 2

yaml12::format_yaml(), 3
yaml12::parse_yaml(), 5, 6
yaml::as.yaml(), 3
yaml::yaml.load(), 6

8

	format_front_matter
	parse_front_matter
	Index

