| Type: | Package | 
| Title: | An Empirical Model for Underdispersed Count Data | 
| Version: | 0.1.2 | 
| Description: | Count regression models for underdispersed small counts (lambda < 20) based on the three-parameter exponentially weighted Poisson distribution of Ridout & Besbeas (2004) <doi:10.1191/1471082X04st064oa>. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.3.2 | 
| Depends: | R (≥ 2.10) | 
| LinkingTo: | BH, Rcpp | 
| Imports: | Rcpp, mvtnorm | 
| Suggests: | covr, DHARMa, testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| NeedsCompilation: | yes | 
| Packaged: | 2025-04-22 11:05:05 UTC; philipp.boerschsupan | 
| Author: | Philipp Boersch-Supan
     | 
| Maintainer: | Philipp Boersch-Supan <pboesu@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-04-22 11:20:02 UTC | 
Extract coefficients
Description
Extract coefficients
Usage
## S3 method for class 'ewp'
coef(object, ...)
Arguments
object | 
 an object of class ewp  | 
... | 
 ignored  | 
Value
a vector of coefficient values. Beware that the lambda parameters are on the log-link scale, whereas the betas are estimated using an identity link.
Probability mass function of the three-parameter EWP
Description
Probability mass function of the three-parameter EWP
Usage
dewp3(x, lambda, beta1, beta2, sum_limit = max(x) * 3)
Arguments
x | 
 vector of (positive integer) quantiles.  | 
lambda | 
 centrality parameter  | 
beta1 | 
 lower-tail dispersion parameter  | 
beta2 | 
 upper tail dispersion parameter  | 
sum_limit | 
 summation limit for the normalizing factor  | 
Value
a vector of probabilities
Probability mass function of the three-parameter EWP
Description
Probability mass function of the three-parameter EWP
Usage
dewp3_cpp(x, lambda, beta1, beta2, sum_limit)
Arguments
x | 
 vector of (positive integer) quantiles.  | 
lambda | 
 centrality parameter  | 
beta1 | 
 lower-tail dispersion parameter  | 
beta2 | 
 upper tail dispersion parameter  | 
sum_limit | 
 summation limit for the normalizing factor  | 
Value
a probability mass
Exponentially weighted Poisson regression model
Description
Exponentially weighted Poisson regression model
Usage
ewp_reg(
  formula,
  family = "ewp3",
  data,
  verbose = TRUE,
  method = "Nelder-Mead",
  hessian = TRUE,
  autoscale = TRUE,
  maxiter = 500,
  sum_limit = round(max(Y) * 3),
  start_val = NULL
)
Arguments
formula | 
 an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.  | 
family | 
 choice of "ewp2" or "ewp3"  | 
data | 
 a data frame containing the variables in the model.  | 
verbose | 
 logical, defaults to TRUE; print model fitting progress  | 
method | 
 string, passed to optim, defaults to 'BFGS'  | 
hessian | 
 logical, defaults to TRUE; calculate Hessian?  | 
autoscale | 
 logical, defaults to TRUE; automatically scale model parameters inside the optimisation routine based on initial estimates from a Poisson regression.  | 
maxiter | 
 numeric, maximum number of iterations for optim  | 
sum_limit | 
 numeric, defaults to 3*maximum count; upper limit for the sum used for the normalizing factor.  | 
start_val | 
 list, defaults to fitting a Poisson regression; specify starting values  | 
Value
an ewp model
Extract fitted values
Description
Extract fitted values
Usage
## S3 method for class 'ewp'
fitted(object, ...)
Arguments
object | 
 an object of class ewp  | 
... | 
 ignored  | 
Value
a vector of fitted values on the response scale
Linnet clutch sizes
Description
A dataset containing the clutch sizes for linnet, recreated from Ridout & Besbeas 2004
Usage
linnet
Format
A data frame with 5414 rows and 3 variables:
- eggs
 clutch size
- cov1
 a synthetic random noise covariate
- cov2
 a synthetic covariate that is positively correlated with the outcome
Source
Ridout & Besbeas 2004, P. Boersch-Supan
Extract log likelihood
Description
Extract log likelihood
Usage
## S3 method for class 'ewp'
logLik(object, ...)
Arguments
object | 
 an object of class ewp  | 
... | 
 ignored  | 
Value
a numeric
Estimate marginal means
Description
Estimate marginal means
Usage
mmean(object, cov, ci = TRUE, nsamples = 250, ...)
Arguments
object | 
 ewp model object  | 
cov | 
 character, covariate to find marginal mean for  | 
ci | 
 logical, defaults to TRUE, whether or not to include confidence intervals  | 
nsamples | 
 numeric, defaults to 250, number of samples for use in obtaining the confidence intervals  | 
... | 
 ignored  | 
Value
printout of the marginal means
Predict from fitted model
Description
Predict from fitted model
Usage
## S3 method for class 'ewp'
predict(object, newdata, type = c("response"), na.action = na.pass, ...)
Arguments
object | 
 ewp model object  | 
newdata | 
 optional data.frame  | 
type | 
 character; default="response", no other type implemented  | 
na.action | 
 defaults to na.pass()  | 
... | 
 ignored  | 
Value
a vector of predictions
Print ewp model object
Description
Print ewp model object
Usage
## S3 method for class 'ewp'
print(x, digits = max(3, getOption("digits") - 3), ...)
Arguments
x | 
 ewp model object  | 
digits | 
 digits to print  | 
... | 
 ignored  | 
Value
a summary printout of the ewp model call and fitted coefficients.
Print ewp model summary
Description
Print ewp model summary
Usage
## S3 method for class 'summary.ewp'
print(x, digits = max(3, getOption("digits") - 3), ...)
Arguments
x | 
 ewp model summary  | 
digits | 
 number of digits to print  | 
... | 
 additional arguments to printCoefmat()  | 
Value
printout of the summary object
Random samples from the three-parameter EWP
Description
Random samples from the three-parameter EWP
Usage
rewp3(n, lambda, beta1, beta2, sum_limit = 30)
Arguments
n | 
 number of observations  | 
lambda | 
 centrality parameter  | 
beta1 | 
 lower-tail dispersion parameter  | 
beta2 | 
 upper tail dispersion parameter  | 
sum_limit | 
 summation limit for the normalizing factor  | 
Value
random deviates from the EWP_3 distribution
simulate from fitted model
Description
simulate from fitted model
Usage
## S3 method for class 'ewp'
simulate(object, nsim = 1, ...)
Arguments
object | 
 ewp model object  | 
nsim | 
 number of response vectors to simulate. Defaults to 1.  | 
... | 
 ignored  | 
Value
a data frame with 'nsim' columns.
Model summary
Description
Model summary
Usage
## S3 method for class 'ewp'
summary(object, ...)
Arguments
object | 
 ewp model fit  | 
... | 
 ignored  | 
Value
The function 'summary.ewp' computes and returns a list of summary statistics of the fitted ewp model.
Extract estimated variance-covariance matrix
Description
Extract estimated variance-covariance matrix
Usage
## S3 method for class 'ewp'
vcov(object, ...)
Arguments
object | 
 an object of class ewp  | 
... | 
 ignored  | 
Value
a matrix