
Package ‘fastICA’
December 11, 2024

Version 1.2-7

Date 2024-12-10

Title FastICA Algorithms to Perform ICA and Projection Pursuit

Depends R (>= 4.0.0)

Suggests MASS

Description Implementation of FastICA algorithm to perform Independent
Component Analysis (ICA) and Projection Pursuit.

License GPL-2 | GPL-3

NeedsCompilation yes

Author Jonathan L Marchini [aut],
Chris Heaton [aut],
Brian Ripley [aut, cre]

Maintainer Brian Ripley <Brian.Ripley@R-project.org>

Repository CRAN

Date/Publication 2024-12-11 10:04:09 UTC

Contents
fastICA . 1
ica.R.def . 5
ica.R.par . 6

Index 7

fastICA FastICA algorithm

Description

This is an R and C code implementation of the FastICA algorithm of Aapo Hyvarinen et al. (https:
//www.cs.helsinki.fi/u/ahyvarin/) to perform Independent Component Analysis (ICA) and
Projection Pursuit.

1

https://www.cs.helsinki.fi/u/ahyvarin/
https://www.cs.helsinki.fi/u/ahyvarin/

2 fastICA

Usage

fastICA(X, n.comp, alg.typ = c("parallel","deflation"),
fun = c("logcosh","exp"), alpha = 1.0, method = c("R","C"),
row.norm = FALSE, maxit = 200, tol = 1e-04, verbose = FALSE,
w.init = NULL)

Arguments

X a data matrix with n rows representing observations and p columns representing
variables.

n.comp number of components to be extracted

alg.typ if alg.typ == "parallel" the components are extracted simultaneously (the
default). if alg.typ == "deflation" the components are extracted one at a
time.

fun the functional form of the G function used in the approximation to neg-entropy
(see ‘details’).

alpha constant in range [1, 2] used in approximation to neg-entropy when fun ==
"logcosh"

method if method == "R" then computations are done exclusively in R (default). The
code allows the interested R user to see exactly what the algorithm does. if
method == "C" then C code is used to perform most of the computations, which
makes the algorithm run faster. During compilation the C code is linked to an
optimized BLAS library if present, otherwise stand-alone BLAS routines are
compiled.

row.norm a logical value indicating whether rows of the data matrix X should be standard-
ized beforehand.

maxit maximum number of iterations to perform.

tol a positive scalar giving the tolerance at which the un-mixing matrix is considered
to have converged.

verbose a logical value indicating the level of output as the algorithm runs.

w.init Initial un-mixing matrix of dimension c(n.comp, n.comp). If NULL (default)
then a matrix of normal r.v.’s is used.

Details

Independent Component Analysis (ICA)

The data matrix X is considered to be a linear combination of non-Gaussian (independent) compo-
nents i.e. X = SA where columns of S contain the independent components and A is a linear mixing
matrix. In short ICA attempts to ‘un-mix’ the data by estimating an un-mixing matrix W where XW
= S.

Under this generative model the measured ‘signals’ in X will tend to be ‘more Gaussian’ than
the source components (in S) due to the Central Limit Theorem. Thus, in order to extract the
independent components/sources we search for an un-mixing matrix W that maximizes the non-
gaussianity of the sources.

fastICA 3

In FastICA, non-gaussianity is measured using approximations to neg-entropy (J) which are more
robust than kurtosis-based measures and fast to compute.

The approximation takes the form

J(y) = [E{G(y)} − E{G(v)}]2

where v is a N(0,1) r.v.

The following choices of G are included as options G(u) = 1
α log cosh(αu) and G(u) = − exp(u2/2).

Algorithm
First, the data are centered by subtracting the mean of each column of the data matrix X.

The data matrix is then ‘whitened’ by projecting the data onto its principal component directions
i.e. X -> XK where K is a pre-whitening matrix. The number of components can be specified by
the user.

The ICA algorithm then estimates a matrix W s.t XKW = S . W is chosen to maximize the neg-
entropy approximation under the constraints that W is an orthonormal matrix. This constraint en-
sures that the estimated components are uncorrelated. The algorithm is based on a fixed-point
iteration scheme for maximizing the neg-entropy.

Projection Pursuit
In the absence of a generative model for the data the algorithm can be used to find the projection
pursuit directions. Projection pursuit is a technique for finding ‘interesting’ directions in multi-
dimensional datasets. These projections and are useful for visualizing the dataset and in density
estimation and regression. Interesting directions are those which show the least Gaussian distribu-
tion, which is what the FastICA algorithm does.

Value

A list containing the following components

X pre-processed data matrix

K pre-whitening matrix that projects data onto the first n.comp principal compo-
nents.

W estimated un-mixing matrix (see definition in details)

A estimated mixing matrix

S estimated source matrix

Author(s)

J L Marchini and C Heaton

References

A. Hyvarinen and E. Oja (2000) Independent Component Analysis: Algorithms and Applications,
Neural Networks, 13(4-5):411-430

See Also

ica.R.def, ica.R.par

4 fastICA

Examples

#---
#Example 1: un-mixing two mixed independent uniforms
#---

S <- matrix(runif(10000), 5000, 2)
A <- matrix(c(1, 1, -1, 3), 2, 2, byrow = TRUE)
X <- S %*% A

a <- fastICA(X, 2, alg.typ = "parallel", fun = "logcosh", alpha = 1,
method = "C", row.norm = FALSE, maxit = 200,
tol = 0.0001, verbose = TRUE)

par(mfrow = c(1, 3))
plot(a$X, main = "Pre-processed data")
plot(a$X %*% a$K, main = "PCA components")
plot(a$S, main = "ICA components")

#--
#Example 2: un-mixing two independent signals
#--

S <- cbind(sin((1:1000)/20), rep((((1:200)-100)/100), 5))
A <- matrix(c(0.291, 0.6557, -0.5439, 0.5572), 2, 2)
X <- S %*% A

a <- fastICA(X, 2, alg.typ = "parallel", fun = "logcosh", alpha = 1,
method = "R", row.norm = FALSE, maxit = 200,
tol = 0.0001, verbose = TRUE)

par(mfcol = c(2, 3))
plot(1:1000, S[,1], type = "l", main = "Original Signals",

xlab = "", ylab = "")
plot(1:1000, S[,2], type = "l", xlab = "", ylab = "")
plot(1:1000, X[,1], type = "l", main = "Mixed Signals",

xlab = "", ylab = "")
plot(1:1000, X[,2], type = "l", xlab = "", ylab = "")
plot(1:1000, a$S[,1], type = "l", main = "ICA source estimates",

xlab = "", ylab = "")
plot(1:1000, a$S[, 2], type = "l", xlab = "", ylab = "")

#---
#Example 3: using FastICA to perform projection pursuit on a
mixture of bivariate normal distributions
#---

if(require(MASS)){
x <- mvrnorm(n = 1000, mu = c(0, 0), Sigma = matrix(c(10, 3, 3, 1), 2, 2))
x1 <- mvrnorm(n = 1000, mu = c(-1, 2), Sigma = matrix(c(10, 3, 3, 1), 2, 2))
X <- rbind(x, x1)

a <- fastICA(X, 2, alg.typ = "deflation", fun = "logcosh", alpha = 1,

ica.R.def 5

method = "R", row.norm = FALSE, maxit = 200,
tol = 0.0001, verbose = TRUE)

par(mfrow = c(1, 3))
plot(a$X, main = "Pre-processed data")
plot(a$X %*% a$K, main = "PCA components")
plot(a$S, main = "ICA components")
}

ica.R.def R code for FastICA using a deflation scheme

Description

R code for FastICA using a deflation scheme in which the components are estimated one by one.
This function is called by the fastICA function.

Usage

ica.R.def(X, n.comp, tol, fun, alpha, maxit, verbose, w.init)

Arguments

X data matrix
n.comp number of components to be extracted
tol a positive scalar giving the tolerance at which the un-mixing matrix is considered

to have converged.
fun the functional form of the G function used in the approximation to negentropy.
alpha constant in range [1,2] used in approximation to negentropy when fun == "logcosh"

maxit maximum number of iterations to perform
verbose a logical value indicating the level of output as the algorithm runs.
w.init Initial value of un-mixing matrix.

Details

See the help on fastICA for details.

Value

The estimated un-mixing matrix W.

Author(s)

J L Marchini and C Heaton

See Also

fastICA, ica.R.par

6 ica.R.par

ica.R.par R code for FastICA using a parallel scheme

Description

R code for FastICA using a parallel scheme in which the components are estimated simultaneously.
This function is called by the fastICA function.

Usage

ica.R.par(X, n.comp, tol, fun, alpha, maxit, verbose, w.init)

Arguments

X data matrix.

n.comp number of components to be extracted.

tol a positive scalar giving the tolerance at which the un-mixing matrix is considered
to have converged.

fun the functional form of the G function used in the approximation to negentropy.

alpha constant in range [1,2] used in approximation to negentropy when fun == "logcosh".

maxit maximum number of iterations to perform.

verbose a logical value indicating the level of output as the algorithm runs.

w.init Initial value of un-mixing matrix.

Details

See the help on fastICA for details.

Value

The estimated un-mixing matrix W.

Author(s)

J L Marchini and C Heaton

See Also

fastICA, ica.R.def

Index

∗ multivariate
fastICA, 1

∗ utilities
ica.R.def, 5
ica.R.par, 6

fastICA, 1, 5, 6

ica.R.def, 3, 5, 6
ica.R.par, 3, 5, 6

7

	fastICA
	ica.R.def
	ica.R.par
	Index

