
Package ‘drake’
December 4, 2024

Title A Pipeline Toolkit for Reproducible Computation at Scale

Version 7.13.11

Description A general-purpose computational engine for data
analysis, drake rebuilds intermediate data objects when their
dependencies change, and it skips work when the results are already up
to date. Not every execution starts from scratch, there is native
support for parallel and distributed computing, and completed projects
have tangible evidence that they are reproducible. Extensive
documentation, from beginner-friendly tutorials to practical examples
and more, is available at the reference website
<https://docs.ropensci.org/drake/> and the online manual
<https://books.ropensci.org/drake/>.

License GPL-3

URL https://github.com/ropensci/drake,

https://docs.ropensci.org/drake/,

https://books.ropensci.org/drake/

BugReports https://github.com/ropensci/drake/issues

Depends R (>= 3.3.0)

Imports base64url, digest (>= 0.6.21), igraph (>= 2.0.0), methods,
parallel, rlang (>= 0.2.0), storr (>= 1.1.0), tidyselect (>=
1.0.0), txtq (>= 0.2.3), utils, vctrs (>= 0.2.0)

Suggests abind, bindr, callr, cli (>= 1.1.0), clustermq (>= 0.9.1),
crayon, curl (>= 2.7), data.table, datasets, disk.frame,
downloader, fst, future (>= 1.3.0), ggplot2, ggraph, grDevices,
keras, knitr, lubridate, networkD3, prettycode, progress (>=
1.2.2), qs (>= 0.20.2), Rcpp, rmarkdown, rstudioapi, stats,
styler (>= 1.2.0), testthat (>= 2.1.0), tibble, txtplot,
usethis, visNetwork (>= 2.0.9), webshot

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

1

https://docs.ropensci.org/drake/
https://books.ropensci.org/drake/
https://github.com/ropensci/drake
https://docs.ropensci.org/drake/
https://books.ropensci.org/drake/
https://github.com/ropensci/drake/issues

2 Contents

NeedsCompilation no

Author William Michael Landau [aut, cre]
(<https://orcid.org/0000-0003-1878-3253>),

Alex Axthelm [ctb],
Jasper Clarkberg [ctb],
Kirill Müller [ctb],
Ben Bond-Lamberty [ctb] (<https://orcid.org/0000-0001-9525-4633>),
Tristan Mahr [ctb] (<https://orcid.org/0000-0002-8890-5116>),
Miles McBain [ctb] (<https://orcid.org/0000-0003-2865-2548>),
Noam Ross [ctb] (<https://orcid.org/0000-0002-2136-0000>),
Ellis Hughes [ctb],
Matthew Mark Strasiotto [ctb],
Ben Marwick [rev],
Peter Slaughter [rev],
Eli Lilly and Company [cph]

Maintainer William Michael Landau <will.landau.oss@gmail.com>

Repository CRAN

Date/Publication 2024-12-04 11:30:06 UTC

Contents
drake-package . 4
bind_plans . 5
build_times . 6
cached . 7
cached_planned . 9
cached_unplanned . 10
cancel . 11
cancel_if . 12
clean . 13
clean_mtcars_example . 15
code_to_function . 16
code_to_plan . 18
deps_code . 19
deps_knitr . 20
deps_profile . 21
deps_target . 22
diagnose . 23
drake_build . 24
drake_cache . 25
drake_cache_log . 27
drake_cancelled . 29
drake_config . 30
drake_debug . 39
drake_done . 40
drake_envir . 41

https://orcid.org/0000-0003-1878-3253
https://orcid.org/0000-0001-9525-4633
https://orcid.org/0000-0002-8890-5116
https://orcid.org/0000-0003-2865-2548
https://orcid.org/0000-0002-2136-0000

Contents 3

drake_example . 42
drake_examples . 43
drake_failed . 44
drake_gc . 45
drake_get_session_info . 46
drake_ggraph . 47
drake_graph_info . 49
drake_history . 52
drake_hpc_template_file . 54
drake_hpc_template_files . 55
drake_plan . 56
drake_plan_source . 62
drake_progress . 63
drake_running . 65
drake_script . 66
drake_slice . 66
drake_tempfile . 68
file_in . 69
file_out . 71
file_store . 73
find_cache . 74
id_chr . 75
ignore . 76
knitr_in . 78
legend_nodes . 80
load_mtcars_example . 80
make . 82
missed . 92
new_cache . 93
no_deps . 94
outdated . 96
plan_to_code . 97
plan_to_notebook . 98
predict_runtime . 99
predict_workers . 100
readd . 102
read_drake_seed . 106
read_trace . 107
recoverable . 109
render_drake_ggraph . 111
render_drake_graph . 112
render_sankey_drake_graph . 114
render_text_drake_graph . 115
rescue_cache . 116
r_make . 118
sankey_drake_graph . 120
show_source . 123
subtargets . 124

4 drake-package

target . 125
text_drake_graph . 128
tracked . 130
transformations . 131
transform_plan . 134
trigger . 136
use_drake . 138
vis_drake_graph . 139
which_clean . 143

Index 144

drake-package drake: A pipeline toolkit for reproducible computation at scale.

Description

drake is a pipeline toolkit (https://github.com/pditommaso/awesome-pipeline) and a scal-
able, R-focused solution for reproducibility and high-performance computing.

Author(s)

William Michael Landau <will.landau@gmail.com>

References
https://github.com/ropensci/drake

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
library(drake)
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Build everything.
plot(my_plan) # fast call to vis_drake_graph()
make(my_plan) # Nothing is done because everything is already up to date.
reg2 = function(d) { # Change one of your functions.

d$x3 = d$x^3
lm(y ~ x3, data = d)

}
make(my_plan) # Only the pieces depending on reg2() get rebuilt.
Write a flat text log file this time.
make(my_plan, cache_log_file = TRUE)
Read/load from the cache.
readd(small)
loadd(large)
head(large)
}

bind_plans 5

Dynamic branching
Get the mean mpg for each cyl in the mtcars dataset.
plan <- drake_plan(

raw = mtcars,
group_index = raw$cyl,
munged = target(raw[, c("mpg", "cyl")], dynamic = map(raw)),
mean_mpg_by_cyl = target(
data.frame(mpg = mean(munged$mpg), cyl = munged$cyl[1]),
dynamic = group(munged, .by = group_index)

)
)
make(plan)
readd(mean_mpg_by_cyl)
})

End(Not run)

bind_plans Row-bind together drake plans [Stable]

Description

Combine drake plans together in a way that correctly fills in missing entries.

Usage

bind_plans(...)

Arguments

... Workflow plan data frames (see drake_plan()).

See Also

drake_plan(), make()

Examples

You might need to refresh your data regularly (see ?triggers).
download_plan <- drake_plan(

data = target(
command = download_data(),
trigger = "always"

)
)
But if the data don't change, the analyses don't need to change.
analysis_plan <- drake_plan(

usage = get_usage_metrics(data),
topline = scrape_topline_table(data)

)

6 build_times

your_plan <- bind_plans(download_plan, analysis_plan)
your_plan

build_times See the time it took to build each target. [Stable]

Description

Applies to targets in your plan, not imports or files.

Usage

build_times(
...,
path = NULL,
search = NULL,
digits = 3,
cache = drake::drake_cache(path = path),
targets_only = NULL,
verbose = NULL,
jobs = 1,
type = c("build", "command"),
list = character(0)

)

Arguments

... Targets to load from the cache: as names (symbols) or character strings. If the
tidyselect package is installed, you can also supply dplyr-style tidyselect
commands such as starts_with(), ends_with(), and one_of().

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

search Deprecated.

digits How many digits to round the times to.

cache drake cache. See new_cache(). If supplied, path is ignored.

targets_only Deprecated.

verbose Deprecated on 2019-09-11.

jobs Number of jobs/workers for parallel processing.

type Type of time you want: either "build" for the full build time including the
time it took to store the target, or "command" for the time it took just to run the
command.

list Character vector of targets to select.

cached 7

Details

Times for dynamic targets (https://books.ropensci.org/drake/dynamic.html) only reflect
the time it takes to post-process the sub-targets (typically very fast) and exclude the time it takes to
build the sub-targets themselves. Sub-targets build times are listed individually.

Value

A data frame of times, each from system.time().

See Also

predict_runtime()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
if (requireNamespace("lubridate")) {
Show the build times for the mtcars example.
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Build all the targets.
print(build_times()) # Show how long it took to build each target.
}
}
})

End(Not run)

cached List targets in the cache. [Stable]

Description

Tip: read/load a cached item with readd() or loadd().

Usage

cached(
...,
list = character(0),
no_imported_objects = FALSE,
path = NULL,
search = NULL,
cache = drake::drake_cache(path = path),
verbose = NULL,
namespace = NULL,
jobs = 1,
targets_only = TRUE

)

8 cached

Arguments

... Deprecated. Do not use. Objects to load from the cache, as names (unquoted)
or character strings (quoted). Similar to ... in remove().

list Deprecated. Do not use. Character vector naming objects to be loaded from the
cache. Similar to the list argument of remove().

no_imported_objects

Logical, deprecated. Use targets_only instead.

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

search Deprecated.

cache drake cache. See new_cache(). If supplied, path is ignored.

verbose Deprecated on 2019-09-11.

namespace Character scalar, name of the storr namespace to use for listing objects.

jobs Number of jobs/workers for parallel processing.

targets_only Logical. If TRUE just list the targets. If FALSE, list files and imported objects too.

Value

Either a named logical indicating whether the given targets or cached or a character vector listing
all cached items, depending on whether any targets are specified.

See Also

cached_planned(), cached_unplanned(), readd(), loadd(), drake_plan(), make()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
if (requireNamespace("lubridate")) {
load_mtcars_example() # Load drake's canonical example.
make(my_plan) # Run the project, build all the targets.
cached()
cached(targets_only = FALSE)
}
}
})

End(Not run)

cached_planned 9

cached_planned List targets in both the plan and the cache. [Stable]

Description

Includes dynamic sub-targets as well. See examples for details.

Usage

cached_planned(
plan,
path = NULL,
cache = drake::drake_cache(path = path),
namespace = NULL,
jobs = 1

)

Arguments

plan A drake plan.

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

cache drake cache. See new_cache(). If supplied, path is ignored.

namespace Character scalar, name of the storr namespace to use for listing objects.

jobs Number of jobs/workers for parallel processing.

Value

A character vector of target and sub-target names.

See Also

cached(), cached_unplanned

Examples

Not run:
isolate_example("cache_planned() example", {
plan <- drake_plan(w = 1)
make(plan)
cached_planned(plan)
plan <- drake_plan(

x = seq_len(2),
y = target(x, dynamic = map(x))

)
cached_planned(plan)
make(plan)
cached_planned(plan)

10 cached_unplanned

cached()
})

End(Not run)

cached_unplanned List targets in the cache but not the plan. [Stable]

Description

Includes dynamic sub-targets as well. See examples for details.

Usage

cached_unplanned(
plan,
path = NULL,
cache = drake::drake_cache(path = path),
namespace = NULL,
jobs = 1

)

Arguments

plan A drake plan.

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

cache drake cache. See new_cache(). If supplied, path is ignored.

namespace Character scalar, name of the storr namespace to use for listing objects.

jobs Number of jobs/workers for parallel processing.

Value

A character vector of target and sub-target names.

See Also

cached(), cached_planned

Examples

Not run:
isolate_example("cache_unplanned() example", {
plan <- drake_plan(w = 1)
make(plan)
cached_unplanned(plan)
plan <- drake_plan(

x = seq_len(2),

cancel 11

y = target(x, dynamic = map(x))
)
cached_unplanned(plan)
make(plan)
cached_unplanned(plan)
cached_unplanned() helps clean superfluous targets.
cached()
clean(list = cached_unplanned(plan))
cached()
})

End(Not run)

cancel Cancel a target mid-build [Stable]

Description

Cancel a target mid-build. Upon cancellation, drake halts the current target and moves to the next
one. The target’s previous value and metadata, if they exist, remain in the cache.

Usage

cancel(allow_missing = TRUE)

Arguments

allow_missing Logical. If FALSE, drake will not cancel the target if it is missing from the cache
(or if you removed the key with clean()).

Value

Nothing.

See Also

cancel_if

Examples

Not run:
isolate_example("cancel()", {
f <- function(x) {

cancel()
Sys.sleep(2) # Does not run.

}
g <- function(x) f(x)
plan <- drake_plan(y = g(1))
make(plan)
Does not exist.

12 cancel_if

readd(y)
})

End(Not run)

cancel_if Cancel a target mid-build under some condition [Stable]

Description

Cancel a target mid-build if some logical condition is met. Upon cancellation, drake halts the
current target and moves to the next one. The target’s previous value and metadata, if they exist,
remain in the cache.

Usage

cancel_if(condition, allow_missing = TRUE)

Arguments

condition Logical, whether to cancel the target.

allow_missing Logical. If FALSE, drake will not cancel the target if it is missing from the cache
(or if you removed the key with clean()).

Value

Nothing.

See Also

cancel

Examples

Not run:
isolate_example("cancel_if()", {
f <- function(x) {

cancel_if(x > 1)
Sys.sleep(2) # Does not run if x > 1.

}
g <- function(x) f(x)
plan <- drake_plan(y = g(2))
make(plan)
Does not exist.
readd(y)
})

End(Not run)

clean 13

clean Invalidate and deregister targets. [Stable]

Description

Force targets to be out of date and remove target names from the data in the cache. Be careful
and run which_clean() before clean(). That way, you know beforehand which targets will be
compromised.

Usage

clean(
...,
list = character(0),
destroy = FALSE,
path = NULL,
search = NULL,
cache = drake::drake_cache(path = path),
verbose = NULL,
jobs = NULL,
force = FALSE,
garbage_collection = FALSE,
purge = FALSE

)

Arguments

... Symbols, individual targets to remove.
list Character vector of individual targets to remove.
destroy Logical, whether to totally remove the drake cache. If destroy is FALSE, only

the targets from make() are removed. If TRUE, the whole cache is removed,
including session metadata, etc.

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.
search Deprecated
cache drake cache. See new_cache(). If supplied, path is ignored.
verbose Deprecated
jobs Deprecated.
force Logical, whether to try to clean the cache even though the project may not be

back compatible with the current version of drake.
garbage_collection

Logical, whether to call cache$gc() to do garbage collection. If TRUE, cached
data with no remaining references will be removed. This will slow down clean(),
but the cache could take up far less space afterwards. See the gc() method for
storr caches.

purge Logical, whether to remove objects from metadata namespaces such as "meta",
"build_times", and "errors".

14 clean

Details

By default, clean() invalidates all targets, so be careful. clean() always:

1. Forces targets to be out of date so the next make() does not skip them.

2. Deregisters targets so loadd(your_target) and readd(your_target) no longer work.

By default, clean() does not actually remove the underlying data. Even old targets from the distant
past are still in the cache and recoverable via drake_history() and make(recover = TRUE). To
actually remove target data from the cache, as well as any file_out() files from any targets you
are currently cleaning, run clean(garbage_collection = TRUE). Garbage collection is slow, but
it reduces the storage burden of the cache.

Value

Invisibly return NULL.

See Also

which_clean(), drake_gc()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the project, build the targets.
Show all registered targets in the cache.
cached()
Deregister 'summ_regression1_large' and 'small' in the cache.
clean(summ_regression1_large, small)
Those objects are no longer registered as targets.
cached()
Rebuild the invalidated/outdated targets.
make(my_plan)
Clean everything.
clean()
But the data objects and files are not actually gone!
file.exists("report.md")
drake_history()
make(my_plan, recover = TRUE)
You need garbage collection to actually remove the data
and any file_out() files of any uncleaned targets.
clean(garbage_collection = TRUE)
drake_history()
make(my_plan, recover = TRUE)
}
})

End(Not run)

clean_mtcars_example 15

clean_mtcars_example Clean the mtcars example from drake_example("mtcars") [Stable]

Description

This function deletes files. Use at your own risk. Destroys the .drake/ cache and the report.Rmd
file in the current working directory. Your working directory (getcwd()) must be the folder from
which you first ran load_mtcars_example() and make(my_plan).

Usage

clean_mtcars_example()

Value

nothing

See Also

load_mtcars_example(), clean()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
Populate your workspace and write 'report.Rmd'.
load_mtcars_example() # Get the code: drake_example("mtcars")
Check the dependencies of an imported function.
deps_code(reg1)
Check the dependencies of commands in the workflow plan.
deps_code(my_plan$command[1])
deps_code(my_plan$command[4])
Plot the interactive network visualization of the workflow.
outdated(my_plan) # Which targets are out of date?
Run the workflow to build all the targets in the plan.
make(my_plan)
outdated(my_plan) # Everything should be up to date.
For the reg2() model on the small dataset,
the p-value is so small that there may be an association
between weight and fuel efficiency after all.
readd(coef_regression2_small)
Clean up the example.
clean_mtcars_example()
}
})

End(Not run)

16 code_to_function

code_to_function Turn a script into a function. [Stable]

Description

code_to_function() is a quick (and very dirty) way to retrofit drake to an existing script-based
project. It parses individual *.R/*.RMD files into functions so they can be added into the drake
workflow.

Usage

code_to_function(path, envir = parent.frame())

Arguments

path Character vector, path to script.

envir Environment of the created function.

Details

Most data science workflows consist of imperative scripts. drake, on the other hand, assumes you
write functions. code_to_function() allows for pre-existing workflows to incorporate drake as
a workflow management tool seamlessly for cases where re-factoring is unfeasible. So drake can
monitor dependencies, the targets are passed as arguments of the dependent functions.

Value

A function to be input into the drake plan

See Also

file_in(), file_out(), knitr_in(), ignore(), no_deps(), code_to_plan(), plan_to_code(),
plan_to_notebook()

Examples

Not run:
isolate_example("contain side effects", {
if (requireNamespace("ggplot2", quietly = TRUE)) {
The `code_to_function()` function creates a function that makes it
available for drake to process as part of the workflow.
The main purpose is to allow pre-existing workflows to incorporate drake
into the workflow seamlessly for cases where re-factoring is unfeasible.
#

script1 <- tempfile()
script2 <- tempfile()
script3 <- tempfile()

code_to_function 17

script4 <- tempfile()

writeLines(c(
"data <- mtcars",
"data$make <- do.call('c',",
"lapply(strsplit(rownames(data), split=\" \"), `[`, 1))",
"saveRDS(data, \"mtcars_alt.RDS\")"
),
script1

)

writeLines(c(
"data <- readRDS(\"mtcars_alt.RDS\")",
"mtcars_lm <- lm(mpg~cyl+disp+vs+gear+make,data=data)",
"saveRDS(mtcars_lm, \"mtcars_lm.RDS\")"
),
script2

)
writeLines(c(

"mtcars_lm <- readRDS(\"mtcars_lm.RDS\")",
"lm_summary <- summary(mtcars_lm)",
"saveRDS(lm_summary, \"mtcars_lm_summary.RDS\")"
),
script3

)
writeLines(c(

"data<-readRDS(\"mtcars_alt.RDS\")",
"gg <- ggplot2::ggplot(data)+",
"ggplot2::geom_point(ggplot2::aes(",
"x=disp, y=mpg, shape=as.factor(vs), color=make))",
"ggplot2::ggsave(\"mtcars_plot.png\", gg)"
),
script4

)

do_munge <- code_to_function(script1)
do_analysis <- code_to_function(script2)
do_summarize <- code_to_function(script3)
do_vis <- code_to_function(script4)

plan <- drake_plan(
munged = do_munge(),
analysis = do_analysis(munged),
summary = do_summarize(analysis),
plot = do_vis(munged)
)

plan
drake knows "script1" is the first script to be evaluated and ran,
because it has no dependencies on other code and a dependency of
`analysis`. See for yourself:

18 code_to_plan

make(plan)

See the connections that the sourced scripts create:
if (requireNamespace("visNetwork", quietly = TRUE)) {

vis_drake_graph(plan)
}
}
})

End(Not run)

code_to_plan Turn an R script file or knitr / R Markdown report into a drake plan.
[Questioning]

Description

code_to_plan(), plan_to_code(), and plan_to_notebook() together illustrate the relationships
between drake plans, R scripts, and R Markdown documents.

Usage

code_to_plan(path)

Arguments

path A file path to an R script or knitr report.

Details

This feature is easy to break, so there are some rules for your code file:

1. Stick to assigning a single expression to a single target at a time. For multi-line commands,
please enclose the whole command in curly braces. Conversely, compound assignment is not
supported (e.g. target_1 <- target_2 <- target_3 <- get_data()).

2. Once you assign an expression to a variable, do not modify the variable any more. The tar-
get/command binding should be permanent.

3. Keep it simple. Please use the assignment operators rather than assign() and similar func-
tions.

See Also

drake_plan(), make(), plan_to_code(), plan_to_notebook()

deps_code 19

Examples

plan <- drake_plan(
raw_data = read_excel(file_in("raw_data.xlsx")),
data = raw_data,
hist = create_plot(data),
fit = lm(Ozone ~ Temp + Wind, data)

)
file <- tempfile()
Turn the plan into an R script a the given file path.
plan_to_code(plan, file)
Here is what the script looks like.
cat(readLines(file), sep = "\n")
Convert back to a drake plan.
code_to_plan(file)

deps_code List the dependencies of a function or command [Stable]

Description

Functions are assumed to be imported, and language/text are assumed to be commands in a plan.

Usage

deps_code(x)

Arguments

x A function, expression, or text.

Value

A data frame of the dependencies.

See Also

deps_target(), deps_knitr()

Examples

Your workflow likely depends on functions in your workspace.
f <- function(x, y) {

out <- x + y + g(x)
saveRDS(out, "out.rds")

}
Find the dependencies of f. These could be R objects/functions
in your workspace or packages. Any file names or target names
will be ignored.
deps_code(f)

20 deps_knitr

Define a workflow plan data frame that uses your function f().
my_plan <- drake_plan(

x = 1 + some_object,
my_target = x + readRDS(file_in("tracked_input_file.rds")),
return_value = f(x, y, g(z + w))

)
Get the dependencies of workflow plan commands.
Here, the dependencies could be R functions/objects from your workspace
or packages, imported files, or other targets in the workflow plan.
deps_code(my_plan$command[[1]])
deps_code(my_plan$command[[2]])
deps_code(my_plan$command[[3]])
You can also supply expressions or text.
deps_code(quote(x + y + 123))
deps_code("x + y + 123")

deps_knitr Find the drake dependencies of a dynamic knitr report target. [Stable]

Description

Dependencies in knitr reports are marked by loadd() and readd() in active code chunks.

Usage

deps_knitr(path)

Arguments

path Encoded file path to the knitr/R Markdown document. Wrap paths in file_store()
to encode.

Value

A data frame of dependencies.

See Also

deps_code(), deps_target()

Examples

Not run:
isolate_example("Quarantine side effects.", {
load_mtcars_example() # Get the code with drake_example("mtcars").
deps_knitr("report.Rmd")
})

End(Not run)

deps_profile 21

deps_profile Find out why a target is out of date. [Stable]

Description

The dependency profile can give you a hint as to why a target is out of date. It can tell you if

• the command changed (deps_profile() reports the hash of the command, not the command
itself)

• at least one input file changed,

• at least one output file changed,

• or a non-file dependency changed. For this last part, the imports need to be up to date in the
cache, which you can do with outdated() or make(skip_targets = TRUE).

• the pseudo-random number generator seed changed. Unfortunately, deps_profile() does
not currently get more specific than that.

Usage

deps_profile(target, ..., character_only = FALSE, config = NULL)

Arguments

target Name of the target.

... Arguments to make(), such as plan and targets.

character_only Logical, whether to assume target is a character string rather than a symbol.

config Deprecated.

Value

A data frame of old and new values for each of the main triggers, along with an indication of which
values changed since the last make().

See Also

diagnose(), deps_code(), make(), drake_config()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Load drake's canonical example.
make(my_plan) # Run the project, build the targets.
Get some example dependency profiles of targets.
deps_profile(small, my_plan)
Change a dependency.

22 deps_target

simulate <- function(x) {}
Update the in-memory imports in the cache
so deps_profile can detect changes to them.
Changes to targets are already cached.
make(my_plan, skip_targets = TRUE)
The dependency hash changed.
deps_profile(small, my_plan)
}
})

End(Not run)

deps_target List the dependencies of a target [Stable]

Description

Intended for debugging and checking your project. The dependency structure of the components of
your analysis decides which targets are built and when.

Usage

deps_target(target, ..., character_only = FALSE, config = NULL)

Arguments

target A symbol denoting a target name, or if character_only is TRUE, a character
scalar denoting a target name.

... Arguments to make(), such as plan and targets.
character_only Logical, whether to assume target is a character string rather than a symbol.
config Deprecated.

Value

A data frame with the dependencies listed by type (globals, files, etc).

See Also

deps_code(), deps_knitr()

Examples

Not run:
isolate_example("Quarantine side effects.", {
load_mtcars_example() # Get the code with drake_example("mtcars").
deps_target(regression1_small, my_plan)
})

End(Not run)

diagnose 23

diagnose Get diagnostic metadata on a target. [Stable]

Description

Diagnostics include errors, warnings, messages, runtimes, and other context/metadata from when a
target was built or an import was processed. If your target’s last build succeeded, then diagnose(your_target)
has the most current information from that build. But if your target failed, then only diagnose(your_target)$error,
diagnose(your_target)$warnings, and diagnose(your_target)$messages correspond to the
failure, and all the other metadata correspond to the last build that completed without an error.

Usage

diagnose(
target = NULL,
character_only = FALSE,
path = NULL,
search = NULL,
cache = drake::drake_cache(path = path),
verbose = 1L

)

Arguments

target Name of the target of the error to get. Can be a symbol if character_only is
FALSE, must be a character if character_only is TRUE.

character_only Logical, whether target should be treated as a character or a symbol. Just like
character.only in library().

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

search Deprecated.

cache drake cache. See new_cache(). If supplied, path is ignored.

verbose Deprecated on 2019-09-11.

Value

Either a character vector of target names or an object of class "error".

See Also

drake_failed(), drake_progress(), readd(), drake_plan(), make()

24 drake_build

Examples

Not run:
isolate_example("Quarantine side effects.", {
diagnose() # List all the targets with recorded error logs.
Define a function doomed to failure.
f <- function() {

stop("unusual error")
}
Create a workflow plan doomed to failure.
bad_plan <- drake_plan(my_target = f())
Running the project should generate an error
when trying to build 'my_target'.
try(make(bad_plan), silent = FALSE)
drake_failed() # List the failed targets from the last make() (my_target).
List targets that failed at one point or another
over the course of the project (my_target).
drake keeps all the error logs.
diagnose()
Get the error log, an object of class "error".
error <- diagnose(my_target)$error # See also warnings and messages.
str(error) # See what's inside the error log.
error$calls # View the traceback. (See the rlang::trace_back() function).
})

End(Not run)

drake_build Build/process a single target or import. [Questioning]

Description

Not valid for dynamic branching.

Usage

drake_build(
target,
...,
meta = NULL,
character_only = FALSE,
replace = FALSE,
config = NULL

)

Arguments

target Name of the target.

... Arguments to make(), such as the plan and environment.

drake_cache 25

meta Deprecated.

character_only Logical, whether name should be treated as a character or a symbol (just like
character.only in library()).

replace Logical. If FALSE, items already in your environment will not be replaced.

config Deprecated 2019-12-22.

Value

The value of the target right after it is built.

See Also

drake_debug()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
This example is not really a user-side demonstration.
It just walks through a dive into the internals.
Populate your workspace and write 'report.Rmd'.
load_mtcars_example() # Get the code with drake_example("mtcars").
out <- drake_build(small, my_plan)
Now includes `small`.
cached()
head(readd(small))
`small` was invisibly returned.
head(out)
}
})

End(Not run)

drake_cache Get the cache of a drake project. [Stable]

Description

make() saves the values of your targets so you rarely need to think about output files. By default,
the cache is a hidden folder called .drake/. You can also supply your own storr cache to the
cache argument of make(). The drake_cache() function retrieves this cache.

Usage

drake_cache(path = NULL, verbose = NULL, console_log_file = NULL)

26 drake_cache

Arguments

path Character. Set path to the path of a storr::storr_rds() cache to retrieve a
specific cache generated by storr::storr_rds() or drake::new_cache(). If
the path argument is NULL, drake_cache() searches up through parent directo-
ries to find a folder called .drake/.

verbose Deprecated on 2019-09-11.
console_log_file

Deprecated on 2019-09-11.

Details

drake_cache() actually returns a decorated storr, an object that contains a storr (plus bells and
whistles). To get the actual inner storr, use drake_cache()$storr. Most methods are delegated
to the inner storr. Some methods and objects are new or overwritten. Here are the ones relevant
to users.

• history: drake’s history (which powers drake_history()) is a txtq. Access it with drake_cache()$history.

• import(): The import() method is a function that can import targets, function dependencies,
etc. from one decorated storr to another. History is not imported. For that, you have to work
with the history txtqs themselves, Arguments to import():

– ... and list: specify targets to import just like with loadd(). Leave these blank to
import everything.

– from: the decorated storr from which to import targets.
– jobs: number of local processes for parallel computing.
– gc: TRUE or FALSE, whether to run garbage collection for memory after importing each

target. Recommended, but slow.

• export(): Same as import(), except the from argument is replaced by to: the decorated
storr where the targets end up.

Value

A drake/storr cache in a folder called .drake/, if available. NULL otherwise.

See Also

new_cache(), drake_config()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
clean(destroy = TRUE)
No cache is available.
drake_cache() # NULL
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the project, build the targets.
x <- drake_cache() # Now, there is a cache.

drake_cache_log 27

y <- storr::storr_rds(".drake") # Nearly equivalent.
List the objects readable from the cache with readd().
x$list()
drake_cache() actually returns a *decorated* storr.
The *real* storr is inside.
drake_cache()$storr
}
You can import and export targets to and from decorated storrs.
plan1 <- drake_plan(w = "w", x = "x")
plan2 <- drake_plan(a = "a", x = "x2")
cache1 <- new_cache("cache1")
cache2 <- new_cache("cache2")
make(plan1, cache = cache1)
make(plan2, cache = cache2)
cache1$import(cache2, a)
cache1$get("a")
cache1$get("x")
cache1$import(cache2)
cache1$get("x")
With txtq >= 0.1.6.9002, you can import history from one cache into
another.
nolint start
drake_history(cache = cache1)
cache1$history$import(cache2$history)
drake_history(cache = cache1)
nolint end
})

End(Not run)

drake_cache_log Get the state of the cache. [Stable]

Description

Get the fingerprints of all the targets in a data frame. This functionality is like make(..., cache_log_file
= TRUE), but separated and more customizable. Hopefully, this functionality is a step toward better
data versioning tools.

Usage

drake_cache_log(
path = NULL,
search = NULL,
cache = drake::drake_cache(path = path),
verbose = 1L,
jobs = 1,
targets_only = FALSE

)

28 drake_cache_log

Arguments

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

search Deprecated.

cache drake cache. See new_cache(). If supplied, path is ignored.

verbose Deprecated on 2019-09-11.

jobs Number of jobs/workers for parallel processing.

targets_only Logical, whether to output information only on the targets in your workflow
plan data frame. If targets_only is FALSE, the output will include the hashes
of both targets and imports.

Details

A hash is a fingerprint of an object’s value. Together, the hash keys of all your targets and imports
represent the state of your project. Use drake_cache_log() to generate a data frame with the hash
keys of all the targets and imports stored in your cache. This function is particularly useful if you
are storing your drake project in a version control repository. The cache has a lot of tiny files, so you
should not put it under version control. Instead, save the output of drake_cache_log() as a text
file after each make(), and put the text file under version control. That way, you have a changelog
of your project’s results. See the examples below for details. Depending on your project’s history,
the targets may be different than the ones in your workflow plan data frame. Also, the keys depend
on the hash algorithm of your cache. To define your own hash algorithm, you can create your own
storr cache and give it a hash algorithm (e.g. storr_rds(hash_algorithm = "murmur32"))

Value

Data frame of the hash keys of the targets and imports in the cache

See Also

cached(), drake_cache()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
Load drake's canonical example.
load_mtcars_example() # Get the code with drake_example()
Run the project, build all the targets.
make(my_plan)
Get a data frame of all the hash keys.
If you want a changelog, be sure to do this after every make().
cache_log <- drake_cache_log()
head(cache_log)
Suppress partial arg match warnings.
suppressWarnings(

Save the hash log as a flat text file.
write.table(
x = cache_log,

drake_cancelled 29

file = "drake_cache.log",
quote = FALSE,
row.names = FALSE

)
)
At this point, put drake_cache.log under version control
(e.g. with 'git add drake_cache.log') alongside your code.
Now, every time you run your project, your commit history
of hash_lot.txt is a changelog of the project's results.
It shows which targets and imports changed on every commit.
It is extremely difficult to track your results this way
by putting the raw '.drake/' cache itself under version control.
}
})

End(Not run)

drake_cancelled List cancelled targets. [Stable]

Description

List the targets that were cancelled in the current or previous call to make() using cancel() or
cancel_if().

Usage

drake_cancelled(cache = drake::drake_cache(path = path), path = NULL)

Arguments

cache drake cache. See new_cache(). If supplied, path is ignored.

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

Value

A character vector of target names.

See Also

drake_running(), drake_failed(), make()

Examples

Not run:
isolate_example("contain side effects", {
plan <- drake_plan(x = 1, y = cancel_if(x > 0))
make(plan)
drake_cancelled()

30 drake_config

})

End(Not run)

drake_config Ending of _drake.R for r_make() and friends [Stable]

Description

Call this function inside the _drake.R script for r_make() and friends. All non-deprecated function
arguments are the same between make() and drake_config().

Usage

drake_config(
plan,
targets = NULL,
envir = parent.frame(),
verbose = 1L,
hook = NULL,
cache = drake::drake_cache(),
fetch_cache = NULL,
parallelism = "loop",
jobs = 1L,
jobs_preprocess = 1L,
packages = rev(.packages()),
lib_loc = NULL,
prework = character(0),
prepend = NULL,
command = NULL,
args = NULL,
recipe_command = NULL,
timeout = NULL,
cpu = Inf,
elapsed = Inf,
retries = 0,
force = FALSE,
log_progress = TRUE,
graph = NULL,
trigger = drake::trigger(),
skip_targets = FALSE,
skip_imports = FALSE,
skip_safety_checks = FALSE,
lazy_load = "eager",
session_info = NULL,
cache_log_file = NULL,
seed = NULL,

drake_config 31

caching = c("main", "master", "worker"),
keep_going = FALSE,
session = NULL,
pruning_strategy = NULL,
makefile_path = NULL,
console_log_file = NULL,
ensure_workers = NULL,
garbage_collection = FALSE,
template = list(),
sleep = function(i) 0.01,
hasty_build = NULL,
memory_strategy = "speed",
spec = NULL,
layout = NULL,
lock_envir = NULL,
history = TRUE,
recover = FALSE,
recoverable = TRUE,
curl_handles = list(),
max_expand = NULL,
log_build_times = TRUE,
format = NULL,
lock_cache = TRUE,
log_make = NULL,
log_worker = FALSE

)

Arguments

plan Workflow plan data frame. A workflow plan data frame is a data frame with a
target column and a command column. (See the details in the drake_plan()
help file for descriptions of the optional columns.) Targets are the objects that
drake generates, and commands are the pieces of R code that produce them. You
can create and track custom files along the way (see file_in(), file_out(),
and knitr_in()). Use the function drake_plan() to generate workflow plan
data frames.

targets Character vector, names of targets to build. Dependencies are built too. You
may supply static and/or whole dynamic targets, but no sub-targets.

envir Environment to use. Defaults to the current workspace, so you should not need
to worry about this most of the time. A deep copy of envir is made, so you
don’t need to worry about your workspace being modified by make. The deep
copy inherits from the global environment. Wherever necessary, objects and
functions are imported from envir and the global environment and then repro-
ducibly tracked as dependencies.

verbose Integer, control printing to the console/terminal.

• 0: print nothing.
• 1: print target-by-target messages as make() progresses.

32 drake_config

• 2: show a progress bar to track how many targets are done so far.

hook Deprecated.

cache drake cache as created by new_cache(). See also drake_cache().

fetch_cache Deprecated.

parallelism Character scalar, type of parallelism to use. For detailed explanations, see
https://books.ropensci.org/drake/hpc.html.
You could also supply your own scheduler function if you want to experiment
or aggressively optimize. The function should take a single config argument
(produced by drake_config()). Existing examples from drake’s internals are
the backend_*() functions:

• backend_loop()

• backend_clustermq()

• backend_future() However, this functionality is really a back door and
should not be used for production purposes unless you really know what
you are doing and you are willing to suffer setbacks whenever drake’s un-
exported core functions are updated.

jobs Maximum number of parallel workers for processing the targets. You can ex-
periment with predict_runtime() to help decide on an appropriate number of
jobs. For details, visit https://books.ropensci.org/drake/time.html.

jobs_preprocess

Number of parallel jobs for processing the imports and doing other preprocess-
ing tasks.

packages Character vector packages to load, in the order they should be loaded. Defaults
to rev(.packages()), so you should not usually need to set this manually.
Just call library() to load your packages before make(). However, some-
times packages need to be strictly forced to load in a certain order, especially if
parallelism is "Makefile". To do this, do not use library() or require()
or loadNamespace() or attachNamespace() to load any libraries beforehand.
Just list your packages in the packages argument in the order you want them to
be loaded.

lib_loc Character vector, optional. Same as in library() or require(). Applies to the
packages argument (see above).

prework Expression (language object), list of expressions, or character vector. Code to
run right before targets build. Called only once if parallelism is "loop" and
once per target otherwise. This code can be used to set global options, etc.

prepend Deprecated.

command Deprecated.

args Deprecated.

recipe_command Deprecated.

timeout deprecated. Use elapsed and cpu instead.

cpu Same as the cpu argument of setTimeLimit(). Seconds of cpu time before
a target times out. Assign target-level cpu timeout times with an optional cpu
column in plan.

drake_config 33

elapsed Same as the elapsed argument of setTimeLimit(). Seconds of elapsed time
before a target times out. Assign target-level elapsed timeout times with an
optional elapsed column in plan.

retries Number of retries to execute if the target fails. Assign target-level retries with
an optional retries column in plan.

force Logical. If FALSE (default) then drake imposes checks if the cache was created
with an old and incompatible version of drake. If there is an incompatibility,
make() stops to give you an opportunity to downgrade drake to a compatible
version rather than rerun all your targets from scratch.

log_progress Logical, whether to log the progress of individual targets as they are being built.
Progress logging creates extra files in the cache (usually the .drake/ folder) and
slows down make() a little. If you need to reduce or limit the number of files in
the cache, call make(log_progress = FALSE, recover = FALSE).

graph Deprecated.
trigger Name of the trigger to apply to all targets. Ignored if plan has a trigger col-

umn. See trigger() for details.
skip_targets Logical, whether to skip building the targets in plan and just import objects and

files.
skip_imports Logical, whether to totally neglect to process the imports and jump straight to

the targets. This can be useful if your imports are massive and you just want
to test your project, but it is bad practice for reproducible data analysis. This
argument is overridden if you supply your own graph argument.

skip_safety_checks

Logical, whether to skip the safety checks on your workflow. Use at your own
peril.

lazy_load An old feature, currently being questioned. For the current recommendations on
memory management, see https://books.ropensci.org/drake/memory.html#memory-strategies.
The lazy_load argument is either a character vector or a logical. For dynamic
targets, the behavior is always "eager" (see below). So the lazy_load argu-
ment is for static targets only. Choices for lazy_load:

• "eager": no lazy loading. The target is loaded right away with assign().
• "promise": lazy loading with delayedAssign()

• "bind": lazy loading with active bindings: bindr::populate_env().
• TRUE: same as "promise".
• FALSE: same as "eager".

If lazy_load is "eager", drake prunes the execution environment before each
target/stage, removing all superfluous targets and then loading any dependencies
it will need for building. In other words, drake prepares the environment in ad-
vance and tries to be memory efficient. If lazy_load is "bind" or "promise",
drake assigns promises to load any dependencies at the last minute. Lazy load-
ing may be more memory efficient in some use cases, but it may duplicate the
loading of dependencies, costing time.

session_info Logical, whether to save the sessionInfo() to the cache. Defaults to TRUE.
This behavior is recommended for serious make()s for the sake of reproducibil-
ity. This argument only exists to speed up tests. Apparently, sessionInfo() is
a bottleneck for small make()s.

34 drake_config

cache_log_file Name of the CSV cache log file to write. If TRUE, the default file name is used
(drake_cache.CSV). If NULL, no file is written. If activated, this option writes a
flat text file to represent the state of the cache (fingerprints of all the targets and
imports). If you put the log file under version control, your commit history will
give you an easy representation of how your results change over time as the rest
of your project changes. Hopefully, this is a step in the right direction for data
reproducibility.

seed Integer, the root pseudo-random number generator seed to use for your project.
In make(), drake generates a unique local seed for each target using the global
seed and the target name. That way, different pseudo-random numbers are gen-
erated for different targets, and this pseudo-randomness is reproducible.
To ensure reproducibility across different R sessions, set.seed() and .Random.seed
are ignored and have no affect on drake workflows. Conversely, make() does
not usually change .Random.seed, even when pseudo-random numbers are gen-
erated. The exception to this last point is make(parallelism = "clustermq")
because the clustermq package needs to generate random numbers to set up
ports and sockets for ZeroMQ.
On the first call to make() or drake_config(), drake uses the random num-
ber generator seed from the seed argument. Here, if the seed is NULL (de-
fault), drake uses a seed of 0. On subsequent make()s for existing projects, the
project’s cached seed will be used in order to ensure reproducibility. Thus, the
seed argument must either be NULL or the same seed from the project’s cache
(usually the .drake/ folder). To reset the random number generator seed for a
project, use clean(destroy = TRUE).

caching Character string, either "main" or "worker".

• "main": Targets are built by remote workers and sent back to the main
process. Then, the main process saves them to the cache (config$cache,
usually a file system storr). Appropriate if remote workers do not have
access to the file system of the calling R session. Targets are cached one at
a time, which may be slow in some situations.

• "worker": Remote workers not only build the targets, but also save them
to the cache. Here, caching happens in parallel. However, remote workers
need to have access to the file system of the calling R session. Transferring
target data across a network can be slow.

keep_going Logical, whether to still keep running make() if targets fail.

session Deprecated. Has no effect now.

pruning_strategy

Deprecated. See memory_strategy.

makefile_path Deprecated.

console_log_file

Deprecated in favor of log_make.

ensure_workers Deprecated.

garbage_collection

Logical, whether to call gc() each time a target is built during make().

drake_config 35

template A named list of values to fill in the {{ ... }} placeholders in template files
(e.g. from drake_hpc_template_file()). Same as the template argument
of clustermq::Q() and clustermq::workers. Enabled for clustermq only
(make(parallelism = "clustermq")), not future or batchtools so far. For
more information, see the clustermq package: https://github.com/mschubert/clustermq.
Some template placeholders such as {{ job_name }} and {{ n_jobs }} cannot
be set this way.

sleep Optional function on a single numeric argument i. Default: function(i) 0.01.
To conserve memory, drake assigns a brand new closure to sleep, so your cus-
tom function should not depend on in-memory data except from loaded pack-
ages.
For parallel processing, drake uses a central main process to check what the
parallel workers are doing, and for the affected high-performance computing
workflows, wait for data to arrive over a network. In between loop iterations,
the main process sleeps to avoid throttling. The sleep argument to make()
and drake_config() allows you to customize how much time the main process
spends sleeping.
The sleep argument is a function that takes an argument i and returns a numeric
scalar, the number of seconds to supply to Sys.sleep() after iteration i of
checking. (Here, i starts at 1.) If the checking loop does something other than
sleeping on iteration i, then i is reset back to 1.
To sleep for the same amount of time between checks, you might supply some-
thing like function(i) 0.01. But to avoid consuming too many resources dur-
ing heavier and longer workflows, you might use an exponential back-off: say,
function(i) { 0.1 + 120 * pexp(i - 1, rate = 0.01) }.

hasty_build Deprecated
memory_strategy

Character scalar, name of the strategy drake uses to load/unload a target’s de-
pendencies in memory. You can give each target its own memory strategy, (e.g.
drake_plan(x = 1, y = target(f(x), memory_strategy = "lookahead"))) to
override the global memory strategy. Choices:

• "speed": Once a target is newly built or loaded in memory, just keep it
there. This choice maximizes speed and hogs memory.

• "autoclean": Just before building each new target, unload everything from
memory except the target’s direct dependencies. After a target is built, dis-
card it from memory. (Set garbage_collection = TRUE to make sure it
is really gone.) This option conserves memory, but it sacrifices speed be-
cause each new target needs to reload any previously unloaded targets from
storage.

• "preclean": Just before building each new target, unload everything from
memory except the target’s direct dependencies. After a target is built, keep
it in memory until drake determines they can be unloaded. This option
conserves memory, but it sacrifices speed because each new target needs to
reload any previously unloaded targets from storage.

• "lookahead": Just before building each new target, search the dependency
graph to find targets that will not be needed for the rest of the current
make() session. After a target is built, keep it in memory until the next

36 drake_config

memory management stage. In this mode, targets are only in memory if
they need to be loaded, and we avoid superfluous reads from the cache.
However, searching the graph takes time, and it could even double the com-
putational overhead for large projects.

• "unload": Just before building each new target, unload all targets from
memory. After a target is built, do not keep it in memory. This mode ag-
gressively optimizes for both memory and speed, but in commands and trig-
gers, you have to manually load any dependencies you need using readd().

• "none": Do not manage memory at all. Do not load or unload anything be-
fore building targets. After a target is built, do not keep it in memory. This
mode aggressively optimizes for both memory and speed, but in commands
and triggers, you have to manually load any dependencies you need using
readd().

For even more direct control over which targets drake keeps in memory, see
the help file examples of drake_envir(). Also see the garbage_collection
argument of make() and drake_config().

spec Deprecated.

layout Deprecated.

lock_envir Deprecated in drake >= 7.13.10. Environments are no longer locked.

history Logical, whether to record the build history of your targets. You can also supply
a txtq, which is how drake records history. Must be TRUE for drake_history()
to work later.

recover Logical, whether to activate automated data recovery. The default is FALSE be-
cause

1. Automated data recovery is still stable.
2. It has reproducibility issues. Targets recovered from the distant past may

have been generated with earlier versions of R and earlier package environ-
ments that no longer exist.

3. It is not always possible, especially when dynamic files are combined with
dynamic branching (e.g. dynamic = map(stuff) and format = "file" etc.)
since behavior is harder to predict in advance.

How it works: if recover is TRUE, drake tries to salvage old target values from
the cache instead of running commands from the plan. A target is recoverable if

1. There is an old value somewhere in the cache that shares the command,
dependencies, etc. of the target about to be built.

2. The old value was generated with make(recoverable = TRUE).

If both conditions are met, drake will

1. Assign the most recently-generated admissible data to the target, and
2. skip the target’s command.

Functions recoverable() and r_recoverable() show the most upstream out-
dated targets that will be recovered in this way in the next make() or r_make().

recoverable Logical, whether to make target values recoverable with make(recover = TRUE).
This requires writing extra files to the cache, and it prevents old metadata from
being removed with garbage collection (clean(garbage_collection = TRUE),

drake_config 37

gc() in storrs). If you need to limit the cache size or the number of files in the
cache, consider make(recoverable = FALSE, progress = FALSE). Recovery is
not always possible, especially when dynamic files are combined with dynamic
branching (e.g. dynamic = map(stuff) and format = "file" etc.) since be-
havior is harder to predict in advance.

curl_handles A named list of curl handles. Each value is an object from curl::new_handle(),
and each name is a URL (and should start with "http", "https", or "ftp"). Exam-
ple: list(http://httpbin.org/basic-auth = curl::new_handle(username =
"user", password = "passwd")) Then, if your plan has file_in("http://httpbin.org/basic-auth/user/passwd")
drake will authenticate using the username and password of the handle for
http://httpbin.org/basic-auth/.

drake uses partial matching on text to find the right handle of the file_in()
URL, so the name of the handle could be the complete URL ("http://httpbin.org/basic-auth/user/passwd")
or a part of the URL (e.g. "http://httpbin.org/" or "http://httpbin.org/basic-auth/").
If you have multiple handles whose names match your URL, drake will choose
the closest match.

max_expand Positive integer, optional. max_expand is the maximum number of targets to
generate in each map(), cross(), or group() dynamic transform. Useful if you
have a massive number of dynamic sub-targets and you want to work with only
the first few sub-targets before scaling up. Note: the max_expand argument of
make() and drake_config() is for dynamic branching only. The static branch-
ing max_expand is an argument of drake_plan() and transform_plan().

log_build_times

Logical, whether to record build_times for targets. Mac users may notice a 20%
speedup in make() with build_times = FALSE.

format Character, an optional custom storage format for targets without an explicit
target(format = ...) in the plan. Details about formats: https://books.ropensci.org/drake/plans.html#special-data-formats-for-targets
nolint

lock_cache Logical, whether to lock the cache before running make() etc. It is usually
recommended to keep cache locking on. However, if you interrupt make() be-
fore it can clean itself up, then the cache will stay locked, and you will need to
manually unlock it with drake::drake_cache("xyz")$unlock(). Repeatedly
unlocking the cache by hand is annoying, and lock_cache = FALSE prevents the
cache from locking in the first place.

log_make Optional character scalar of a file name or connection object (such as stdout())
to dump maximally verbose log information for make() and other functions (all
functions that accept a config argument, plus drake_config()). If you choose
to use a text file as the console log, it will persist over multiple function calls un-
til you delete it manually. Fields in each row the log file, from left to right: - The
node name (short host name) of the computer (from Sys.info()["nodename"]).
- The process ID (from Sys.getpid()). - A timestamp with the date and time (in
microseconds). - A brief description of what drake was doing. The fields are separated by pipe symbols ("|"‘).

log_worker Logical, same as the log_worker argument of clustermq::workers() and
clustermq::Q(). Only relevant if parallelism is "clustermq".

38 drake_config

Details

In drake, make() has two stages:

1. Configure a workflow to your environment and plan.

2. Build targets. The drake_config() function just does step (1), which is a common require-
ment for not only make(), but also utility functions like vis_drake_graph() and outdated().
That is why drake_config() is a requirement for the _drake.R script, which powers r_make(),
r_outdated(), r_vis_drake_graph(), etc.

Value

A configured drake workflow.

Recovery

make(recover = TRUE, recoverable = TRUE) powers automated data recovery. The default of
recover is FALSE because targets recovered from the distant past may have been generated with
earlier versions of R and earlier package environments that no longer exist.

How it works: if recover is TRUE, drake tries to salvage old target values from the cache instead
of running commands from the plan. A target is recoverable if

1. There is an old value somewhere in the cache that shares the command, dependencies, etc. of
the target about to be built.

2. The old value was generated with make(recoverable = TRUE).

If both conditions are met, drake will

1. Assign the most recently-generated admissible data to the target, and

2. skip the target’s command.

See Also

make(), drake_plan(), vis_drake_graph()

Examples

Not run:
isolate_example("quarantine side effects", {
if (requireNamespace("knitr", quietly = TRUE)) {
writeLines(

c(
"library(drake)",
"load_mtcars_example()",
"drake_config(my_plan, targets = c(\"small\", \"large\"))"

),
"_drake.R" # default value of the `source` argument

)
cat(readLines("_drake.R"), sep = "\n")
r_outdated()
r_make()

drake_debug 39

r_outdated()
}
})

End(Not run)

drake_debug Run a single target’s command in debug mode.’ [Questioning]

Description

Not valid for dynamic branching. drake_debug() loads a target’s dependencies and then runs its
command in debug mode (see browser(), debug(), and debugonce()). This function does not
store the target’s value in the cache (see https://github.com/ropensci/drake/issues/587).

Usage

drake_debug(
target = NULL,
...,
character_only = FALSE,
replace = FALSE,
verbose = TRUE,
config = NULL

)

Arguments

target Name of the target.

... Arguments to make(), such as the plan and environment.

character_only Logical, whether name should be treated as a character or a symbol (just like
character.only in library()).

replace Logical. If FALSE, items already in your environment will not be replaced.

verbose Logical, whether to print out the target you are debugging.

config Deprecated 2019-12-22.

Value

The value of the target right after it is built.

See Also

drake_build()

40 drake_done

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
This example is not really a user-side demonstration.
It just walks through a dive into the internals.
Populate your workspace and write 'report.Rmd'.
load_mtcars_example() # Get the code with drake_example("mtcars").
out <- drake_debug(small, my_plan)
`small` was invisibly returned.
head(out)
}
})

End(Not run)

drake_done List done targets. [Stable]

Description

List the targets that completed in the current or previous call to make().

Usage

drake_done(cache = drake::drake_cache(path = path), path = NULL)

Arguments

cache drake cache. See new_cache(). If supplied, path is ignored.
path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

Value

A character vector of target names.

See Also

drake_running(), drake_failed(), drake_cancelled(), drake_progress(), make()

Examples

Not run:
isolate_example("contain side effects", {
plan <- drake_plan(x = 1, y = x)
make(plan)
drake_done()
})

End(Not run)

drake_envir 41

drake_envir Get the environment where drake builds targets [Questioning]

Description

Call this function inside the commands in your plan to get the environment where drake builds
targets. Advanced users can use it to strategically remove targets from memory while make() is
running.

Usage

drake_envir(which = c("targets", "dynamic", "subtargets", "imports"))

Arguments

which Character of length 1, which environment to select. See the details of this help
file.

Details

drake manages in-memory targets in 4 environments: one with sub-targets, one with whole dy-
namic targets, one with static targets, and one with imported global objects and functions. This
last environment is usually the environment from which you call make(). Select the appropriate
environment for your use case with the which argument of drake_envir().

Value

The environment where drake builds targets.

Keywords

drake_plan() understands special keyword functions for your commands. With the exception of
target(), each one is a proper function with its own help file.

• target(): give the target more than just a command. Using target(), you can apply a trans-
formation (examples: https://books.ropensci.org/drake/plans.html#large-plans),
nolint supply a trigger (https://books.ropensci.org/drake/triggers.html), # nolint
or set any number of custom columns.

• file_in(): declare an input file dependency.

• file_out(): declare an output file to be produced when the target is built.

• knitr_in(): declare a knitr file dependency such as an R Markdown (*.Rmd) or R LaTeX
(*.Rnw) file.

• ignore(): force drake to entirely ignore a piece of code: do not track it for changes and do
not analyze it for dependencies.

• no_deps(): tell drake to not track the dependencies of a piece of code. drake still tracks the
code itself for changes.

42 drake_example

• id_chr(): Get the name of the current target.

• drake_envir(): get the environment where drake builds targets. Intended for advanced cus-
tom memory management.

See Also

from_plan()

Examples

Not run:
isolate_example("contain side effects", {
plan <- drake_plan(

large_data_1 = sample.int(1e4),
large_data_2 = sample.int(1e4),
subset = c(large_data_1[seq_len(10)], large_data_2[seq_len(10)]),
summary = {
print(ls(envir = parent.env(drake_envir())))
We don't need the large_data_* targets in memory anymore.
rm(large_data_1, large_data_2, envir = drake_envir("targets"))
print(ls(envir = drake_envir("targets")))
mean(subset)

}
)
make(plan, cache = storr::storr_environment(), session_info = FALSE)
})

End(Not run)

drake_example Download the files of an example drake project. [Stable]

Description

The drake_example() function downloads a folder from https://github.com/wlandau/drake-examples.
By default, it creates a new folder with the example name in your current working directory. After
the files are written, have a look at the enclosed README file. Other instructions are available in the
files at https://github.com/wlandau/drake-examples.

Usage

drake_example(
example = "main",
to = getwd(),
destination = NULL,
overwrite = FALSE,
quiet = TRUE

)

drake_examples 43

Arguments

example Name of the example. The possible values are the names of the folders at
https://github.com/wlandau/drake-examples.

to Character scalar, the folder containing the code files for the example. passed to
the exdir argument of utils::unzip().

destination Deprecated; use to instead.

overwrite Logical, whether to overwrite an existing folder with the same name as the drake
example.

quiet Logical, passed to downloader::download() and thus utils::download.file().
Whether to download quietly or print progress.

Value

NULL

See Also

drake_examples(), make()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (requireNamespace("downloader")) {
drake_examples() # List all the drake examples.
Sets up the same example from load_mtcars_example()
drake_example("mtcars")
Sets up the SLURM example.
drake_example("slurm")
}
})

End(Not run)

drake_examples List the names of all the drake examples. [Stable]

Description

You can find the code files of the examples at https://github.com/wlandau/drake-examples.
The drake_examples() function downloads the list of examples from https://wlandau.github.io/drake-examples/examples.md,
so you need an internet connection.

Usage

drake_examples(quiet = TRUE)

44 drake_failed

Arguments

quiet Logical, passed to downloader::download() and thus utils::download.file().
Whether to download quietly or print progress.

Value

Names of all the drake examples.

See Also

drake_example(), make()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (requireNamespace("downloader")) {
drake_examples() # List all the drake examples.
Sets up the example from load_mtcars_example()
drake_example("mtcars")
Sets up the SLURM example.
drake_example("slurm")
}
})

End(Not run)

drake_failed List failed targets. [Stable]

Description

List the targets that quit in error during make().

Usage

drake_failed(cache = drake::drake_cache(path = path), path = NULL)

Arguments

cache drake cache. See new_cache(). If supplied, path is ignored.

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

Value

A character vector of target names.

drake_gc 45

See Also

drake_done(), drake_running(), drake_cancelled(), drake_progress(), make()

Examples

Not run:
isolate_example("contain side effects", {
if (suppressWarnings(require("knitr"))) {
Build a plan doomed to fail:
bad_plan <- drake_plan(x = function_doesnt_exist())
cache <- storr::storr_environment() # optional
try(

make(bad_plan, cache = cache, history = FALSE),
silent = TRUE

) # error
drake_failed(cache = cache) # "x"
e <- diagnose(x, cache = cache) # Retrieve the cached error log of x.
names(e)
e$error
names(e$error)
}
})

End(Not run)

drake_gc Do garbage collection on the drake cache. [Stable]

Description

Garbage collection removes obsolete target values from the cache.

Usage

drake_gc(
path = NULL,
search = NULL,
verbose = NULL,
cache = drake::drake_cache(path = path),
force = FALSE

)

Arguments

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

search Deprecated.

verbose Deprecated on 2019-09-11.

cache drake cache. See new_cache(). If supplied, path is ignored.

46 drake_get_session_info

force Logical, whether to load the cache despite any back compatibility issues with
the running version of drake.

Details

Caution: garbage collection actually removes data so it is no longer recoverable with drake_history()
or make(recover = TRUE). You cannot undo this operation. Use at your own risk.

Value

NULL

See Also

clean()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the project, build the targets.
At this point, check the size of the '.drake/' cache folder.
Clean without garbage collection.
clean(garbage_collection = FALSE)
The '.drake/' cache folder is still about the same size.
drake_gc() # Do garbage collection on the cache.
The '.drake/' cache folder should have gotten much smaller.
}
})

End(Not run)

drake_get_session_info

Session info of the last call to make(). [Stable]

Description

By default, session info is saved during make() to ensure reproducibility. Your loaded packages
and their versions are recorded, for example.

Usage

drake_get_session_info(
path = NULL,
search = NULL,
cache = drake::drake_cache(path = path),
verbose = 1L

)

drake_ggraph 47

Arguments

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

search Deprecated.

cache drake cache. See new_cache(). If supplied, path is ignored.

verbose Deprecated on 2019-09-11.

Value

sessionInfo() of the last call to make()

See Also

diagnose(), cached(), readd(), drake_plan(), make()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the project, build the targets.
drake_get_session_info() # Get the cached sessionInfo() of the last make().
}
})

End(Not run)

drake_ggraph Visualize the workflow with ggraph/ggplot2 [Stable]

Description

This function requires packages ggplot2 and ggraph. Install them with install.packages(c("ggplot2",
"ggraph")).

Usage

drake_ggraph(
...,
build_times = "build",
digits = 3,
targets_only = FALSE,
main = NULL,
from = NULL,
mode = c("out", "in", "all"),
order = NULL,
subset = NULL,

48 drake_ggraph

make_imports = TRUE,
from_scratch = FALSE,
full_legend = FALSE,
group = NULL,
clusters = NULL,
show_output_files = TRUE,
label_nodes = FALSE,
transparency = TRUE,
config = NULL

)

Arguments

... Arguments to make(), such as plan and targets.

build_times Character string or logical. If character, the choices are 1. "build": runtime of
the command plus the time it take to store the target or import. 2. "command":
just the runtime of the command. 3. "none": no build times. If logical,
build_times selects whether to show the times from ‘build_times(..., type =
"build")“ or use no build times at all. See build_times() for details.

digits Number of digits for rounding the build times

targets_only Logical, whether to skip the imports and only include the targets in the workflow
plan.

main Character string, title of the graph.

from Optional collection of target/import names. If from is nonempty, the graph will
restrict itself to a neighborhood of from. Control the neighborhood with mode
and order.

mode Which direction to branch out in the graph to create a neighborhood around
from. Use "in" to go upstream, "out" to go downstream, and "all" to go both
ways and disregard edge direction altogether.

order How far to branch out to create a neighborhood around from. Defaults to as
far as possible. If a target is in the neighborhood, then so are all of its custom
file_out() files if show_output_files is TRUE. That means the actual graph
order may be slightly greater than you might expect, but this ensures consistency
between show_output_files = TRUE and show_output_files = FALSE.

subset Optional character vector. Subset of targets/imports to display in the graph.
Applied after from, mode, and order. Be advised: edges are only kept for
adjacent nodes in subset. If you do not select all the intermediate nodes, edges
will drop from the graph.

make_imports Logical, whether to make the imports first. Set to FALSE to increase speed and
risk using obsolete information.

from_scratch Logical, whether to assume all the targets will be made from scratch on the next
make(). Makes all targets outdated, but keeps information about build progress
in previous make()s.

full_legend Logical. If TRUE, all the node types are printed in the legend. If FALSE, only the
node types used are printed in the legend.

drake_graph_info 49

group Optional character scalar, name of the column used to group nodes into columns.
All the columns names of your original drake plan are choices. The other
choices (such as "status") are column names in the nodes . To group nodes
into clusters in the graph, you must also supply the clusters argument.

clusters Optional character vector of values to cluster on. These values must be elements
of the column of the nodes data frame that you specify in the group argument
to drake_graph_info().

show_output_files

Logical, whether to include file_out() files in the graph.

label_nodes Logical, whether to label the nodes. If FALSE, the graph will not have any text
next to the nodes, which is recommended for large graphs with lots of targets.

transparency Logical, whether to allow transparency in the rendered graph. Set to FALSE if
you get warnings like "semi-transparency is not supported on this device".

config Deprecated.

Value

A ggplot2 object, which you can modify with more layers, show with plot(), or save as a file
with ggsave().

See Also

vis_drake_graph(), sankey_drake_graph(), render_drake_ggraph(), text_drake_graph()

Examples

Not run:
isolate_example("Quarantine side effects.", {
load_mtcars_example() # Get the code with drake_example("mtcars").
Plot the network graph representation of the workflow.
if (requireNamespace("ggraph", quietly = TRUE)) {

drake_ggraph(my_plan) # Save to a file with `ggplot2::ggsave()`.
}
})

End(Not run)

drake_graph_info Prepare the workflow graph for visualization [Stable]

Description

With the returned data frames, you can plot your own custom visNetwork graph.

50 drake_graph_info

Usage

drake_graph_info(
...,
from = NULL,
mode = c("out", "in", "all"),
order = NULL,
subset = NULL,
build_times = "build",
digits = 3,
targets_only = FALSE,
font_size = 20,
from_scratch = FALSE,
make_imports = TRUE,
full_legend = FALSE,
group = NULL,
clusters = NULL,
show_output_files = TRUE,
hover = FALSE,
on_select_col = NULL,
config = NULL

)

Arguments

... Arguments to make(), such as plan and targets.

from Optional collection of target/import names. If from is nonempty, the graph will
restrict itself to a neighborhood of from. Control the neighborhood with mode
and order.

mode Which direction to branch out in the graph to create a neighborhood around
from. Use "in" to go upstream, "out" to go downstream, and "all" to go both
ways and disregard edge direction altogether.

order How far to branch out to create a neighborhood around from. Defaults to as
far as possible. If a target is in the neighborhood, then so are all of its custom
file_out() files if show_output_files is TRUE. That means the actual graph
order may be slightly greater than you might expect, but this ensures consistency
between show_output_files = TRUE and show_output_files = FALSE.

subset Optional character vector. Subset of targets/imports to display in the graph.
Applied after from, mode, and order. Be advised: edges are only kept for
adjacent nodes in subset. If you do not select all the intermediate nodes, edges
will drop from the graph.

build_times Character string or logical. If character, the choices are 1. "build": runtime of
the command plus the time it take to store the target or import. 2. "command":
just the runtime of the command. 3. "none": no build times. If logical,
build_times selects whether to show the times from ‘build_times(..., type =
"build")“ or use no build times at all. See build_times() for details.

digits Number of digits for rounding the build times

drake_graph_info 51

targets_only Logical, whether to skip the imports and only include the targets in the workflow
plan.

font_size Numeric, font size of the node labels in the graph

from_scratch Logical, whether to assume all the targets will be made from scratch on the next
make(). Makes all targets outdated, but keeps information about build progress
in previous make()s.

make_imports Logical, whether to make the imports first. Set to FALSE to increase speed and
risk using obsolete information.

full_legend Logical. If TRUE, all the node types are printed in the legend. If FALSE, only the
node types used are printed in the legend.

group Optional character scalar, name of the column used to group nodes into columns.
All the columns names of your original drake plan are choices. The other
choices (such as "status") are column names in the nodes . To group nodes
into clusters in the graph, you must also supply the clusters argument.

clusters Optional character vector of values to cluster on. These values must be elements
of the column of the nodes data frame that you specify in the group argument
to drake_graph_info().

show_output_files

Logical, whether to include file_out() files in the graph.

hover Logical, whether to show text (file contents, commands, etc.) when you hover
your cursor over a node.

on_select_col Optional string corresponding to the column name in the plan that should pro-
vide data for the on_select event.

config Deprecated.

Value

A list of three data frames: one for nodes, one for edges, and one for the legend nodes. The list also
contains the default title of the graph.

See Also

vis_drake_graph()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (requireNamespace("visNetwork", quietly = TRUE)) {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
vis_drake_graph(my_plan)
Get a list of data frames representing the nodes, edges,
and legend nodes of the visNetwork graph from vis_drake_graph().
raw_graph <- drake_graph_info(my_plan)
Choose a subset of the graph.
smaller_raw_graph <- drake_graph_info(

52 drake_history

my_plan,
from = c("small", "reg2"),
mode = "in"

)
Inspect the raw graph.
str(raw_graph)
Use the data frames to plot your own custom visNetwork graph.
For example, you can omit the legend nodes
and change the direction of the graph.
library(visNetwork)
graph <- visNetwork(nodes = raw_graph$nodes, edges = raw_graph$edges)
visHierarchicalLayout(graph, direction = 'UD')
}
}
})

End(Not run)

drake_history History and provenance [Stable]

Description

See the history and provenance of your targets: what you ran, when you ran it, the function argu-
ments you used, and how to get old data back.

Usage

drake_history(cache = NULL, history = NULL, analyze = TRUE, verbose = NULL)

Arguments

cache drake cache as created by new_cache(). See also drake_cache().

history Logical, whether to record the build history of your targets. You can also supply
a txtq, which is how drake records history. Must be TRUE for drake_history()
to work later.

analyze Logical, whether to analyze drake_plan() commands for arguments to func-
tion calls. Could be slow because this requires parsing and analyzing lots of R
code.

verbose Deprecated on 2019-09-11.

Details

drake_history() returns a data frame with the following columns.

• target: the name of the target.

drake_history 53

• current: logical, whether the row describes the data actually assigned to the target name in
the cache, e.g. what you get with loadd(target) and readd(target). Does NOT tell you if
the target is up to date.

• built: when the target’s value was stored in the cache. This is the true creation date of the
target’s value, not the recovery date from make(recover = TRUE).

• exists: logical, whether the target’s historical value still exists in the cache. Garbage col-
lection via (clean(garbage_collection = TRUE) and drake_cache()$gc()) remove these
historical values, but clean() under the default settings does not.

• hash: fingerprint of the target’s historical value in the cache. If the value still exists, you can
read it with drake_cache()$get_value(hash).

• command: the drake_plan() command executed to build the target.

• seed: random number generator seed.

• runtime: the time it took to execute the drake_plan() command. Does not include overhead
due to drake’s processing.

If analyze is TRUE, various other columns are included to show the explicitly-named length-1 ar-
guments to function calls in the commands. See the "Provenance" section for more details.

Value

A data frame of target history.

Provenance

If analyze is TRUE, drake scans your drake_plan() commands for function arguments and men-
tions them in the history. A function argument shows up if and only if: 1. It has length 1.
2. It is atomic, i.e. a base type: logical, integer, real, complex, character, or raw.
3. It is explicitly named in the function call, For example, x is detected as 1 in fn(list(x = 1))
but not f(list(1)). The exceptions are file_out(), file_in(), and knitr_in(). For example,
filename is detected as "my_file.csv" in process_data(filename = file_in("my_file.csv")).
NB: in process_data(filename = file_in("a", "b")) filename is not detected because the
value must be atomic.

Examples

Not run:
isolate_example("contain side-effects", {
if (requireNamespace("knitr", quietly = TRUE)) {
First, let's iterate on a drake workflow.
load_mtcars_example()
make(my_plan, history = TRUE, verbose = 0L)
Naturally, we'll make updates to our targets along the way.
reg2 <- function(d) {

d$x2 <- d$x ^ 3
lm(y ~ x2, data = d)

}
Sys.sleep(0.01)
make(my_plan, history = TRUE, verbose = 0L)

54 drake_hpc_template_file

The history is a data frame about all the recorded runs of your targets.
out <- drake_history(analyze = TRUE)
print(out)
Let's use the history to recover the oldest version
of our regression2_small target.
oldest_reg2_small <- max(which(out$target == "regression2_small"))
hash_oldest_reg2_small <- out[oldest_reg2_small,]$hash
cache <- drake_cache()
cache$get_value(hash_oldest_reg2_small)
If you run clean(), drake can still find all the targets.
clean(small)
drake_history()
But if you run clean() with garbage collection,
older versions of your targets may be gone.
clean(large, garbage_collection = TRUE)
drake_history()
invisible()
}
})

End(Not run)

drake_hpc_template_file

Write a template file for deploying work to a cluster / job scheduler.
[Stable]

Description

See the example files from drake_examples() and drake_example() for example usage.

Usage

drake_hpc_template_file(
file = drake::drake_hpc_template_files(),
to = getwd(),
overwrite = FALSE

)

Arguments

file Name of the template file, including the "tmpl" extension.

to Character vector, where to write the file.

overwrite Logical, whether to overwrite an existing file of the same name.

Value

NULL is returned, but a batchtools template file is written.

drake_hpc_template_files 55

See Also

drake_hpc_template_files(), drake_examples(), drake_example(), shell_file()

Examples

Not run:
plan <- drake_plan(x = rnorm(1e7), y = rnorm(1e7))
List the available template files.
drake_hpc_template_files()
Write a SLURM template file.
out <- file.path(tempdir(), "slurm_batchtools.tmpl")
drake_hpc_template_file("slurm_batchtools.tmpl", to = tempdir())
cat(readLines(out), sep = "\n")
library(future.batchtools) # nolint
future::plan(batchtools_slurm, template = out) # nolint
make(plan, parallelism = "future", jobs = 2) # nolint

End(Not run)

drake_hpc_template_files

List the available example template files for deploying work to a clus-
ter / job scheduler. [Stable]

Description

See the example files from drake_examples() and drake_example() for example usage.

Usage

drake_hpc_template_files()

Value

A character vector of example template files that you can write with drake_hpc_template_file().

See Also

drake_hpc_template_file(), drake_examples(), drake_example(), shell_file()

Examples

Not run:
plan <- drake_plan(x = rnorm(1e7), y = rnorm(1e7))
List the available template files.
drake_hpc_template_files()
Write a SLURM template file.
out <- file.path(tempdir(), "slurm_batchtools.tmpl")
drake_hpc_template_file("slurm_batchtools.tmpl", to = tempdir())

56 drake_plan

cat(readLines(out), sep = "\n")
library(future.batchtools) # nolint
future::plan(batchtools_slurm, template = out) # nolint
make(plan, parallelism = "future", jobs = 2) # nolint

End(Not run)

drake_plan Create a drake plan for the plan argument of make(). [Stable]

Description

A drake plan is a data frame with columns "target" and "command". Each target is an R object
produced in your workflow, and each command is the R code to produce it.

Usage

drake_plan(
...,
list = NULL,
file_targets = NULL,
strings_in_dots = NULL,
tidy_evaluation = NULL,
transform = TRUE,
trace = FALSE,
envir = parent.frame(),
tidy_eval = TRUE,
max_expand = NULL

)

Arguments

... A collection of symbols/targets with commands assigned to them. See the ex-
amples for details.

list Deprecated

file_targets Deprecated.
strings_in_dots

Deprecated.
tidy_evaluation

Deprecated. Use tidy_eval instead.

transform Logical, whether to transform the plan into a larger plan with more targets. Re-
quires the transform field in target(). See the examples for details.

trace Logical, whether to add columns to show what happens during target transfor-
mations.

envir Environment for tidy evaluation.

drake_plan 57

tidy_eval Logical, whether to use tidy evaluation (e.g. unquoting/!!) when resolving
commands. Tidy evaluation in transformations is always turned on regardless of
the value you supply to this argument.

max_expand Positive integer, optional. max_expand is the maximum number of targets to
generate in each map(), split(), or cross() transform. Useful if you have
a massive plan and you want to test and visualize a strategic subset of tar-
gets before scaling up. Note: the max_expand argument of drake_plan()
and transform_plan() is for static branching only. The dynamic branching
max_expand is an argument of make() and drake_config().

Details

Besides "target" and "command", drake_plan() understands a special set of optional columns.
For details, visit https://books.ropensci.org/drake/plans.html#special-custom-columns-in-your-plan
nolint

Value

A data frame of targets, commands, and optional custom columns.

Columns

drake_plan() creates a special data frame. At minimum, that data frame must have columns
target and command with the target names and the R code chunks to build them, respectively.

You can add custom columns yourself, either with target() (e.g. drake_plan(y = target(f(x),
transform = map(c(1, 2)), format = "fst"))) or by appending columns post-hoc (e.g. plan$col
<- vals).

Some of these custom columns are special. They are optional, but drake looks for them at various
points in the workflow.

• transform: a call to map(), split(), cross(), or combine() to create and manipulate large
collections of targets. Details: (https://books.ropensci.org/drake/plans.html#large-plans).
nolint

• format: set a storage format to save big targets more efficiently. See the "Formats" section of
this help file for more details.

• trigger: rule to decide whether a target needs to run. It is recommended that you define this
one with target(). Details: https://books.ropensci.org/drake/triggers.html.

• hpc: logical values (TRUE/FALSE/NA) whether to send each target to parallel workers. Visit
https://books.ropensci.org/drake/hpc.html#selectivity to learn more.

• resources: target-specific lists of resources for a computing cluster. See https://books.ropensci.org/drake/hpc.html#advanced-options
for details.

• caching: overrides the caching argument of make() for each target individually. Possible
values:

– "main": tell the main process to store the target in the cache.
– "worker": tell the HPC worker to store the target in the cache.
– NA: default to the caching argument of make().

58 drake_plan

• elapsed and cpu: number of seconds to wait for the target to build before timing out (elapsed
for elapsed time and cpu for CPU time).

• retries: number of times to retry building a target in the event of an error.

• seed: an optional pseudo-random number generator (RNG) seed for each target. drake usu-
ally comes up with its own unique reproducible target-specific seeds using the global seed (the
seed argument to make() and drake_config()) and the target names, but you can overwrite
these automatic seeds. NA entries default back to drake’s automatic seeds.

• max_expand: for dynamic branching only. Same as the max_expand argument of make(), but
on a target-by-target basis. Limits the number of sub-targets created for a given target.

Formats

Specialized target formats increase efficiency and flexibility. Some allow you to save specialized ob-
jects like keras models, while others increase the speed while conserving storage and memory. You
can declare target-specific formats in the plan (e.g. drake_plan(x = target(big_data_frame,
format = "fst"))) or supply a global default format for all targets in make(). Either way, most
formats have specialized installation requirements (e.g. R packages) that are not installed with
drake by default. You will need to install them separately yourself. Available formats:

• "file": Dynamic files. To use this format, simply create local files and directories your-
self and then return a character vector of paths as the target’s value. Then, drake will
watch for changes to those files in subsequent calls to make(). This is a more flexible al-
ternative to file_in() and file_out(), and it is compatible with dynamic branching. See
https://github.com/ropensci/drake/pull/1178 for an example.

• "fst": save big data frames fast. Requires the fst package. Note: this format strips non-
data-frame attributes such as the

• "fst_tbl": Like "fst", but for tibble objects. Requires the fst and tibble packages.
Strips away non-data-frame non-tibble attributes.

• "fst_dt": Like "fst" format, but for data.table objects. Requires the fst and data.table
packages. Strips away non-data-frame non-data-table attributes.

• "diskframe": Stores disk.frame objects, which could potentially be larger than memory.
Requires the fst and disk.frame packages. Coerces objects to disk.frames. Note: disk.frame
objects get moved to the drake cache (a subfolder of .drake/ for most workflows). To ensure
this data transfer is fast, it is best to save your disk.frame objects to the same physical storage
drive as the drake cache, as.disk.frame(your_dataset, outdir = drake_tempfile()).

• "keras": save Keras models as HDF5 files. Requires the keras package.

• "qs": save any R object that can be properly serialized with the qs package. Requires the qs
package. Uses qsave() and qread(). Uses the default settings in qs version 0.20.2.

• "rds": save any R object that can be properly serialized. Requires R version >= 3.5.0 due to
ALTREP. Note: the "rds" format uses gzip compression, which is slow. "qs" is a superior
format.

Keywords

drake_plan() understands special keyword functions for your commands. With the exception of
target(), each one is a proper function with its own help file.

drake_plan 59

• target(): give the target more than just a command. Using target(), you can apply a trans-
formation (examples: https://books.ropensci.org/drake/plans.html#large-plans),
nolint supply a trigger (https://books.ropensci.org/drake/triggers.html), # nolint
or set any number of custom columns.

• file_in(): declare an input file dependency.

• file_out(): declare an output file to be produced when the target is built.

• knitr_in(): declare a knitr file dependency such as an R Markdown (*.Rmd) or R LaTeX
(*.Rnw) file.

• ignore(): force drake to entirely ignore a piece of code: do not track it for changes and do
not analyze it for dependencies.

• no_deps(): tell drake to not track the dependencies of a piece of code. drake still tracks the
code itself for changes.

• id_chr(): Get the name of the current target.

• drake_envir(): get the environment where drake builds targets. Intended for advanced cus-
tom memory management.

Transformations

drake has special syntax for generating large plans. Your code will look something like drake_plan(y = target(f(x), transform = map(x = c(1, 2, 3)))
You can read about this interface at https://books.ropensci.org/drake/plans.html#large-plans.
nolint

Static branching

In static branching, you define batches of targets based on information you know in advance. Over-
all usage looks like drake_plan(<x> = target(<...>, transform = <call>), where

• <x> is the name of the target or group of targets.
• <...> is optional arguments to target().
• <call> is a call to one of the transformation functions.

Transformation function usage:

• map(..., .data, .names, .id, .tag_in, .tag_out)

• split(..., slices, margin = 1L, drop = FALSE, .names, .tag_in, .tag_out) # nolint

• cross(..., .data, .names, .id, .tag_in, .tag_out)

• combine(..., .by, .names, .id, .tag_in, .tag_out)

Dynamic branching

• map(..., .trace)

• cross(..., .trace)

• group(..., .by, .trace)

map() and cross() create dynamic sub-targets from the variables supplied to the dots. As with
static branching, the variables supplied to map() must all have equal length. group(f(data), .by
= x) makes new dynamic sub-targets from data. Here, data can be either static or dynamic. If

60 drake_plan

data is dynamic, group() aggregates existing sub-targets. If data is static, group() splits data
into multiple subsets based on the groupings from .by.

Differences from static branching:

• ... must contain unnamed symbols with no values supplied, and they must be the names of
targets.

• Arguments .id, .tag_in, and .tag_out no longer apply.

See Also

make, drake_config, transform_plan, map, split, cross, combine

Examples

Not run:
isolate_example("contain side effects", {
For more examples, visit
https://books.ropensci.org/drake/plans.html.

Create drake plans:
mtcars_plan <- drake_plan(

write.csv(mtcars[, c("mpg", "cyl")], file_out("mtcars.csv")),
value = read.csv(file_in("mtcars.csv"))

)
if (requireNamespace("visNetwork", quietly = TRUE)) {

plot(mtcars_plan) # fast simplified call to vis_drake_graph()
}
mtcars_plan
make(mtcars_plan) # Makes `mtcars.csv` and then `value`
head(readd(value))
You can use knitr inputs too. See the top command below.

load_mtcars_example()
head(my_plan)
if (requireNamespace("knitr", quietly = TRUE)) {

plot(my_plan)
}
The `knitr_in("report.Rmd")` tells `drake` to dive into the active
code chunks to find dependencies.
There, `drake` sees that `small`, `large`, and `coef_regression2_small`
are loaded in with calls to `loadd()` and `readd()`.
deps_code("report.Rmd")

Formats are great for big data: https://github.com/ropensci/drake/pull/977
Below, each target is 1.6 GB in memory.
Run make() on this plan to see how much faster fst is!
n <- 1e8
plan <- drake_plan(

data_fst = target(
data.frame(x = runif(n), y = runif(n)),
format = "fst"

),

drake_plan 61

data_old = data.frame(x = runif(n), y = runif(n))
)

Use transformations to generate large plans.
Read more at
`https://books.ropensci.org/drake/plans.html#create-large-plans-the-easy-way`. # nolint
drake_plan(

data = target(
simulate(nrows),
transform = map(nrows = c(48, 64)),
custom_column = 123

),
reg = target(

reg_fun(data),
transform = cross(reg_fun = c(reg1, reg2), data)
),
summ = target(

sum_fun(data, reg),
transform = cross(sum_fun = c(coef, residuals), reg)
),
winners = target(

min(summ),
transform = combine(summ, .by = c(data, sum_fun))

)
)

Split data among multiple targets.
drake_plan(

large_data = get_data(),
slice_analysis = target(

analyze(large_data),
transform = split(large_data, slices = 4)

),
results = target(

rbind(slice_analysis),
transform = combine(slice_analysis)

)
)

Set trace = TRUE to show what happened during the transformation process.
drake_plan(

data = target(
simulate(nrows),
transform = map(nrows = c(48, 64)),
custom_column = 123

),
reg = target(

reg_fun(data),
transform = cross(reg_fun = c(reg1, reg2), data)
),
summ = target(

sum_fun(data, reg),
transform = cross(sum_fun = c(coef, residuals), reg)

62 drake_plan_source

),
winners = target(

min(summ),
transform = combine(summ, .by = c(data, sum_fun))

),
trace = TRUE

)

You can create your own custom columns too.
See ?triggers for more on triggers.
drake_plan(

website_data = target(
command = download_data("www.your_url.com"),
trigger = "always",
custom_column = 5

),
analysis = analyze(website_data)

)

Tidy evaluation can help generate super large plans.
sms <- rlang::syms(letters) # To sub in character args, skip this.
drake_plan(x = target(f(char), transform = map(char = !!sms)))

Dynamic branching
Get the mean mpg for each cyl in the mtcars dataset.
plan <- drake_plan(

raw = mtcars,
group_index = raw$cyl,
munged = target(raw[, c("mpg", "cyl")], dynamic = map(raw)),
mean_mpg_by_cyl = target(

data.frame(mpg = mean(munged$mpg), cyl = munged$cyl[1]),
dynamic = group(munged, .by = group_index)

)
)
make(plan)
readd(mean_mpg_by_cyl)
})

End(Not run)

drake_plan_source Show the code required to produce a given drake plan [Stable]

Description

You supply a plan, and drake_plan_source() supplies code to generate that plan. If you have the
prettycode package, installed, you also get nice syntax highlighting in the console when you print
it.

drake_progress 63

Usage

drake_plan_source(plan)

Arguments

plan A workflow plan data frame (see drake_plan())

Value

a character vector of lines of text. This text is a call to drake_plan() that produces the plan you
provide.

See Also

drake_plan()

Examples

plan <- drake::drake_plan(
small_data = download_data("https://some_website.com"),
large_data_raw = target(
command = download_data("https://lots_of_data.com"),
trigger = trigger(

change = time_last_modified("https://lots_of_data.com"),
command = FALSE,
depend = FALSE

),
timeout = 1e3

)
)
print(plan)
if (requireNamespace("styler", quietly = TRUE)) {

source <- drake_plan_source(plan)
print(source) # Install the prettycode package for syntax highlighting.
file <- tempfile() # Path to an R script to contain the drake_plan() call.
writeLines(source, file) # Save the code to an R script.

}

drake_progress Get the build progress of your targets [Stable]

Description

Objects that drake imported, built, or attempted to build are listed as "done" or "running". Skipped
objects are not listed.

64 drake_progress

Usage

drake_progress(
...,
list = character(0),
cache = drake::drake_cache(path = path),
path = NULL,
progress = NULL

)

Arguments

... Objects to load from the cache, as names (unquoted) or character strings (quoted).
If the tidyselect package is installed, you can also supply dplyr-style tidyselect
commands such as starts_with(), ends_with(), and one_of().

list Character vector naming objects to be loaded from the cache. Similar to the
list argument of remove().

cache drake cache. See new_cache(). If supplied, path is ignored.

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

progress Character vector for filtering the build progress results. Defaults to NULL (no fil-
tering) to report progress of all objects. Supported filters are "done", "running",
and "failed".

Value

The build progress of each target reached by the current make() so far.

See Also

diagnose(), drake_get_session_info(), cached(), readd(), drake_plan(), make()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the project, build the targets.
Watch the changing drake_progress() as make() is running.
drake_progress() # List all the targets reached so far.
drake_progress(small, large) # Just see the progress of some targets.
drake_progress(list = c("small", "large")) # Same as above.
}
})

End(Not run)

drake_running 65

drake_running List running targets. [Stable]

Description

List the targets that either

1. Are currently being built during a call to make(), or

2. Were in progress when make() was interrupted.

Usage

drake_running(cache = drake::drake_cache(path = path), path = NULL)

Arguments

cache drake cache. See new_cache(). If supplied, path is ignored.

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

Value

A character vector of target names.

See Also

drake_done(), drake_failed(), drake_cancelled(), drake_progress(), make()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the project, build the targets.
drake_running() # Everything should be done.
nolint start
Run make() in one R session...
slow_plan <- drake_plan(x = Sys.sleep(2))
make(slow_plan)
and see the progress in another session.
drake_running()
nolint end
}
})

End(Not run)

66 drake_slice

drake_script Write an example _drake.R script to the current working directory.

Description

A _drake.R file is required for r_make() and friends. See the r_make() help file for details.

Usage

drake_script(code = NULL)

Arguments

code R code to put in _drake.R in the current working directory. If NULL, an example
script is written.

Value

Nothing.

Examples

Not run:
isolate_example("contain side-effects", {
drake_script({

library(drake)
plan <- drake_plan(x = 1)
drake_config(plan, lock_cache = FALSE)

})
cat(readLines("_drake.R"), sep = "\n")
r_make()
})

End(Not run)

drake_slice Take a strategic subset of a dataset. [Stable]

Description

drake_slice() is similar to split(). Both functions partition data into disjoint subsets, but
whereas split() returns all the subsets, drake_slice() returns just one. In other words, drake_slice(...,
index = i) returns split(...)[[i]]. Other features: 1. drake_slice() works on vectors, data
frames, matrices, lists, and arbitrary arrays. 2. Like parallel::splitIndices(), drake_slice()
tries to distribute the data uniformly across subsets. See the examples to learn why splitting is useful
in drake.

drake_slice 67

Usage

drake_slice(data, slices, index, margin = 1L, drop = FALSE)

Arguments

data A list, vector, data frame, matrix, or arbitrary array. Anything with a length()
or dim().

slices Integer of length 1, number of slices (i.e. pieces) of the whole dataset. Remem-
ber, drake_slice(index = i) returns only slice number i.

index Integer of length 1, which piece of the partition to return.

margin Integer of length 1, margin over which to split the data. For example, for a data
frame or matrix, use margin = 1 to split over rows and margin = 2 to split over
columns. Similar to MARGIN in apply().

drop Logical, for matrices and arrays. If TRUE, the result is coerced to the lowest possible dimension. See ?[‘
for details.

Value

A subset of data.

Examples

Simple usage
x <- matrix(seq_len(20), nrow = 5)
x
drake_slice(x, slices = 3, index = 1)
drake_slice(x, slices = 3, index = 2)
drake_slice(x, slices = 3, index = 3)
drake_slice(x, slices = 3, margin = 2, index = 1)
In drake, you can split a large dataset over multiple targets.
Not run:
isolate_example("contain side effects", {
plan <- drake_plan(

large_data = mtcars,
data_split = target(

drake_slice(large_data, slices = 32, index = i),
transform = map(i = !!seq_len(32))

)
)
plan
cache <- storr::storr_environment()
make(plan, cache = cache, session_info = FALSE, verbose = FALSE)
readd(data_split_1L, cache = cache)
readd(data_split_2L, cache = cache)
})

End(Not run)

68 drake_tempfile

drake_tempfile drake tempfile [Stable]

Description

Create the path to a temporary file inside drake’s cache.

Usage

drake_tempfile(path = NULL, cache = drake::drake_cache(path = path))

Arguments

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

cache drake cache. See new_cache(). If supplied, path is ignored.

Details

This function is just like the tempfile() function in base R except that the path points to a special
location inside drake’s cache. This ensures that if the file needs to be copied to persistent storage in
the cache, drake does not need to copy across physical storage media. Example: the "diskframe"
format. See the "Formats" and "Columns" sections of the drake_plan() help file. Unless you
supply the cache or the path to the cache (see drake_cache()) drake will assume the cache folder
is named .drake/ and it is located either in your working directory or an ancestor of your working
directory.

See Also

drake_cache(), new_cache()

Examples

cache <- new_cache(tempfile())
No need to supply a cache if a .drake/ folder exists.
drake_tempfile(cache = cache)
drake_plan(

x = target(
as.disk.frame(large_data, outdir = drake_tempfile()),
format = "diskframe"

)
)

file_in 69

file_in Declare input files and directories. [Stable]

Description

file_in() marks individual files (and whole directories) that your targets depend on.

Usage

file_in(...)

Arguments

... Character vector, paths to files and directories. Use .id_chr to refer to the cur-
rent target by name. .id_chr is not limited to use in file_in() and file_out().

Value

A character vector of declared input file or directory paths.

URLs

As of drake 7.4.0, file_in() and file_out() have support for URLs. If the file name begins
with "http://", "https://", or "ftp://", make() attempts to check the ETag to see if the data changed
from last time. If no ETag can be found, drake simply uses the ETag from last make() and registers
the file as unchanged (which prevents your workflow from breaking if you lose internet access).
If your file_in() URLs require authentication, see the curl_handles argument of make() and
drake_config() to learn how to supply credentials.

Keywords

drake_plan() understands special keyword functions for your commands. With the exception of
target(), each one is a proper function with its own help file.

• target(): give the target more than just a command. Using target(), you can apply a trans-
formation (examples: https://books.ropensci.org/drake/plans.html#large-plans),
nolint supply a trigger (https://books.ropensci.org/drake/triggers.html), # nolint
or set any number of custom columns.

• file_in(): declare an input file dependency.

• file_out(): declare an output file to be produced when the target is built.

• knitr_in(): declare a knitr file dependency such as an R Markdown (*.Rmd) or R LaTeX
(*.Rnw) file.

• ignore(): force drake to entirely ignore a piece of code: do not track it for changes and do
not analyze it for dependencies.

• no_deps(): tell drake to not track the dependencies of a piece of code. drake still tracks the
code itself for changes.

70 file_in

• id_chr(): Get the name of the current target.

• drake_envir(): get the environment where drake builds targets. Intended for advanced cus-
tom memory management.

See Also

file_out(), knitr_in(), ignore(), no_deps()

Examples

Not run:
isolate_example("contain side effects", {
The `file_out()` and `file_in()` functions
just takes in strings and returns them.
file_out("summaries.txt")
Their main purpose is to orchestrate your custom files
in your workflow plan data frame.
plan <- drake_plan(

out = write.csv(mtcars, file_out("mtcars.csv")),
contents = read.csv(file_in("mtcars.csv"))

)
plan
drake knows "\"mtcars.csv\"" is the first target
and a dependency of `contents`. See for yourself:

make(plan)
file.exists("mtcars.csv")

You may use `.id_chr` inside `file_out()` and `file_in()`
to refer to the current target. This works inside
static `map()`, `combine()`, `split()`, and `cross()`.

plan <- drake::drake_plan(
data = target(
write.csv(data, file_out(paste0(.id_chr, ".csv"))),
transform = map(data = c(airquality, mtcars))

)
)
plan

You can also work with entire directories this way.
However, in `file_out("your_directory")`, the directory
becomes an entire unit. Thus, `file_in("your_directory")`
is more appropriate for subsequent steps than
`file_in("your_directory/file_inside.txt")`.
plan <- drake_plan(

out = {
dir.create(file_out("dir"))
write.csv(mtcars, "dir/mtcars.csv")

},
contents = read.csv(file.path(file_in("dir"), "mtcars.csv"))

)

file_out 71

plan

make(plan)
file.exists("dir/mtcars.csv")

See the connections that the file relationships create:
if (requireNamespace("visNetwork", quietly = TRUE)) {

vis_drake_graph(plan)
}
})

End(Not run)

file_out Declare output files and directories. [Stable]

Description

file_out() marks individual files (and whole directories) that your targets create.

Usage

file_out(...)

Arguments

... Character vector, paths to files and directories. Use .id_chr to refer to the cur-
rent target by name. .id_chr is not limited to use in file_in() and file_out().

Value

A character vector of declared output file or directory paths.

Keywords

drake_plan() understands special keyword functions for your commands. With the exception of
target(), each one is a proper function with its own help file.

• target(): give the target more than just a command. Using target(), you can apply a trans-
formation (examples: https://books.ropensci.org/drake/plans.html#large-plans),
nolint supply a trigger (https://books.ropensci.org/drake/triggers.html), # nolint
or set any number of custom columns.

• file_in(): declare an input file dependency.

• file_out(): declare an output file to be produced when the target is built.

• knitr_in(): declare a knitr file dependency such as an R Markdown (*.Rmd) or R LaTeX
(*.Rnw) file.

• ignore(): force drake to entirely ignore a piece of code: do not track it for changes and do
not analyze it for dependencies.

72 file_out

• no_deps(): tell drake to not track the dependencies of a piece of code. drake still tracks the
code itself for changes.

• id_chr(): Get the name of the current target.

• drake_envir(): get the environment where drake builds targets. Intended for advanced cus-
tom memory management.

See Also

file_in(), knitr_in(), ignore(), no_deps()

Examples

Not run:
isolate_example("contain side effects", {
The `file_out()` and `file_in()` functions
just takes in strings and returns them.
file_out("summaries.txt")
Their main purpose is to orchestrate your custom files
in your workflow plan data frame.
plan <- drake_plan(

out = write.csv(mtcars, file_out("mtcars.csv")),
contents = read.csv(file_in("mtcars.csv"))

)
plan
drake knows "\"mtcars.csv\"" is the first target
and a dependency of `contents`. See for yourself:

make(plan)
file.exists("mtcars.csv")

You may use `.id_chr` inside `file_out()` and `file_in()`
to refer to the current target. This works inside `map()`,
`combine()`, `split()`, and `cross()`.

plan <- drake::drake_plan(
data = target(

write.csv(data, file_out(paste0(.id_chr, ".csv"))),
transform = map(data = c(airquality, mtcars))

)
)

plan

You can also work with entire directories this way.
However, in `file_out("your_directory")`, the directory
becomes an entire unit. Thus, `file_in("your_directory")`
is more appropriate for subsequent steps than
`file_in("your_directory/file_inside.txt")`.
plan <- drake_plan(

out = {
dir.create(file_out("dir"))
write.csv(mtcars, "dir/mtcars.csv")

file_store 73

},
contents = read.csv(file.path(file_in("dir"), "mtcars.csv"))

)
plan

make(plan)
file.exists("dir/mtcars.csv")

See the connections that the file relationships create:
if (requireNamespace("visNetwork", quietly = TRUE)) {

vis_drake_graph(plan)
}
})

End(Not run)

file_store Show a file’s encoded representation in the cache [Stable]

Description

This function simply wraps literal double quotes around the argument x so drake knows it is the
name of a file. Use when you are calling functions like deps_code(): for example, deps_code(file_store("report.md")).
See the examples for details. Internally, drake wraps the names of file targets/imports inside literal
double quotes to avoid confusion between files and generic R objects.

Usage

file_store(x)

Arguments

x Character string to be turned into a filename understandable by drake (i.e., a
string with literal single quotes on both ends).

Value

A single-quoted character string: i.e., a filename understandable by drake.

Examples

Wraps the string in single quotes.
file_store("my_file.rds") # "'my_file.rds'"
Not run:
isolate_example("contain side effects", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the workflow to build the targets
list.files() # Should include input "report.Rmd" and output "report.md".

74 find_cache

head(readd(small)) # You can use symbols for ordinary objects.
But if you want to read cached info on files, use `file_store()`.
readd(file_store("report.md"), character_only = TRUE) # File fingerprint.
deps_code(file_store("report.Rmd"))
config <- drake_config(my_plan)
deps_profile(

file_store("report.Rmd"),
plan = my_plan,
character_only = TRUE

)
}
})

End(Not run)

find_cache Search up the file system for the nearest drake cache. [Stable]

Description

Only works if the cache is a file system in a hidden folder named .drake/ (default).

Usage

find_cache(path = getwd(), dir = NULL, directory = NULL)

Arguments

path Starting path for search back for the cache. Should be a subdirectory of the
drake project.

dir Character, name of the folder containing the cache.

directory Deprecated. Use dir.

Value

File path of the nearest drake cache or NULL if no cache is found.

See Also

drake_plan(), make(),

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the project, build the target.
Find the file path of the project's cache.

id_chr 75

Search up through parent directories if necessary.
find_cache()
}
})

End(Not run)

id_chr Name of the current target [Stable]

Description

id_chr() gives you the name of the current target while make() is running. For static branching in
drake_plan(), use the .id_chr symbol instead. See the examples for details.

Usage

id_chr()

Value

The name of the current target.

Keywords

drake_plan() understands special keyword functions for your commands. With the exception of
target(), each one is a proper function with its own help file.

• target(): give the target more than just a command. Using target(), you can apply a trans-
formation (examples: https://books.ropensci.org/drake/plans.html#large-plans),
nolint supply a trigger (https://books.ropensci.org/drake/triggers.html), # nolint
or set any number of custom columns.

• file_in(): declare an input file dependency.

• file_out(): declare an output file to be produced when the target is built.

• knitr_in(): declare a knitr file dependency such as an R Markdown (*.Rmd) or R LaTeX
(*.Rnw) file.

• ignore(): force drake to entirely ignore a piece of code: do not track it for changes and do
not analyze it for dependencies.

• no_deps(): tell drake to not track the dependencies of a piece of code. drake still tracks the
code itself for changes.

• id_chr(): Get the name of the current target.

• drake_envir(): get the environment where drake builds targets. Intended for advanced cus-
tom memory management.

76 ignore

Examples

try(id_chr()) # Do not use outside the plan.
Not run:
isolate_example("id_chr()", {
plan <- drake_plan(x = id_chr())
make(plan)
readd(x)
Dynamic branching
plan <- drake_plan(

x = seq_len(4),
y = target(id_chr(), dynamic = map(x))

)
make(plan)
readd(y, subtargets = 1)
Static branching
plan <- drake_plan(

y = target(c(x, .id_chr), transform = map(x = !!seq_len(4)))
)
plan
})

End(Not run)

ignore Ignore code [Stable]

Description

Ignore sections of commands and imported functions.

Usage

ignore(x = NULL)

Arguments

x Code to ignore.

Details

In user-defined functions and drake_plan() commands, you can wrap code chunks in ignore()
to

1. Tell drake to not search for dependencies (targets etc. mentioned in the code) and
2. Ignore changes to the code so downstream targets remain up to date. To enforce (1) without

(2), use no_deps().

Value

The argument.

ignore 77

Keywords

drake_plan() understands special keyword functions for your commands. With the exception of
target(), each one is a proper function with its own help file.

• target(): give the target more than just a command. Using target(), you can apply a trans-
formation (examples: https://books.ropensci.org/drake/plans.html#large-plans),
nolint supply a trigger (https://books.ropensci.org/drake/triggers.html), # nolint
or set any number of custom columns.

• file_in(): declare an input file dependency.

• file_out(): declare an output file to be produced when the target is built.

• knitr_in(): declare a knitr file dependency such as an R Markdown (*.Rmd) or R LaTeX
(*.Rnw) file.

• ignore(): force drake to entirely ignore a piece of code: do not track it for changes and do
not analyze it for dependencies.

• no_deps(): tell drake to not track the dependencies of a piece of code. drake still tracks the
code itself for changes.

• id_chr(): Get the name of the current target.

• drake_envir(): get the environment where drake builds targets. Intended for advanced cus-
tom memory management.

See Also

file_in(), file_out(), knitr_in(), no_deps()

Examples

Not run:
isolate_example("Contain side effects", {
Normally, `drake` reacts to changes in dependencies.
x <- 4
make(plan = drake_plan(y = sqrt(x)))
x <- 5
make(plan = drake_plan(y = sqrt(x)))
make(plan = drake_plan(y = sqrt(4) + x))
But not with ignore().
make(plan = drake_plan(y = sqrt(4) + ignore(x))) # Builds y.
x <- 6
make(plan = drake_plan(y = sqrt(4) + ignore(x))) # Skips y.
make(plan = drake_plan(y = sqrt(4) + ignore(x + 1))) # Skips y.

ignore() works with functions and multiline code chunks.
f <- function(x) {

ignore({
x <- x + 1
x <- x + 2

})
x # Not ignored.

}
make(plan = drake_plan(y = f(2)))

78 knitr_in

readd(x)
Changes the content of the ignore() block:
f <- function(x) {

ignore({
x <- x + 1

})
x # Not ignored.

}
make(plan = drake_plan(x = f(2)))
readd(x)
})

End(Not run)

knitr_in Declare knitr/rmarkdown source files as dependencies. [Stable]

Description

knitr_in() marks individual knitr/R Markdown reports as dependencies. In drake, these reports
are pieces of the pipeline. R Markdown is a great tool for displaying precomputed results, but not
for running a large workflow from end to end. These reports should do as little computation as
possible.

Usage

knitr_in(...)

Arguments

... Character strings. File paths of knitr/rmarkdown source files supplied to a
command in your workflow plan data frame.

Details

Unlike file_in() and file_out(), knitr_in() does not work with entire directories.

Value

A character vector of declared input file paths.

Keywords

drake_plan() understands special keyword functions for your commands. With the exception of
target(), each one is a proper function with its own help file.

• target(): give the target more than just a command. Using target(), you can apply a trans-
formation (examples: https://books.ropensci.org/drake/plans.html#large-plans),
nolint supply a trigger (https://books.ropensci.org/drake/triggers.html), # nolint
or set any number of custom columns.

knitr_in 79

• file_in(): declare an input file dependency.

• file_out(): declare an output file to be produced when the target is built.

• knitr_in(): declare a knitr file dependency such as an R Markdown (*.Rmd) or R LaTeX
(*.Rnw) file.

• ignore(): force drake to entirely ignore a piece of code: do not track it for changes and do
not analyze it for dependencies.

• no_deps(): tell drake to not track the dependencies of a piece of code. drake still tracks the
code itself for changes.

• id_chr(): Get the name of the current target.

• drake_envir(): get the environment where drake builds targets. Intended for advanced cus-
tom memory management.

See Also

file_in(), file_out(), ignore(), no_deps()

Examples

Not run:
isolate_example("contain side effects", {
if (requireNamespace("knitr", quietly = TRUE)) {
`knitr_in()` is like `file_in()`
except that it analyzes active code chunks in your `knitr`
source file and detects non-file dependencies.
That way, updates to the right dependencies trigger rebuilds
in your report.
The mtcars example (`drake_example("mtcars")`)
already has a demonstration

load_mtcars_example()
make(my_plan)

Now how did drake magically know that
`small`, `large`, and `coef_regression2_small` were
dependencies of the output file `report.md`?
because the command in the workflow plan had
`knitr_in("report.Rmd")` in it, so drake knew
to analyze the active code chunks. There, it spotted
where `small`, `large`, and `coef_regression2_small`
were read from the cache using calls to `loadd()` and `readd()`.
}
})

End(Not run)

80 load_mtcars_example

legend_nodes Create the nodes data frame used in the legend of the graph visualiza-
tions. [Soft-deprecated]

Description

Output a visNetwork-friendly data frame of nodes. It tells you what the colors and shapes mean in
the graph visualizations.

Usage

legend_nodes(font_size = 20)

Arguments

font_size Font size of the node label text.

Value

A data frame of legend nodes for the graph visualizations.

Examples

Not run:
Show the legend nodes used in graph visualizations.
For example, you may want to inspect the color palette more closely.
if (requireNamespace("visNetwork", quietly = TRUE)) {
visNetwork::visNetwork(nodes = legend_nodes()) # nolint
}

End(Not run)

load_mtcars_example Load the mtcars example. [Stable]

Description

Is there an association between the weight and the fuel efficiency of cars? To find out, we use
the mtcars example from drake_example("mtcars"). The mtcars dataset itself only has 32 rows,
so we generate two larger bootstrapped datasets and then analyze them with regression models.
Finally, we summarize the regression models to see if there is an association.

load_mtcars_example 81

Usage

load_mtcars_example(
envir = parent.frame(),
report_file = NULL,
overwrite = FALSE,
force = FALSE

)

Arguments

envir The environment to load the example into. Defaults to your workspace. For an
insulated workspace, set envir = new.env(parent = globalenv()).

report_file Where to write the report file. Deprecated. In a future release, the report file
will always be report.Rmd and will always be written to your working directory
(current default).

overwrite Logical, whether to overwrite an existing file report.Rmd.

force Deprecated.

Details

Use drake_example("mtcars") to get the code for the mtcars example. This function also writes/overwrites
the file, report.Rmd.

Value

Nothing.

See Also

clean_mtcars_example() drake_examples()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
Populate your workspace and write 'report.Rmd'.
load_mtcars_example() # Get the code: drake_example("mtcars")
Check the dependencies of an imported function.
deps_code(reg1)
Check the dependencies of commands in the workflow plan.
deps_code(my_plan$command[1])
deps_code(my_plan$command[4])
Plot the interactive network visualization of the workflow.
outdated(my_plan) # Which targets are out of date?
Run the workflow to build all the targets in the plan.
make(my_plan)
outdated(my_plan) # Everything should be up to date.
For the reg2() model on the small dataset,
the p-value is so small that there may be an association

82 make

between weight and fuel efficiency after all.
readd(coef_regression2_small)
Clean up the example.
clean_mtcars_example()
}
})

End(Not run)

make Run your project (build the outdated targets). [Stable]

Description

This is the central, most important function of the drake package. It runs all the steps of your
workflow in the correct order, skipping any work that is already up to date. Because of how make()
tracks global functions and objects as dependencies of targets, please restart your R session so the
pipeline runs in a clean reproducible environment.

Usage

make(
plan,
targets = NULL,
envir = parent.frame(),
verbose = 1L,
hook = NULL,
cache = drake::drake_cache(),
fetch_cache = NULL,
parallelism = "loop",
jobs = 1L,
jobs_preprocess = 1L,
packages = rev(.packages()),
lib_loc = NULL,
prework = character(0),
prepend = NULL,
command = NULL,
args = NULL,
recipe_command = NULL,
log_progress = TRUE,
skip_targets = FALSE,
timeout = NULL,
cpu = Inf,
elapsed = Inf,
retries = 0,
force = FALSE,
graph = NULL,
trigger = drake::trigger(),

make 83

skip_imports = FALSE,
skip_safety_checks = FALSE,
config = NULL,
lazy_load = "eager",
session_info = NULL,
cache_log_file = NULL,
seed = NULL,
caching = "main",
keep_going = FALSE,
session = NULL,
pruning_strategy = NULL,
makefile_path = NULL,
console_log_file = NULL,
ensure_workers = NULL,
garbage_collection = FALSE,
template = list(),
sleep = function(i) 0.01,
hasty_build = NULL,
memory_strategy = "speed",
layout = NULL,
spec = NULL,
lock_envir = NULL,
history = TRUE,
recover = FALSE,
recoverable = TRUE,
curl_handles = list(),
max_expand = NULL,
log_build_times = TRUE,
format = NULL,
lock_cache = TRUE,
log_make = NULL,
log_worker = FALSE

)

Arguments

plan Workflow plan data frame. A workflow plan data frame is a data frame with a
target column and a command column. (See the details in the drake_plan()
help file for descriptions of the optional columns.) Targets are the objects that
drake generates, and commands are the pieces of R code that produce them. You
can create and track custom files along the way (see file_in(), file_out(),
and knitr_in()). Use the function drake_plan() to generate workflow plan
data frames.

targets Character vector, names of targets to build. Dependencies are built too. You
may supply static and/or whole dynamic targets, but no sub-targets.

envir Environment to use. Defaults to the current workspace, so you should not need
to worry about this most of the time. A deep copy of envir is made, so you
don’t need to worry about your workspace being modified by make. The deep

84 make

copy inherits from the global environment. Wherever necessary, objects and
functions are imported from envir and the global environment and then repro-
ducibly tracked as dependencies.

verbose Integer, control printing to the console/terminal.

• 0: print nothing.
• 1: print target-by-target messages as make() progresses.
• 2: show a progress bar to track how many targets are done so far.

hook Deprecated.

cache drake cache as created by new_cache(). See also drake_cache().

fetch_cache Deprecated.

parallelism Character scalar, type of parallelism to use. For detailed explanations, see
https://books.ropensci.org/drake/hpc.html.
You could also supply your own scheduler function if you want to experiment
or aggressively optimize. The function should take a single config argument
(produced by drake_config()). Existing examples from drake’s internals are
the backend_*() functions:

• backend_loop()

• backend_clustermq()

• backend_future() However, this functionality is really a back door and
should not be used for production purposes unless you really know what
you are doing and you are willing to suffer setbacks whenever drake’s un-
exported core functions are updated.

jobs Maximum number of parallel workers for processing the targets. You can ex-
periment with predict_runtime() to help decide on an appropriate number of
jobs. For details, visit https://books.ropensci.org/drake/time.html.

jobs_preprocess

Number of parallel jobs for processing the imports and doing other preprocess-
ing tasks.

packages Character vector packages to load, in the order they should be loaded. Defaults
to rev(.packages()), so you should not usually need to set this manually.
Just call library() to load your packages before make(). However, some-
times packages need to be strictly forced to load in a certain order, especially if
parallelism is "Makefile". To do this, do not use library() or require()
or loadNamespace() or attachNamespace() to load any libraries beforehand.
Just list your packages in the packages argument in the order you want them to
be loaded.

lib_loc Character vector, optional. Same as in library() or require(). Applies to the
packages argument (see above).

prework Expression (language object), list of expressions, or character vector. Code to
run right before targets build. Called only once if parallelism is "loop" and
once per target otherwise. This code can be used to set global options, etc.

prepend Deprecated.

command Deprecated.

make 85

args Deprecated.

recipe_command Deprecated.

log_progress Logical, whether to log the progress of individual targets as they are being built.
Progress logging creates extra files in the cache (usually the .drake/ folder) and
slows down make() a little. If you need to reduce or limit the number of files in
the cache, call make(log_progress = FALSE, recover = FALSE).

skip_targets Logical, whether to skip building the targets in plan and just import objects and
files.

timeout deprecated. Use elapsed and cpu instead.

cpu Same as the cpu argument of setTimeLimit(). Seconds of cpu time before
a target times out. Assign target-level cpu timeout times with an optional cpu
column in plan.

elapsed Same as the elapsed argument of setTimeLimit(). Seconds of elapsed time
before a target times out. Assign target-level elapsed timeout times with an
optional elapsed column in plan.

retries Number of retries to execute if the target fails. Assign target-level retries with
an optional retries column in plan.

force Logical. If FALSE (default) then drake imposes checks if the cache was created
with an old and incompatible version of drake. If there is an incompatibility,
make() stops to give you an opportunity to downgrade drake to a compatible
version rather than rerun all your targets from scratch.

graph Deprecated.

trigger Name of the trigger to apply to all targets. Ignored if plan has a trigger col-
umn. See trigger() for details.

skip_imports Logical, whether to totally neglect to process the imports and jump straight to
the targets. This can be useful if your imports are massive and you just want
to test your project, but it is bad practice for reproducible data analysis. This
argument is overridden if you supply your own graph argument.

skip_safety_checks

Logical, whether to skip the safety checks on your workflow. Use at your own
peril.

config Deprecated.

lazy_load An old feature, currently being questioned. For the current recommendations on
memory management, see https://books.ropensci.org/drake/memory.html#memory-strategies.
The lazy_load argument is either a character vector or a logical. For dynamic
targets, the behavior is always "eager" (see below). So the lazy_load argu-
ment is for static targets only. Choices for lazy_load:

• "eager": no lazy loading. The target is loaded right away with assign().
• "promise": lazy loading with delayedAssign()

• "bind": lazy loading with active bindings: bindr::populate_env().
• TRUE: same as "promise".
• FALSE: same as "eager".

86 make

If lazy_load is "eager", drake prunes the execution environment before each
target/stage, removing all superfluous targets and then loading any dependencies
it will need for building. In other words, drake prepares the environment in ad-
vance and tries to be memory efficient. If lazy_load is "bind" or "promise",
drake assigns promises to load any dependencies at the last minute. Lazy load-
ing may be more memory efficient in some use cases, but it may duplicate the
loading of dependencies, costing time.

session_info Logical, whether to save the sessionInfo() to the cache. Defaults to TRUE.
This behavior is recommended for serious make()s for the sake of reproducibil-
ity. This argument only exists to speed up tests. Apparently, sessionInfo() is
a bottleneck for small make()s.

cache_log_file Name of the CSV cache log file to write. If TRUE, the default file name is used
(drake_cache.CSV). If NULL, no file is written. If activated, this option writes a
flat text file to represent the state of the cache (fingerprints of all the targets and
imports). If you put the log file under version control, your commit history will
give you an easy representation of how your results change over time as the rest
of your project changes. Hopefully, this is a step in the right direction for data
reproducibility.

seed Integer, the root pseudo-random number generator seed to use for your project.
In make(), drake generates a unique local seed for each target using the global
seed and the target name. That way, different pseudo-random numbers are gen-
erated for different targets, and this pseudo-randomness is reproducible.
To ensure reproducibility across different R sessions, set.seed() and .Random.seed
are ignored and have no affect on drake workflows. Conversely, make() does
not usually change .Random.seed, even when pseudo-random numbers are gen-
erated. The exception to this last point is make(parallelism = "clustermq")
because the clustermq package needs to generate random numbers to set up
ports and sockets for ZeroMQ.
On the first call to make() or drake_config(), drake uses the random num-
ber generator seed from the seed argument. Here, if the seed is NULL (de-
fault), drake uses a seed of 0. On subsequent make()s for existing projects, the
project’s cached seed will be used in order to ensure reproducibility. Thus, the
seed argument must either be NULL or the same seed from the project’s cache
(usually the .drake/ folder). To reset the random number generator seed for a
project, use clean(destroy = TRUE).

caching Character string, either "main" or "worker".

• "main": Targets are built by remote workers and sent back to the main
process. Then, the main process saves them to the cache (config$cache,
usually a file system storr). Appropriate if remote workers do not have
access to the file system of the calling R session. Targets are cached one at
a time, which may be slow in some situations.

• "worker": Remote workers not only build the targets, but also save them
to the cache. Here, caching happens in parallel. However, remote workers
need to have access to the file system of the calling R session. Transferring
target data across a network can be slow.

keep_going Logical, whether to still keep running make() if targets fail.

make 87

session Deprecated. Has no effect now.
pruning_strategy

Deprecated. See memory_strategy.

makefile_path Deprecated.
console_log_file

Deprecated in favor of log_make.

ensure_workers Deprecated.
garbage_collection

Logical, whether to call gc() each time a target is built during make().

template A named list of values to fill in the {{ ... }} placeholders in template files
(e.g. from drake_hpc_template_file()). Same as the template argument
of clustermq::Q() and clustermq::workers. Enabled for clustermq only
(make(parallelism = "clustermq")), not future or batchtools so far. For
more information, see the clustermq package: https://github.com/mschubert/clustermq.
Some template placeholders such as {{ job_name }} and {{ n_jobs }} cannot
be set this way.

sleep Optional function on a single numeric argument i. Default: function(i) 0.01.
To conserve memory, drake assigns a brand new closure to sleep, so your cus-
tom function should not depend on in-memory data except from loaded pack-
ages.
For parallel processing, drake uses a central main process to check what the
parallel workers are doing, and for the affected high-performance computing
workflows, wait for data to arrive over a network. In between loop iterations,
the main process sleeps to avoid throttling. The sleep argument to make()
and drake_config() allows you to customize how much time the main process
spends sleeping.
The sleep argument is a function that takes an argument i and returns a numeric
scalar, the number of seconds to supply to Sys.sleep() after iteration i of
checking. (Here, i starts at 1.) If the checking loop does something other than
sleeping on iteration i, then i is reset back to 1.
To sleep for the same amount of time between checks, you might supply some-
thing like function(i) 0.01. But to avoid consuming too many resources dur-
ing heavier and longer workflows, you might use an exponential back-off: say,
function(i) { 0.1 + 120 * pexp(i - 1, rate = 0.01) }.

hasty_build Deprecated
memory_strategy

Character scalar, name of the strategy drake uses to load/unload a target’s de-
pendencies in memory. You can give each target its own memory strategy, (e.g.
drake_plan(x = 1, y = target(f(x), memory_strategy = "lookahead"))) to
override the global memory strategy. Choices:

• "speed": Once a target is newly built or loaded in memory, just keep it
there. This choice maximizes speed and hogs memory.

• "autoclean": Just before building each new target, unload everything from
memory except the target’s direct dependencies. After a target is built, dis-
card it from memory. (Set garbage_collection = TRUE to make sure it

88 make

is really gone.) This option conserves memory, but it sacrifices speed be-
cause each new target needs to reload any previously unloaded targets from
storage.

• "preclean": Just before building each new target, unload everything from
memory except the target’s direct dependencies. After a target is built, keep
it in memory until drake determines they can be unloaded. This option
conserves memory, but it sacrifices speed because each new target needs to
reload any previously unloaded targets from storage.

• "lookahead": Just before building each new target, search the dependency
graph to find targets that will not be needed for the rest of the current
make() session. After a target is built, keep it in memory until the next
memory management stage. In this mode, targets are only in memory if
they need to be loaded, and we avoid superfluous reads from the cache.
However, searching the graph takes time, and it could even double the com-
putational overhead for large projects.

• "unload": Just before building each new target, unload all targets from
memory. After a target is built, do not keep it in memory. This mode ag-
gressively optimizes for both memory and speed, but in commands and trig-
gers, you have to manually load any dependencies you need using readd().

• "none": Do not manage memory at all. Do not load or unload anything be-
fore building targets. After a target is built, do not keep it in memory. This
mode aggressively optimizes for both memory and speed, but in commands
and triggers, you have to manually load any dependencies you need using
readd().

For even more direct control over which targets drake keeps in memory, see
the help file examples of drake_envir(). Also see the garbage_collection
argument of make() and drake_config().

layout Deprecated.
spec Deprecated.
lock_envir Deprecated in drake >= 7.13.10. Environments are no longer locked.
history Logical, whether to record the build history of your targets. You can also supply

a txtq, which is how drake records history. Must be TRUE for drake_history()
to work later.

recover Logical, whether to activate automated data recovery. The default is FALSE be-
cause

1. Automated data recovery is still stable.
2. It has reproducibility issues. Targets recovered from the distant past may

have been generated with earlier versions of R and earlier package environ-
ments that no longer exist.

3. It is not always possible, especially when dynamic files are combined with
dynamic branching (e.g. dynamic = map(stuff) and format = "file" etc.)
since behavior is harder to predict in advance.

How it works: if recover is TRUE, drake tries to salvage old target values from
the cache instead of running commands from the plan. A target is recoverable if

1. There is an old value somewhere in the cache that shares the command,
dependencies, etc. of the target about to be built.

make 89

2. The old value was generated with make(recoverable = TRUE).

If both conditions are met, drake will

1. Assign the most recently-generated admissible data to the target, and
2. skip the target’s command.

Functions recoverable() and r_recoverable() show the most upstream out-
dated targets that will be recovered in this way in the next make() or r_make().

recoverable Logical, whether to make target values recoverable with make(recover = TRUE).
This requires writing extra files to the cache, and it prevents old metadata from
being removed with garbage collection (clean(garbage_collection = TRUE),
gc() in storrs). If you need to limit the cache size or the number of files in the
cache, consider make(recoverable = FALSE, progress = FALSE). Recovery is
not always possible, especially when dynamic files are combined with dynamic
branching (e.g. dynamic = map(stuff) and format = "file" etc.) since be-
havior is harder to predict in advance.

curl_handles A named list of curl handles. Each value is an object from curl::new_handle(),
and each name is a URL (and should start with "http", "https", or "ftp"). Exam-
ple: list(http://httpbin.org/basic-auth = curl::new_handle(username =
"user", password = "passwd")) Then, if your plan has file_in("http://httpbin.org/basic-auth/user/passwd")
drake will authenticate using the username and password of the handle for
http://httpbin.org/basic-auth/.
drake uses partial matching on text to find the right handle of the file_in()
URL, so the name of the handle could be the complete URL ("http://httpbin.org/basic-auth/user/passwd")
or a part of the URL (e.g. "http://httpbin.org/" or "http://httpbin.org/basic-auth/").
If you have multiple handles whose names match your URL, drake will choose
the closest match.

max_expand Positive integer, optional. max_expand is the maximum number of targets to
generate in each map(), cross(), or group() dynamic transform. Useful if you
have a massive number of dynamic sub-targets and you want to work with only
the first few sub-targets before scaling up. Note: the max_expand argument of
make() and drake_config() is for dynamic branching only. The static branch-
ing max_expand is an argument of drake_plan() and transform_plan().

log_build_times

Logical, whether to record build_times for targets. Mac users may notice a 20%
speedup in make() with build_times = FALSE.

format Character, an optional custom storage format for targets without an explicit
target(format = ...) in the plan. Details about formats: https://books.ropensci.org/drake/plans.html#special-data-formats-for-targets
nolint

lock_cache Logical, whether to lock the cache before running make() etc. It is usually
recommended to keep cache locking on. However, if you interrupt make() be-
fore it can clean itself up, then the cache will stay locked, and you will need to
manually unlock it with drake::drake_cache("xyz")$unlock(). Repeatedly
unlocking the cache by hand is annoying, and lock_cache = FALSE prevents the
cache from locking in the first place.

log_make Optional character scalar of a file name or connection object (such as stdout())
to dump maximally verbose log information for make() and other functions (all

90 make

functions that accept a config argument, plus drake_config()). If you choose
to use a text file as the console log, it will persist over multiple function calls un-
til you delete it manually. Fields in each row the log file, from left to right: - The
node name (short host name) of the computer (from Sys.info()["nodename"]).
- The process ID (from Sys.getpid()). - A timestamp with the date and time (in
microseconds). - A brief description of what drake was doing. The fields are separated by pipe symbols ("|"‘).

log_worker Logical, same as the log_worker argument of clustermq::workers() and
clustermq::Q(). Only relevant if parallelism is "clustermq".

Value

nothing

Interactive mode

In interactive sessions, consider r_make(), r_outdated(), etc. rather than make(), outdated(),
etc. The r_*() drake functions are more reproducible when the session is interactive. If you do run
make() interactively, please restart your R session beforehand so your functions and global objects
get loaded into a clean reproducible environment. This prevents targets from getting invalidated
unexpectedly.

A serious drake workflow should be consistent and reliable, ideally with the help of a main R script.
This script should begin in a fresh R session, load your packages and functions in a dependable man-
ner, and then run make(). Example: https://github.com/wlandau/drake-examples/tree/main/gsp.
Batch mode, especially within a container, is particularly helpful.

Interactive R sessions are still useful, but they easily grow stale. Targets can falsely invalidate if
you accidentally change a function or data object in your environment.

Self-invalidation

It is possible to construct a workflow that tries to invalidate itself. Example:

plan <- drake_plan(
x = {
data(mtcars)
mtcars$mpg

},
y = mean(x)

)

Here, because data() loads mtcars into the global environment, the very act of building x changes
the dependencies of x. In other words, without safeguards, x would not be up to date at the end of
make(plan). Please try to avoid workflows that modify the global environment. Functions such
as data() belong in your setup scripts prior to make(), not in any functions or commands that get
called during make() itself.

For each target that is still problematic (e.g. https://github.com/rstudio/gt/issues/297) you
can safely run the command in its own special callr::r() process. Example: https://github.com/rstudio/gt/issues/297#issuecomment-497778735.
nolint

make 91

Cache locking

When make() runs, it locks the cache so other processes cannot modify it. Same goes for outdated(),
vis_drake_graph(), and similar functions when make_imports = TRUE. This is a safety measure
to prevent simultaneous processes from corrupting the cache. If you get an error saying that the
cache is locked, either set make_imports = FALSE or manually force unlock it with drake_cache()$unlock().

See Also

drake_plan(), drake_config(), vis_drake_graph(), outdated()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
config <- drake_config(my_plan)
outdated(my_plan) # Which targets need to be (re)built?
make(my_plan) # Build what needs to be built.
outdated(my_plan) # Everything is up to date.
Change one of your imported function dependencies.
reg2 = function(d) {

d$x3 = d$x^3
lm(y ~ x3, data = d)

}
outdated(my_plan) # Some targets depend on reg2().
make(my_plan) # Rebuild just the outdated targets.
outdated(my_plan) # Everything is up to date again.
if (requireNamespace("visNetwork", quietly = TRUE)) {
vis_drake_graph(my_plan) # See how they fit in an interactive graph.
make(my_plan, cache_log_file = TRUE) # Write a CSV log file this time.
vis_drake_graph(my_plan) # The colors changed in the graph.
Run targets in parallel:
options(clustermq.scheduler = "multicore") # nolint
make(my_plan, parallelism = "clustermq", jobs = 2) # nolint
}
clean() # Start from scratch next time around.
}
Dynamic branching
Get the mean mpg for each cyl in the mtcars dataset.
plan <- drake_plan(

raw = mtcars,
group_index = raw$cyl,
munged = target(raw[, c("mpg", "cyl")], dynamic = map(raw)),
mean_mpg_by_cyl = target(
data.frame(mpg = mean(munged$mpg), cyl = munged$cyl[1]),
dynamic = group(munged, .by = group_index)

)
)
make(plan)
readd(mean_mpg_by_cyl)
})

92 missed

End(Not run)

missed Report any import objects required by your drake_plan plan but miss-
ing from your workspace or file system. [Stable]

Description

Checks your workspace/environment and file system.

Usage

missed(..., config = NULL)

Arguments

... Arguments to make(), such as plan and targets.

config Deprecated.

Value

Character vector of names of missing objects and files.

See Also

outdated()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
plan <- drake_plan(x = missing::fun(arg))
missed(plan)
}
})

End(Not run)

new_cache 93

new_cache Make a new drake cache. [Stable]

Description

Uses the storr::storr_rds() function from the storr package.

Usage

new_cache(
path = NULL,
verbose = NULL,
type = NULL,
hash_algorithm = NULL,
short_hash_algo = NULL,
long_hash_algo = NULL,
...,
console_log_file = NULL

)

Arguments

path File path to the cache if the cache is a file system cache.

verbose Deprecated on 2019-09-11.

type Deprecated argument. Once stood for cache type. Use storr to customize your
caches instead.

hash_algorithm Name of a hash algorithm to use. See the algo argument of the digest package
for your options.

short_hash_algo

Deprecated on 2018-12-12. Use hash_algorithm instead.

long_hash_algo Deprecated on 2018-12-12. Use hash_algorithm instead.

... other arguments to the cache constructor.

console_log_file

Deprecated on 2019-09-11.

Value

A newly created drake cache as a storr object.

See Also

make()

94 no_deps

Examples

Not run:
isolate_example("Quarantine new_cache() side effects.", {
clean(destroy = TRUE) # Should not be necessary.
unlink("not_hidden", recursive = TRUE) # Should not be necessary.
cache1 <- new_cache() # Creates a new hidden '.drake' folder.
cache2 <- new_cache(path = "not_hidden", hash_algorithm = "md5")
clean(destroy = TRUE, cache = cache2)
})

End(Not run)

no_deps Suppress dependency detection. [Stable]

Description

Tell drake to not search for dependencies in a chunk of code.

Usage

no_deps(x = NULL)

Arguments

x Code for which dependency detection is suppressed.

Details

no_deps() is similar to ignore(), but it still lets drake track meaningful changes to the code itself.

Value

The argument.

Keywords

drake_plan() understands special keyword functions for your commands. With the exception of
target(), each one is a proper function with its own help file.

• target(): give the target more than just a command. Using target(), you can apply a trans-
formation (examples: https://books.ropensci.org/drake/plans.html#large-plans),
nolint supply a trigger (https://books.ropensci.org/drake/triggers.html), # nolint
or set any number of custom columns.

• file_in(): declare an input file dependency.

• file_out(): declare an output file to be produced when the target is built.

• knitr_in(): declare a knitr file dependency such as an R Markdown (*.Rmd) or R LaTeX
(*.Rnw) file.

no_deps 95

• ignore(): force drake to entirely ignore a piece of code: do not track it for changes and do
not analyze it for dependencies.

• no_deps(): tell drake to not track the dependencies of a piece of code. drake still tracks the
code itself for changes.

• id_chr(): Get the name of the current target.

• drake_envir(): get the environment where drake builds targets. Intended for advanced cus-
tom memory management.

See Also

file_in(), file_out(), knitr_in(), no_deps()

Examples

Not run:
isolate_example("Contain side effects", {
Normally, `drake` reacts to changes in dependencies.
x <- 4
make(plan = drake_plan(y = sqrt(x)))
x <- 5
make(plan = drake_plan(y = sqrt(x)))
make(plan = drake_plan(y = sqrt(4) + x))
But not with no_deps().
make(plan = drake_plan(y = sqrt(4) + no_deps(x))) # Builds y.
x <- 6
make(plan = drake_plan(y = sqrt(4) + no_deps(x))) # Skips y.
However, `drake` *does* react to changes
to the *literal code* inside `no_deps()`.
make(plan = drake_plan(y = sqrt(4) + ignore(x + 1))) # Builds y.

Like ignore(), no_deps() works with functions and multiline code chunks.
z <- 1
f <- function(x) {

no_deps({
x <- z + 1
x <- x + 2

})
x

}
make(plan = drake_plan(y = f(2)))
readd(y)
z <- 2 # Changed dependency is not tracked.
make(plan = drake_plan(y = f(2)))
readd(y)
})

End(Not run)

96 outdated

outdated List the targets that are out of date. [Stable]

Description

Outdated targets will be rebuilt in the next make(). outdated() does not show dynamic sub-targets.

Usage

outdated(..., make_imports = TRUE, do_prework = TRUE, config = NULL)

Arguments

... Arguments to make(), such as plan and targets and envir.

make_imports Logical, whether to make the imports first. Set to FALSE to save some time and
risk obsolete output.

do_prework Whether to do the prework normally supplied to make().

config Deprecated (2019-12-21). A configured workflow from drake_config().

Value

Character vector of the names of outdated targets.

See Also

r_outdated(), drake_config(), missed(), drake_plan(), make()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
Recopute the config list early and often to have the
most current information. Do not modify the config list by hand.
outdated(my_plan) # Which targets are out of date?
make(my_plan) # Run the projects, build the targets.
Now, everything should be up to date (no targets listed).
outdated(my_plan)
}
})

End(Not run)

plan_to_code 97

plan_to_code Turn a drake plan into a plain R script file. [Questioning]

Description

code_to_plan(), plan_to_code(), and plan_to_notebook() together illustrate the relationships
between drake plans, R scripts, and R Markdown documents. In the file generated by plan_to_code(),
every target/command pair becomes a chunk of code. Targets are arranged in topological order so
dependencies are available before their downstream targets. Please note:

1. You are still responsible for loading your project’s packages, imported functions, etc.

2. Triggers disappear.

Usage

plan_to_code(plan, con = stdout())

Arguments

plan Workflow plan data frame. See drake_plan() for details.

con A file path or connection to write to.

See Also

drake_plan(), make(), code_to_plan(), plan_to_notebook()

Examples

plan <- drake_plan(
raw_data = read_excel(file_in("raw_data.xlsx")),
data = raw_data,
hist = create_plot(data),
fit = lm(Ozone ~ Temp + Wind, data)

)
file <- tempfile()
Turn the plan into an R script a the given file path.
plan_to_code(plan, file)
Here is what the script looks like.
cat(readLines(file), sep = "\n")
Convert back to a drake plan.
code_to_plan(file)

98 plan_to_notebook

plan_to_notebook Turn a drake plan into an R notebook. [Questioning]

Description

code_to_plan(), plan_to_code(), and plan_to_notebook() together illustrate the relationships
between drake plans, R scripts, and R Markdown documents. In the file generated by plan_to_code(),
every target/command pair becomes a chunk of code. Targets are arranged in topological order so
dependencies are available before their downstream targets. Please note:

1. You are still responsible for loading your project’s packages, imported functions, etc.

2. Triggers disappear.

Usage

plan_to_notebook(plan, con)

Arguments

plan Workflow plan data frame. See drake_plan() for details.

con A file path or connection to write to.

See Also

drake_plan(), make(), code_to_plan(), plan_to_code()

Examples

if (suppressWarnings(require("knitr"))) {
plan <- drake_plan(

raw_data = read_excel(file_in("raw_data.xlsx")),
data = raw_data,
hist = create_plot(data),
fit = lm(Ozone ~ Temp + Wind, data)

)
file <- tempfile()
Turn the plan into an R notebook a the given file path.
plan_to_notebook(plan, file)
Here is what the script looks like.
cat(readLines(file), sep = "\n")
Convert back to a drake plan.
code_to_plan(file)
}

predict_runtime 99

predict_runtime Predict the elapsed runtime of the next call to make() for non-staged
parallel backends. [Stable]

Description

Take the past recorded runtimes times from build_times() and use them to predict how the tar-
gets will be distributed among the available workers in the next make(). Then, predict the overall
runtime to be the runtime of the slowest (busiest) workers. Predictions only include the time it takes
to run the targets, not overhead/preprocessing from drake itself.

Usage

predict_runtime(
...,
targets_predict = NULL,
from_scratch = FALSE,
targets_only = NULL,
jobs_predict = 1L,
known_times = numeric(0),
default_time = 0,
warn = TRUE,
config = NULL

)

Arguments

... Arguments to make(), such as plan and targets.
targets_predict

Character vector, names of targets to include in the total runtime and worker
predictions.

from_scratch Logical, whether to predict a make() build from scratch or to take into account
the fact that some targets may be already up to date and therefore skipped.

targets_only Deprecated.

jobs_predict The jobs argument of your next planned make().

known_times A named numeric vector with targets/imports as names and values as hypotheti-
cal runtimes in seconds. Use this argument to overwrite any of the existing build
times or the default_time.

default_time Number of seconds to assume for any target or import with no recorded runtime
(from build_times()) or anything in known_times.

warn Logical, whether to warn the user about any targets with no available runtime,
either in known_times or build_times(). The times for these targets default
to default_time.

config Deprecated.

100 predict_workers

Value

Predicted total runtime of the next call to make().

See Also

predict_workers(), build_times(), make()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the project, build the targets.
known_times <- rep(7200, nrow(my_plan))
names(known_times) <- my_plan$target
known_times
Predict the runtime
if (requireNamespace("lubridate", quietly = TRUE)) {
predict_runtime(

my_plan,
jobs_predict = 7L,
from_scratch = TRUE,
known_times = known_times

)
predict_runtime(

my_plan,
jobs_predict = 8L,
from_scratch = TRUE,
known_times = known_times

)
balance <- predict_workers(

my_plan,
jobs_predict = 7L,
from_scratch = TRUE,
known_times = known_times

)
balance
}
}
})

End(Not run)

predict_workers Predict the load balancing of the next call to make() for non-staged
parallel backends. [Stable]

predict_workers 101

Description

Take the past recorded runtimes times from build_times() and use them to predict how the targets
will be distributed among the available workers in the next make(). Predictions only include the
time it takes to run the targets, not overhead/preprocessing from drake itself.

Usage

predict_workers(
...,
targets_predict = NULL,
from_scratch = FALSE,
targets_only = NULL,
jobs_predict = 1L,
known_times = numeric(0),
default_time = 0,
warn = TRUE,
config = NULL

)

Arguments

... Arguments to make(), such as plan and targets.
targets_predict

Character vector, names of targets to include in the total runtime and worker
predictions.

from_scratch Logical, whether to predict a make() build from scratch or to take into account
the fact that some targets may be already up to date and therefore skipped.

targets_only Deprecated.

jobs_predict The jobs argument of your next planned make().

known_times A named numeric vector with targets/imports as names and values as hypotheti-
cal runtimes in seconds. Use this argument to overwrite any of the existing build
times or the default_time.

default_time Number of seconds to assume for any target or import with no recorded runtime
(from build_times()) or anything in known_times.

warn Logical, whether to warn the user about any targets with no available runtime,
either in known_times or build_times(). The times for these targets default
to default_time.

config Deprecated.

Value

A data frame showing one likely arrangement of targets assigned to parallel workers.

See Also

predict_runtime(), build_times(), make()

102 readd

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the project, build the targets.
known_times <- rep(7200, nrow(my_plan))
names(known_times) <- my_plan$target
known_times
Predict the runtime
if (requireNamespace("lubridate", quietly = TRUE)) {
predict_runtime(

my_plan,
jobs_predict = 7L,
from_scratch = TRUE,
known_times = known_times

)
predict_runtime(

my_plan,
jobs_predict = 8L,
from_scratch = TRUE,
known_times = known_times

)
balance <- predict_workers(

my_plan,
jobs_predict = 7L,
from_scratch = TRUE,
known_times = known_times

)
balance
}
}
})

End(Not run)

readd Read and return a drake target/import from the cache. [Stable]

Description

readd() returns an object from the cache, and loadd() loads one or more objects from the cache
into your environment or session. These objects are usually targets built by make(). If target is
dynamic, readd() and loadd() retrieve a list of sub-target values. You can restrict which sub-
targets to include using the subtargets argument.

Usage

readd(

readd 103

target,
character_only = FALSE,
path = NULL,
search = NULL,
cache = drake::drake_cache(path = path),
namespace = NULL,
verbose = 1L,
show_source = FALSE,
subtargets = NULL,
subtarget_list = FALSE

)

loadd(
...,
list = character(0),
imported_only = NULL,
path = NULL,
search = NULL,
cache = drake::drake_cache(path = path),
namespace = NULL,
envir = parent.frame(),
jobs = 1,
verbose = 1L,
deps = FALSE,
lazy = "eager",
graph = NULL,
replace = TRUE,
show_source = FALSE,
tidyselect = !deps,
config = NULL,
subtargets = NULL,
subtarget_list = FALSE

)

Arguments

target If character_only is TRUE, then target is a character string naming the object
to read. Otherwise, target is an unquoted symbol with the name of the object.

character_only Logical, whether name should be treated as a character or a symbol (just like
character.only in library()).

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

search Deprecated.

cache drake cache. See new_cache(). If supplied, path is ignored.

namespace Optional character string, name of the storr namespace to read from.

verbose Deprecated on 2019-09-11.

show_source Logical, option to show the command that produced the target or indicate that
the object was imported (using show_source()).

104 readd

subtargets A numeric vector of indices. If target is dynamic, loadd() and readd() re-
trieve a list of sub-targets. You can restrict which sub-targets to retrieve with the
subtargets argument. For example, readd(x, subtargets = seq_len(3))
only retrieves the first 3 sub-targets of dynamic target x.

subtarget_list Logical, for dynamic targets only. If TRUE, the dynamic target is loaded as a
named list of sub-target values. If FALSE, drake attempts to concatenate the sub-
targets with vctrs::vec_c() (and returns an unnamed list if such concatenation
is not possible).

... Targets to load from the cache: as names (symbols) or character strings. If the
tidyselect package is installed, you can also supply dplyr-style tidyselect
commands such as starts_with(), ends_with(), and one_of().

list Character vector naming targets to be loaded from the cache. Similar to the list
argument of remove().

imported_only Logical, deprecated.

envir Environment to load objects into. Defaults to the calling environment (current
workspace).

jobs Number of parallel jobs for loading objects. On non-Windows systems, the load-
ing process for multiple objects can be lightly parallelized via parallel::mclapply().
just set jobs to be an integer greater than 1. On Windows, jobs is automatically
demoted to 1.

deps Logical, whether to load any cached dependencies of the targets instead of the
targets themselves.
Important note: deps = TRUE disables tidyselect functionality. For example,
loadd(starts_with("model_"), config = config, deps = TRUE) does not work.
For the selection mechanism to work, the model_* targets to need to already be
in the cache, which is not always the case when you are debugging your projects.
To help drake understand what you mean, you must name the targets explicitly
when deps is TRUE, e.g. loadd(model_A, model_B, config = config, deps =
TRUE).

lazy Either a string or a logical. Choices:

• "eager": no lazy loading. The target is loaded right away with assign().
• "promise": lazy loading with delayedAssign()

• "bind": lazy loading with active bindings: bindr::populate_env().
• TRUE: same as "promise".
• FALSE: same as "eager".

graph Deprecated.

replace Logical. If FALSE, items already in your environment will not be replaced.

tidyselect Logical, whether to enable tidyselect expressions in ... like starts_with("prefix")
and ends_with("suffix").

config Optional drake_config() object. You should supply one if deps is TRUE.

Details

There are three uses for the loadd() and readd() functions:

readd 105

1. Exploring the results outside the drake/make() pipeline. When you call make() to run your
project, drake puts the targets in a cache, usually a folder called .drake. You may want to
inspect the targets afterwards, possibly in an interactive R session. However, the files in the
.drake folder are organized in a special format created by the storr package, which is not
exactly human-readable. To retrieve a target for manual viewing, use readd(). To load one
or more targets into your session, use loadd().

2. In knitr / R Markdown reports. You can borrow drake targets in your active code chunks
if you have the right calls to loadd() and readd(). These reports can either run outside the
drake pipeline, or better yet, as part of the pipeline itself. If you call knitr_in("your_report.Rmd")
inside a drake_plan() command, then make() will scan "your_report.Rmd" for calls to
loadd() and readd() in active code chunks, and then treat those loaded targets as dependen-
cies. That way, make() will automatically (re)run the report if those dependencies change.

3. If you are using make(memory_strategy = "none") or make(memory_strategy = "unload"),
loadd() and readd() can manually load dependencies into memory for the target that is be-
ing built. If you do this, you must carefully inspect deps_target() and vis_drake_graph()
before running make() to be sure the dependency relationships among targets are correct.
If you do not wish to incur extra dependencies with loadd() or readd(), you will need
to use ignore(), e.g. drake_plan(x = 1, y = ignore(readd(x))) or drake_plan(x = 1, y
= readd(ignore("x"), character_only = TRUE)). Compare those plans to drake_plan(x
= 1, y = readd(x)) and drake_plan(x = 1, y = readd("x", character_only = TRUE)) us-
ing vis_drake_graph() and deps_target().

Value

The cached value of the target.

See Also

cached(), drake_plan(), make()

cached(), drake_plan(), make()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the project, build the targets.
readd(reg1) # Return imported object 'reg1' from the cache.
readd(small) # Return targets 'small' from the cache.
readd("large", character_only = TRUE) # Return 'large' from the cache.
For external files, only the fingerprint/hash is stored.
readd(file_store("report.md"), character_only = TRUE)
}
})

End(Not run)
Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {

106 read_drake_seed

load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the projects, build the targets.
config <- drake_config(my_plan)
loadd(small) # Load target 'small' into your workspace.
small
For many targets, you can parallelize loadd()
using the 'jobs' argument.
loadd(list = c("small", "large"), jobs = 2)
ls()
Load the dependencies of the target, coef_regression2_small
loadd(coef_regression2_small, deps = TRUE, config = config)
ls()
Load all the targets listed in the workflow plan
of the previous `make()`.
If you do not supply any target names, `loadd()` loads all the targets.
Be sure your computer has enough memory.
loadd()
ls()
}
})

End(Not run)

read_drake_seed Read the pseudo-random number generator seed of the project. [Sta-
ble]

Description

When a project is created with make() or drake_config(), the project’s pseudo-random number
generator seed is cached. Then, unless the cache is destroyed, the seeds of all the targets will
deterministically depend on this one central seed. That way, reproducibility is protected, even
under randomness.

Usage

read_drake_seed(path = NULL, search = NULL, cache = NULL, verbose = NULL)

Arguments

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

search Deprecated.

cache drake cache. See new_cache(). If supplied, path is ignored.

verbose Deprecated on 2019-09-11.

Value

An integer vector.

read_trace 107

Examples

Not run:
isolate_example("contain side effects", {
cache <- storr::storr_environment() # Just for the examples.
my_plan <- drake_plan(

target1 = sqrt(1234),
target2 = sample.int(n = 12, size = 1) + target1

)
tmp <- sample.int(1) # Needed to get a .Random.seed, but not for drake.
digest::digest(.Random.seed) # Fingerprint of the current R session's seed.
make(my_plan, cache = cache) # Run the project, build the targets.
digest::digest(.Random.seed) # Your session's seed did not change.
drake uses a hard-coded seed if you do not supply one.
read_drake_seed(cache = cache)
readd(target2, cache = cache) # Randomly-generated target data.
clean(target2, cache = cache) # Oops, I removed the data!
tmp <- sample.int(1) # Maybe the R session's seed also changed.
make(my_plan, cache = cache) # Rebuild target2.
Same as before:
read_drake_seed(cache = cache)
readd(target2, cache = cache)
You can also supply a seed.
If your project already exists, it must agree with the project's
preexisting seed (default: 0)
clean(target2, cache = cache)
make(my_plan, cache = cache, seed = 0)
read_drake_seed(cache = cache)
readd(target2, cache = cache)
If you want to supply a different seed than 0,
you need to destroy the cache and start over first.
clean(destroy = TRUE, cache = cache)
cache <- storr::storr_environment() # Just for the examples.
make(my_plan, cache = cache, seed = 1234)
read_drake_seed(cache = cache)
readd(target2, cache = cache)
})

End(Not run)

read_trace Read a trace of a dynamic target. [Stable]

Description

Read a target’s dynamic trace from the cache. Best used on its own outside a drake plan.

Usage

read_trace(

108 read_trace

trace,
target,
cache = drake::drake_cache(path = path),
path = NULL,
character_only = FALSE

)

Arguments

trace Character, name of the trace you want to extract. Such trace names are declared
in the .trace argument of map(), cross() or group().

target Symbol or character, depending on the value of character_only. target is
T=the name of a dynamic target with one or more traces defined using the
.trace argument of dynamic map(), cross(), or group().

cache drake cache. See new_cache(). If supplied, path is ignored.

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

character_only Logical, whether name should be treated as a character or a symbol (just like
character.only in library()).

Details

In dynamic branching, the trace keeps track of how the sub-targets were generated. It reminds us
the values of grouping variables that go with individual sub-targets.

Value

The dynamic trace of one target in another: a vector of values from a grouping variable.

See Also

get_trace(), subtargets()

Examples

Not run:
isolate_example("demonstrate dynamic trace", {
plan <- drake_plan(

w = LETTERS[seq_len(3)],
x = letters[seq_len(2)],

The first trace lets us see the values of w
that go with the sub-targets of y.
y = target(paste0(w, x), dynamic = cross(w, x, .trace = w)),

We can use the trace as a grouping variable for the next
group().
w_tr = read_trace("w", y),

Now, we use the trace again to keep track of the
values of w corresponding to the sub-targets of z.

recoverable 109

z = target(
paste0(y, collapse = "-"),
dynamic = group(y, .by = w_tr, .trace = w_tr)

)
)
make(plan)

We can read the trace outside make().
That way, we know which values of `w` correspond
to the sub-targets of `y`.
readd(y)
read_trace("w", y)

And we know which values of `w_tr` (and thus `w`)
match up with the sub-targets of `y`.
readd(z)
read_trace("w_tr", z)
})

End(Not run)

recoverable List the most upstream recoverable outdated targets. [Stable]

Description

Only shows the most upstream updated targets. Whether downstream targets are recoverable de-
pends on the eventual values of the upstream targets in the next make().

Usage

recoverable(..., make_imports = TRUE, do_prework = TRUE, config = NULL)

Arguments

... Arguments to make(), such as plan and targets and envir.

make_imports Logical, whether to make the imports first. Set to FALSE to save some time and
risk obsolete output.

do_prework Whether to do the prework normally supplied to make().

config Deprecated (2019-12-21). A configured workflow from drake_config().

Value

Character vector of the names of recoverable targets.

110 recoverable

Recovery

make(recover = TRUE, recoverable = TRUE) powers automated data recovery. The default of
recover is FALSE because targets recovered from the distant past may have been generated with
earlier versions of R and earlier package environments that no longer exist.

How it works: if recover is TRUE, drake tries to salvage old target values from the cache instead
of running commands from the plan. A target is recoverable if

1. There is an old value somewhere in the cache that shares the command, dependencies, etc. of
the target about to be built.

2. The old value was generated with make(recoverable = TRUE).

If both conditions are met, drake will

1. Assign the most recently-generated admissible data to the target, and

2. skip the target’s command.

See Also

r_recoverable(), r_outdated(), drake_config(), missed(), drake_plan(), make()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan)
clean()
outdated(my_plan) # Which targets are outdated?
recoverable(my_plan) # Which of these are recoverable and upstream?
The report still builds because clean() removes report.md,
but make() recovers the rest.
make(my_plan, recover = TRUE)
outdated(my_plan)
When was the *recovered* small data actually built (first stored)?
(Was I using a different version of R back then?)
diagnose(small)$date
If you set the same seed as before, you can even
rename targets without having to build them again.
For an example, see
the "Reproducible data recovery and renaming" section of
https://github.com/ropensci/drake/blob/main/README.md.
}
})

End(Not run)

render_drake_ggraph 111

render_drake_ggraph Visualize the workflow with ggplot2/ggraph using
drake_graph_info() output. [Stable]

Description

This function requires packages ggplot2 and ggraph. Install them with install.packages(c("ggplot2",
"ggraph")).

Usage

render_drake_ggraph(
graph_info,
main = graph_info$default_title,
label_nodes = FALSE,
transparency = TRUE

)

Arguments

graph_info List of data frames generated by drake_graph_info(). There should be 3 data
frames: nodes, edges, and legend_nodes.

main Character string, title of the graph.

label_nodes Logical, whether to label the nodes. If FALSE, the graph will not have any text
next to the nodes, which is recommended for large graphs with lots of targets.

transparency Logical, whether to allow transparency in the rendered graph. Set to FALSE if
you get warnings like "semi-transparency is not supported on this device".

Value

A ggplot2 object, which you can modify with more layers, show with plot(), or save as a file
with ggsave().

See Also

vis_drake_graph(), sankey_drake_graph(), drake_ggraph()

Examples

Not run:
isolate_example("Quarantine side effects.", {
load_mtcars_example() # Get the code with drake_example("mtcars").
if (requireNamespace("ggraph", quietly = TRUE)) {

Instead of jumpting right to vis_drake_graph(), get the data frames
of nodes, edges, and legend nodes.
drake_ggraph(my_plan) # Jump straight to the static graph.
Get the node and edge info that vis_drake_graph() just plotted:

112 render_drake_graph

graph <- drake_graph_info(my_plan)
render_drake_ggraph(graph)

}
})

End(Not run)

render_drake_graph Render a visualization using the data frames generated by
drake_graph_info(). [Stable]

Description

This function is called inside vis_drake_graph(), which typical users call more often.

Usage

render_drake_graph(
graph_info,
file = character(0),
layout = NULL,
direction = NULL,
hover = TRUE,
main = graph_info$default_title,
selfcontained = FALSE,
navigationButtons = TRUE,
ncol_legend = 1,
collapse = TRUE,
on_select = NULL,
level_separation = NULL,
...

)

Arguments

graph_info List of data frames generated by drake_graph_info(). There should be 3 data
frames: nodes, edges, and legend_nodes.

file Name of a file to save the graph. If NULL or character(0), no file is saved and
the graph is rendered and displayed within R. If the file ends in a .png, .jpg,
.jpeg, or .pdf extension, then a static image will be saved. In this case, the
webshot package and PhantomJS are required: install.packages("webshot"); webshot::install_phantomjs().
If the file does not end in a .png, .jpg, .jpeg, or .pdf extension, an HTML file
will be saved, and you can open the interactive graph using a web browser.

layout Deprecated.

direction Deprecated.

render_drake_graph 113

hover Logical, whether to show the command that generated the target when you hover
over a node with the mouse. For imports, the label does not change with hover-
ing.

main Character string, title of the graph.

selfcontained Logical, whether to save the file as a self-contained HTML file (with external
resources base64 encoded) or a file with external resources placed in an adja-
cent directory. If TRUE, pandoc is required. The selfcontained argument only
applies to HTML files. In other words, if file is a PNG, PDF, or JPEG file, for
instance, the point is moot.

navigationButtons

Logical, whether to add navigation buttons with visNetwork::visInteraction(navigationButtons
= TRUE)

ncol_legend Number of columns in the legend nodes. To remove the legend entirely, set
ncol_legend to NULL or 0.

collapse Logical, whether to allow nodes to collapse if you double click on them. Anal-
ogous to visNetwork::visOptions(collapse = TRUE).

on_select defines node selection event handling. Either a string of valid JavaScript that
may be passed to visNetwork::visEvents(), or one of the following: TRUE,
NULL/FALSE. If TRUE , enables the default behavior of opening the link specified
by the on_select_col given to drake_graph_info(). NULL/FALSE disables
the behavior.

level_separation

Numeric, levelSeparation argument to visNetwork::visHierarchicalLayout().
Controls the distance between hierarchical levels. Consider setting if the aspect
ratio of the graph is far from 1. Defaults to 150 through visNetwork.

... Arguments passed to visNetwork().

Details

For enhanced interactivity in the graph, see the mandrake package.

Value

A visNetwork graph.

See Also

vis_drake_graph(), sankey_drake_graph(), drake_ggraph()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
if (requireNamespace("visNetwork", quietly = TRUE)) {
Instead of jumping right to vis_drake_graph(), get the data frames
of nodes, edges, and legend nodes.

114 render_sankey_drake_graph

vis_drake_graph(my_plan) # Jump straight to the interactive graph.
Get the node and edge info that vis_drake_graph() just plotted:
graph <- drake_graph_info(my_plan)
You can pass the data frames right to render_drake_graph()
(as in vis_drake_graph()) or you can create
your own custom visNewtork graph.
render_drake_graph(graph)
}
}
})

End(Not run)

render_sankey_drake_graph

Render a Sankey diagram from drake_graph_info(). [Stable]

Description

This function is called inside sankey_drake_graph(), which typical users call more often. A
legend is unfortunately unavailable for the graph itself, but you can see what all the colors mean
with visNetwork::visNetwork(drake::legend_nodes()).

Usage

render_sankey_drake_graph(
graph_info,
file = character(0),
selfcontained = FALSE,
...

)

Arguments

graph_info List of data frames generated by drake_graph_info(). There should be 3 data
frames: nodes, edges, and legend_nodes.

file Name of a file to save the graph. If NULL or character(0), no file is saved and
the graph is rendered and displayed within R. If the file ends in a .png, .jpg,
.jpeg, or .pdf extension, then a static image will be saved. In this case, the
webshot package and PhantomJS are required: install.packages("webshot"); webshot::install_phantomjs().
If the file does not end in a .png, .jpg, .jpeg, or .pdf extension, an HTML file
will be saved, and you can open the interactive graph using a web browser.

selfcontained Logical, whether to save the file as a self-contained HTML file (with external
resources base64 encoded) or a file with external resources placed in an adjacent
directory. If TRUE, pandoc is required.

... Arguments passed to networkD3::sankeyNetwork().

render_text_drake_graph 115

Value

A visNetwork graph.

See Also

sankey_drake_graph(), vis_drake_graph(), drake_ggraph()

Examples

Not run:
isolate_example("Quarantine side effects.", {
load_mtcars_example() # Get the code with drake_example("mtcars").
if (suppressWarnings(require("knitr"))) {
if (requireNamespace("networkD3", quietly = TRUE)) {
if (requireNamespace("visNetwork", quietly = TRUE)) {
Instead of jumpting right to sankey_drake_graph(), get the data frames
of nodes, edges, and legend nodes.
sankey_drake_graph(my_plan) # Jump straight to the interactive graph.
Show the legend separately.
visNetwork::visNetwork(nodes = drake::legend_nodes())
Get the node and edge info that sankey_drake_graph() just plotted:
graph <- drake_graph_info(my_plan)
You can pass the data frames right to render_sankey_drake_graph()
(as in sankey_drake_graph()) or you can create
your own custom visNewtork graph.
render_sankey_drake_graph(graph)
}
}
}
})

End(Not run)

render_text_drake_graph

Show a workflow graph as text in your terminal window using
drake_graph_info() output. [Stable]

Description

This function is called inside text_drake_graph(), which typical users call more often. See
?text_drake_graph for details.

Usage

render_text_drake_graph(graph_info, nchar = 1L, print = TRUE)

116 rescue_cache

Arguments

graph_info List of data frames generated by drake_graph_info(). There should be 3 data
frames: nodes, edges, and legend_nodes.

nchar For each node, maximum number of characters of the node label to show. Can
be 0, in which case each node is a colored box instead of a node label. Caution:
nchar > 0 will mess with the layout.

print Logical. If TRUE, the graph will print to the console via message(). If FALSE,
nothing is printed. However, you still have the visualization because text_drake_graph()
and render_text_drake_graph() still invisibly return a character string that
you can print yourself with message().

Value

The lines of text in the visualization.

See Also

text_drake_graph(), vis_drake_graph(), sankey_drake_graph(), drake_ggraph()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
pkgs <- requireNamespace("txtplot", quietly = TRUE) &&

requireNamespace("visNetwork", quietly = TRUE)
if (pkgs) {
Instead of jumpting right to vis_drake_graph(), get the data frames
of nodes, edges, and legend nodes.
text_drake_graph(my_plan) # Jump straight to the interactive graph.
Get the node and edge info that vis_drake_graph() just plotted:
graph <- drake_graph_info(my_plan)
You can pass the data frames right to render_text_drake_graph().
render_text_drake_graph(graph)
}
}
})

End(Not run)

rescue_cache Try to repair a drake cache that is prone to throwing storr-related
errors. [Questioning]

Description

Sometimes, storr caches may have dangling orphaned files that prevent you from loading or clean-
ing. This function tries to remove those files so you can use the cache normally again.

rescue_cache 117

Usage

rescue_cache(
targets = NULL,
path = NULL,
search = NULL,
verbose = NULL,
force = FALSE,
cache = drake::drake_cache(path = path),
jobs = 1,
garbage_collection = FALSE

)

Arguments

targets Character vector, names of the targets to rescue. As with many other drake util-
ity functions, the word target is defined generally in this case, encompassing
imports as well as true targets. If targets is NULL, everything in the cache is
rescued.

path Character. Set path to the path of a storr::storr_rds() cache to retrieve a
specific cache generated by storr::storr_rds() or drake::new_cache(). If
the path argument is NULL, drake_cache() searches up through parent directo-
ries to find a folder called .drake/.

search Deprecated.

verbose Deprecated on 2019-09-11.

force Deprecated.

cache A storr cache object.

jobs Number of jobs for light parallelism (disabled on Windows).
garbage_collection

Logical, whether to do garbage collection as a final step. See drake_gc() and
clean() for details.

Value

Nothing.

See Also

drake_cache(), cached(), drake_gc(), clean()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
make(my_plan) # Run the project, build targets. This creates the cache.
Remove dangling cache files that could cause errors.

118 r_make

rescue_cache(jobs = 2)
Alternatively, just rescue targets 'small' and 'large'.
Rescuing specific targets is usually faster.
rescue_cache(targets = c("small", "large"))
}
})

End(Not run)

r_make Launch a drake function in a fresh new R process [Stable]

Description

The r_*() functions, such as r_make(), enhance reproducibility by launching a drake function in
a separate R process.

Usage

r_make(source = NULL, r_fn = NULL, r_args = list())

r_drake_build(
target,
character_only = FALSE,
...,
source = NULL,
r_fn = NULL,
r_args = list()

)

r_outdated(..., source = NULL, r_fn = NULL, r_args = list())

r_recoverable(..., source = NULL, r_fn = NULL, r_args = list())

r_missed(..., source = NULL, r_fn = NULL, r_args = list())

r_deps_target(
target,
character_only = FALSE,
...,
source = NULL,
r_fn = NULL,
r_args = list()

)

r_drake_graph_info(..., source = NULL, r_fn = NULL, r_args = list())

r_vis_drake_graph(..., source = NULL, r_fn = NULL, r_args = list())

r_make 119

r_sankey_drake_graph(..., source = NULL, r_fn = NULL, r_args = list())

r_drake_ggraph(..., source = NULL, r_fn = NULL, r_args = list())

r_text_drake_graph(..., source = NULL, r_fn = NULL, r_args = list())

r_predict_runtime(..., source = NULL, r_fn = NULL, r_args = list())

r_predict_workers(..., source = NULL, r_fn = NULL, r_args = list())

Arguments

source Path to an R script file that loads packages, functions, etc. and returns a drake_config()
object. There are 3 ways to set this path.

1. Pass an explicit file path.
2. Call options(drake_source = "path_to_your_script.R").
3. Just create a file called "_drake.R" in your working directory and supply

nothing to source.

r_fn A callr function such as callr::r or callr::r_bg. Example: r_make(r_fn
= callr::r).

r_args List of arguments to r_fn, not including func or args. Example: r_make(r_fn
= callr::r_bg, r_args = list(stdout = "stdout.log")).

target Name of the target.

character_only Logical, whether name should be treated as a character or a symbol (just like
character.only in library()).

... Arguments to the inner function. For example, if you want to call r_vis_drake_graph(),
the inner function is vis_drake_graph(), and selfcontained is an example
argument you could supply to the ellipsis.

Details

drake searches your environment to detect dependencies, so functions like make(), outdated(),
etc. are designed to run in fresh clean R sessions. Wrappers r_make(), r_outdated(), etc. run
reproducibly even if your current R session is old and stale.

r_outdated() runs the four steps below. r_make() etc. are similar.

1. Launch a new callr::r() session.

2. In that fresh session, run the R script from the source argument. This script loads packages,
functions, global options, etc. and calls drake_config() at the very end. drake_config() is
the preprocessing step of make(), and it accepts all the same arguments as make() (e.g. plan
and targets).

3. In that same session, run outdated() with the config argument from step 2.

4. Return the result back to main process (e.g. your interactive R session).

120 sankey_drake_graph

Recovery

make(recover = TRUE, recoverable = TRUE) powers automated data recovery. The default of
recover is FALSE because targets recovered from the distant past may have been generated with
earlier versions of R and earlier package environments that no longer exist.

How it works: if recover is TRUE, drake tries to salvage old target values from the cache instead
of running commands from the plan. A target is recoverable if

1. There is an old value somewhere in the cache that shares the command, dependencies, etc. of
the target about to be built.

2. The old value was generated with make(recoverable = TRUE).

If both conditions are met, drake will

1. Assign the most recently-generated admissible data to the target, and
2. skip the target’s command.

See Also

make()

Examples

Not run:
isolate_example("quarantine side effects", {
if (requireNamespace("knitr", quietly = TRUE)) {
writeLines(

c(
"library(drake)",
"load_mtcars_example()",
"drake_config(my_plan, targets = c(\"small\", \"large\"))"

),
"_drake.R" # default value of the `source` argument

)
cat(readLines("_drake.R"), sep = "\n")
r_outdated()
r_make()
r_outdated()
}
})

End(Not run)

sankey_drake_graph Show a Sankey graph of your drake project. [Stable]

Description

To save time for repeated plotting, this function is divided into drake_graph_info() and render_sankey_drake_graph().
A legend is unfortunately unavailable for the graph itself, but you can see what all the colors mean
with visNetwork::visNetwork(drake::legend_nodes()).

sankey_drake_graph 121

Usage

sankey_drake_graph(
...,
file = character(0),
selfcontained = FALSE,
build_times = "build",
digits = 3,
targets_only = FALSE,
from = NULL,
mode = c("out", "in", "all"),
order = NULL,
subset = NULL,
make_imports = TRUE,
from_scratch = FALSE,
group = NULL,
clusters = NULL,
show_output_files = TRUE,
config = NULL

)

Arguments

... Arguments to make(), such as plan and targets.

file Name of a file to save the graph. If NULL or character(0), no file is saved and
the graph is rendered and displayed within R. If the file ends in a .png, .jpg,
.jpeg, or .pdf extension, then a static image will be saved. In this case, the
webshot package and PhantomJS are required: install.packages("webshot"); webshot::install_phantomjs().
If the file does not end in a .png, .jpg, .jpeg, or .pdf extension, an HTML file
will be saved, and you can open the interactive graph using a web browser.

selfcontained Logical, whether to save the file as a self-contained HTML file (with external
resources base64 encoded) or a file with external resources placed in an adjacent
directory. If TRUE, pandoc is required.

build_times Character string or logical. If character, the choices are 1. "build": runtime of
the command plus the time it take to store the target or import. 2. "command":
just the runtime of the command. 3. "none": no build times. If logical,
build_times selects whether to show the times from ‘build_times(..., type =
"build")“ or use no build times at all. See build_times() for details.

digits Number of digits for rounding the build times

targets_only Logical, whether to skip the imports and only include the targets in the workflow
plan.

from Optional collection of target/import names. If from is nonempty, the graph will
restrict itself to a neighborhood of from. Control the neighborhood with mode
and order.

mode Which direction to branch out in the graph to create a neighborhood around
from. Use "in" to go upstream, "out" to go downstream, and "all" to go both
ways and disregard edge direction altogether.

122 sankey_drake_graph

order How far to branch out to create a neighborhood around from. Defaults to as
far as possible. If a target is in the neighborhood, then so are all of its custom
file_out() files if show_output_files is TRUE. That means the actual graph
order may be slightly greater than you might expect, but this ensures consistency
between show_output_files = TRUE and show_output_files = FALSE.

subset Optional character vector. Subset of targets/imports to display in the graph.
Applied after from, mode, and order. Be advised: edges are only kept for
adjacent nodes in subset. If you do not select all the intermediate nodes, edges
will drop from the graph.

make_imports Logical, whether to make the imports first. Set to FALSE to increase speed and
risk using obsolete information.

from_scratch Logical, whether to assume all the targets will be made from scratch on the next
make(). Makes all targets outdated, but keeps information about build progress
in previous make()s.

group Optional character scalar, name of the column used to group nodes into columns.
All the columns names of your original drake plan are choices. The other
choices (such as "status") are column names in the nodes . To group nodes
into clusters in the graph, you must also supply the clusters argument.

clusters Optional character vector of values to cluster on. These values must be elements
of the column of the nodes data frame that you specify in the group argument
to drake_graph_info().

show_output_files

Logical, whether to include file_out() files in the graph.

config Deprecated.

Value

A visNetwork graph.

See Also

render_sankey_drake_graph(), vis_drake_graph(), drake_ggraph(), text_drake_graph()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
if (requireNamespace("networkD3", quietly = TRUE)) {
if (requireNamespace("visNetwork", quietly = TRUE)) {
Plot the network graph representation of the workflow.
sankey_drake_graph(my_plan)
Show the legend separately.
visNetwork::visNetwork(nodes = drake::legend_nodes())
make(my_plan) # Run the project, build the targets.
sankey_drake_graph(my_plan) # The black nodes from before are now green.
Plot a subgraph of the workflow.

show_source 123

sankey_drake_graph(my_plan, from = c("small", "reg2"))
}
}
}
})

End(Not run)

show_source Show how a target/import was produced. [Stable]

Description

Show the command that produced a target or indicate that the object or file was imported.

Usage

show_source(target, config, character_only = FALSE)

Arguments

target Symbol denoting the target or import or a character vector if character_only is
TRUE.

config A drake_config() list.

character_only Logical, whether to interpret target as a symbol (FALSE) or character vector
(TRUE).

Examples

Not run:
isolate_example("contain side effects", {
plan <- drake_plan(x = sample.int(15))
cache <- storr::storr_environment() # custom in-memory cache
make(plan, cache = cache)
config <- drake_config(plan, cache = cache, history = FALSE)
show_source(x, config)
})

End(Not run)

124 subtargets

subtargets List sub-targets [Stable]

Description

List the sub-targets of a dynamic target.

Usage

subtargets(
target = NULL,
character_only = FALSE,
cache = drake::drake_cache(path = path),
path = NULL

)

Arguments

target Character string or symbol, depending on character_only. Name of a dynamic
target.

character_only Logical, whether target should be treated as a character or a symbol. Just like
character.only in library().

cache drake cache. See new_cache(). If supplied, path is ignored.

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

Value

Character vector of sub-target names

See Also

get_trace(), read_trace()

Examples

Not run:
isolate_example("dynamic branching", {
plan <- drake_plan(

w = c("a", "a", "b", "b"),
x = seq_len(4),
y = target(x + 1, dynamic = map(x)),
z = target(sum(x) + sum(y), dynamic = group(x, y, .by = w))

)
make(plan)
subtargets(y)
subtargets(z)
readd(x)
readd(y)

target 125

readd(z)
})

End(Not run)

target Customize a target in drake_plan(). [Stable]

Description

The target() function is a way to configure individual targets in a drake plan. Its most common
use is to invoke static branching and dynamic branching, and it can also set the values of custom
columns such as format, elapsed, retries, and max_expand. Details are at https://books.ropensci.org/drake/plans.html#special-columns.
Note: drake_plan(my_target = my_command()) is equivalent to drake_plan(my_target = target(my_command()).

Usage

target(command = NULL, transform = NULL, dynamic = NULL, ...)

Arguments

command The command to build the target.

transform A call to map(), split(), cross(), or combine() to apply a static transforma-
tion. Details: https://books.ropensci.org/drake/static.html

dynamic A call to map(), cross(), or group() to apply a dynamic transformation. De-
tails: https://books.ropensci.org/drake/dynamic.html

... Optional columns of the plan for a given target. See the Columns section of this
help file for a selection of special columns that drake understands.

Details

target() must be called inside drake_plan(). It is invalid otherwise.

Value

A one-row workflow plan data frame with the named arguments as columns.

Columns

drake_plan() creates a special data frame. At minimum, that data frame must have columns
target and command with the target names and the R code chunks to build them, respectively.

You can add custom columns yourself, either with target() (e.g. drake_plan(y = target(f(x),
transform = map(c(1, 2)), format = "fst"))) or by appending columns post-hoc (e.g. plan$col
<- vals).

Some of these custom columns are special. They are optional, but drake looks for them at various
points in the workflow.

126 target

• transform: a call to map(), split(), cross(), or combine() to create and manipulate large
collections of targets. Details: (https://books.ropensci.org/drake/plans.html#large-plans).
nolint

• format: set a storage format to save big targets more efficiently. See the "Formats" section of
this help file for more details.

• trigger: rule to decide whether a target needs to run. It is recommended that you define this
one with target(). Details: https://books.ropensci.org/drake/triggers.html.

• hpc: logical values (TRUE/FALSE/NA) whether to send each target to parallel workers. Visit
https://books.ropensci.org/drake/hpc.html#selectivity to learn more.

• resources: target-specific lists of resources for a computing cluster. See https://books.ropensci.org/drake/hpc.html#advanced-options
for details.

• caching: overrides the caching argument of make() for each target individually. Possible
values:

– "main": tell the main process to store the target in the cache.
– "worker": tell the HPC worker to store the target in the cache.
– NA: default to the caching argument of make().

• elapsed and cpu: number of seconds to wait for the target to build before timing out (elapsed
for elapsed time and cpu for CPU time).

• retries: number of times to retry building a target in the event of an error.
• seed: an optional pseudo-random number generator (RNG) seed for each target. drake usu-

ally comes up with its own unique reproducible target-specific seeds using the global seed (the
seed argument to make() and drake_config()) and the target names, but you can overwrite
these automatic seeds. NA entries default back to drake’s automatic seeds.

• max_expand: for dynamic branching only. Same as the max_expand argument of make(), but
on a target-by-target basis. Limits the number of sub-targets created for a given target.

Keywords

drake_plan() understands special keyword functions for your commands. With the exception of
target(), each one is a proper function with its own help file.

• target(): give the target more than just a command. Using target(), you can apply a trans-
formation (examples: https://books.ropensci.org/drake/plans.html#large-plans),
nolint supply a trigger (https://books.ropensci.org/drake/triggers.html), # nolint
or set any number of custom columns.

• file_in(): declare an input file dependency.
• file_out(): declare an output file to be produced when the target is built.
• knitr_in(): declare a knitr file dependency such as an R Markdown (*.Rmd) or R LaTeX

(*.Rnw) file.
• ignore(): force drake to entirely ignore a piece of code: do not track it for changes and do

not analyze it for dependencies.
• no_deps(): tell drake to not track the dependencies of a piece of code. drake still tracks the

code itself for changes.
• id_chr(): Get the name of the current target.
• drake_envir(): get the environment where drake builds targets. Intended for advanced cus-

tom memory management.

target 127

Formats

Specialized target formats increase efficiency and flexibility. Some allow you to save specialized ob-
jects like keras models, while others increase the speed while conserving storage and memory. You
can declare target-specific formats in the plan (e.g. drake_plan(x = target(big_data_frame,
format = "fst"))) or supply a global default format for all targets in make(). Either way, most
formats have specialized installation requirements (e.g. R packages) that are not installed with
drake by default. You will need to install them separately yourself. Available formats:

• "file": Dynamic files. To use this format, simply create local files and directories your-
self and then return a character vector of paths as the target’s value. Then, drake will
watch for changes to those files in subsequent calls to make(). This is a more flexible al-
ternative to file_in() and file_out(), and it is compatible with dynamic branching. See
https://github.com/ropensci/drake/pull/1178 for an example.

• "fst": save big data frames fast. Requires the fst package. Note: this format strips non-
data-frame attributes such as the

• "fst_tbl": Like "fst", but for tibble objects. Requires the fst and tibble packages.
Strips away non-data-frame non-tibble attributes.

• "fst_dt": Like "fst" format, but for data.table objects. Requires the fst and data.table
packages. Strips away non-data-frame non-data-table attributes.

• "diskframe": Stores disk.frame objects, which could potentially be larger than memory.
Requires the fst and disk.frame packages. Coerces objects to disk.frames. Note: disk.frame
objects get moved to the drake cache (a subfolder of .drake/ for most workflows). To ensure
this data transfer is fast, it is best to save your disk.frame objects to the same physical storage
drive as the drake cache, as.disk.frame(your_dataset, outdir = drake_tempfile()).

• "keras": save Keras models as HDF5 files. Requires the keras package.

• "qs": save any R object that can be properly serialized with the qs package. Requires the qs
package. Uses qsave() and qread(). Uses the default settings in qs version 0.20.2.

• "rds": save any R object that can be properly serialized. Requires R version >= 3.5.0 due to
ALTREP. Note: the "rds" format uses gzip compression, which is slow. "qs" is a superior
format.

See Also

drake_plan(), make()

Examples

Use target() to create your own custom columns in a drake plan.
See ?triggers for more on triggers.
drake_plan(

website_data = target(
download_data("www.your_url.com"),
trigger = "always",
custom_column = 5

),
analysis = analyze(website_data)

)
models <- c("glm", "hierarchical")

128 text_drake_graph

plan <- drake_plan(
data = target(
get_data(x),
transform = map(x = c("simulated", "survey"))

),
analysis = target(

analyze_data(data, model),
transform = cross(data, model = !!models, .id = c(x, model))

),
summary = target(

summarize_analysis(analysis),
transform = map(analysis, .id = c(x, model))

),
results = target(

bind_rows(summary),
transform = combine(summary, .by = data)

)
)
plan
if (requireNamespace("styler", quietly = TRUE)) {

print(drake_plan_source(plan))
}

text_drake_graph Show a workflow graph as text in your terminal window. [Stable]

Description

This is a low-tech version of vis_drake_graph() and friends. It is designed for when you do
not have access to the usual graphics devices for viewing visuals in an interactive R session: for
example, if you are logged into a remote machine with SSH and you do not have access to X
Window support.

Usage

text_drake_graph(
...,
from = NULL,
mode = c("out", "in", "all"),
order = NULL,
subset = NULL,
targets_only = FALSE,
make_imports = TRUE,
from_scratch = FALSE,
group = NULL,
clusters = NULL,
show_output_files = TRUE,
nchar = 1L,
print = TRUE,

text_drake_graph 129

config = NULL
)

Arguments

... Arguments to make(), such as plan and targets.

from Optional collection of target/import names. If from is nonempty, the graph will
restrict itself to a neighborhood of from. Control the neighborhood with mode
and order.

mode Which direction to branch out in the graph to create a neighborhood around
from. Use "in" to go upstream, "out" to go downstream, and "all" to go both
ways and disregard edge direction altogether.

order How far to branch out to create a neighborhood around from. Defaults to as
far as possible. If a target is in the neighborhood, then so are all of its custom
file_out() files if show_output_files is TRUE. That means the actual graph
order may be slightly greater than you might expect, but this ensures consistency
between show_output_files = TRUE and show_output_files = FALSE.

subset Optional character vector. Subset of targets/imports to display in the graph.
Applied after from, mode, and order. Be advised: edges are only kept for
adjacent nodes in subset. If you do not select all the intermediate nodes, edges
will drop from the graph.

targets_only Logical, whether to skip the imports and only include the targets in the workflow
plan.

make_imports Logical, whether to make the imports first. Set to FALSE to increase speed and
risk using obsolete information.

from_scratch Logical, whether to assume all the targets will be made from scratch on the next
make(). Makes all targets outdated, but keeps information about build progress
in previous make()s.

group Optional character scalar, name of the column used to group nodes into columns.
All the columns names of your original drake plan are choices. The other
choices (such as "status") are column names in the nodes . To group nodes
into clusters in the graph, you must also supply the clusters argument.

clusters Optional character vector of values to cluster on. These values must be elements
of the column of the nodes data frame that you specify in the group argument
to drake_graph_info().

show_output_files

Logical, whether to include file_out() files in the graph.

nchar For each node, maximum number of characters of the node label to show. Can
be 0, in which case each node is a colored box instead of a node label. Caution:
nchar > 0 will mess with the layout.

print Logical. If TRUE, the graph will print to the console via message(). If FALSE,
nothing is printed. However, you still have the visualization because text_drake_graph()
and render_text_drake_graph() still invisibly return a character string that
you can print yourself with message().

config Deprecated.

130 tracked

Value

A visNetwork graph.

See Also

render_text_drake_graph(), vis_drake_graph(), sankey_drake_graph(), drake_ggraph()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
Plot the network graph representation of the workflow.
pkg <- requireNamespace("txtplot", quietly = TRUE) &&

requireNamespace("visNetwork", quietly = TRUE)
if (pkg) {
text_drake_graph(my_plan)
make(my_plan) # Run the project, build the targets.
text_drake_graph(my_plan) # The black nodes from before are now green.
}
}
})

End(Not run)

tracked List the targets and imports that are reproducibly tracked. [Stable]

Description

List all the spec in your project’s dependency network.

Usage

tracked(config)

Arguments

config An output list from drake_config().

Value

A character vector with the names of reproducibly-tracked targets.

transformations 131

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Load the canonical example for drake.
List all the targets/imports that are reproducibly tracked.
config <- drake_config(my_plan)
tracked(config)
}
})

End(Not run)

transformations Transformations in drake_plan(). [Stable]

Description

In drake_plan(), you can define whole batches of targets with transformations such as map(),
split(), cross(), and combine().

Arguments

... Grouping variables. New grouping variables must be supplied with their names
and values, existing grouping variables can be given as symbols without any
values assigned. For dynamic branching, the entries in ... must be unnamed
symbols with no values supplied, and they must be the names of targets.

.data A data frame of new grouping variables with grouping variable names as column
names and values as elements.

.names Literal character vector of names for the targets. Must be the same length as the
targets generated.

.id Symbol or vector of symbols naming grouping variables to incorporate into tar-
get names. Useful for creating short target names. Set .id = FALSE to use integer
indices as target name suffixes.

.tag_in A symbol or vector of symbols. Tags assign targets to grouping variables. Use
.tag_in to assign untransformed targets to grouping variables.

.tag_out Just like .tag_in, except that .tag_out assigns transformed targets to grouping
variables.

slice Number of slices into which split() partitions the data.

margin Which margin to take the slices in split(). Same meaning as the MARGIN argu-
ment of apply().

drop Logical, whether to drop a dimension if its length is 1. Same meaning as
mtcars[, 1L, drop = TRUE] versus mtcars[, 1L, drop = TRUE].

132 transformations

.by Symbol or vector of symbols of grouping variables. combine() aggregates/groups
targets by the grouping variables in .by. For dynamic branching, .by can only
take one variable at a time, and that variable must be a vector. Ideally, it should
take little space in memory.

.trace Symbol or vector of symbols for the dynamic trace. The dynamic trace allows
you to keep track of the values of dynamic dependencies are associated with
individual sub-targets. For combine(), .trace must either be empty or the
same as the variable given for .by. See get_trace() and read_trace() for
examples and other details.

Details

For details, see https://books.ropensci.org/drake/plans.html#large-plans.

Transformations

drake has special syntax for generating large plans. Your code will look something like drake_plan(y = target(f(x), transform = map(x = c(1, 2, 3)))
You can read about this interface at https://books.ropensci.org/drake/plans.html#large-plans.
nolint

Static branching

In static branching, you define batches of targets based on information you know in advance. Over-
all usage looks like drake_plan(<x> = target(<...>, transform = <call>), where

• <x> is the name of the target or group of targets.
• <...> is optional arguments to target().
• <call> is a call to one of the transformation functions.

Transformation function usage:

• map(..., .data, .names, .id, .tag_in, .tag_out)

• split(..., slices, margin = 1L, drop = FALSE, .names, .tag_in, .tag_out) # nolint

• cross(..., .data, .names, .id, .tag_in, .tag_out)

• combine(..., .by, .names, .id, .tag_in, .tag_out)

Dynamic branching

• map(..., .trace)

• cross(..., .trace)

• group(..., .by, .trace)

map() and cross() create dynamic sub-targets from the variables supplied to the dots. As with
static branching, the variables supplied to map() must all have equal length. group(f(data), .by
= x) makes new dynamic sub-targets from data. Here, data can be either static or dynamic. If
data is dynamic, group() aggregates existing sub-targets. If data is static, group() splits data
into multiple subsets based on the groupings from .by.

Differences from static branching:

transformations 133

• ... must contain unnamed symbols with no values supplied, and they must be the names of
targets.

• Arguments .id, .tag_in, and .tag_out no longer apply.

Examples

Static branching
models <- c("glm", "hierarchical")
plan <- drake_plan(

data = target(
get_data(x),
transform = map(x = c("simulated", "survey"))

),
analysis = target(

analyze_data(data, model),
transform = cross(data, model = !!models, .id = c(x, model))

),
summary = target(

summarize_analysis(analysis),
transform = map(analysis, .id = c(x, model))

),
results = target(

bind_rows(summary),
transform = combine(summary, .by = data)

)
)
plan
if (requireNamespace("styler")) {

print(drake_plan_source(plan))
}
Static splitting
plan <- drake_plan(

analysis = target(
analyze(data),
transform = split(data, slices = 3L, margin = 1L, drop = FALSE)

)
)
print(plan)
if (requireNamespace("styler", quietly = TRUE)) {

print(drake_plan_source(plan))
}
Static tags:
drake_plan(

x = target(
command,
transform = map(y = c(1, 2), .tag_in = from, .tag_out = c(to, out))

),
trace = TRUE

)
plan <- drake_plan(

survey = target(
survey_data(x),

134 transform_plan

transform = map(x = c(1, 2), .tag_in = source, .tag_out = dataset)
),
download = target(

download_data(),
transform = map(y = c(5, 6), .tag_in = source, .tag_out = dataset)

),
analysis = target(

analyze(dataset),
transform = map(dataset)

),
results = target(

bind_rows(analysis),
transform = combine(analysis, .by = source)

)
)
plan
if (requireNamespace("styler", quietly = TRUE)) {

print(drake_plan_source(plan))
}

transform_plan Transform a plan [Stable]

Description

Evaluate the map(), cross(), split() and combine() operations in the transform column of a
drake plan.

Usage

transform_plan(
plan,
envir = parent.frame(),
trace = FALSE,
max_expand = NULL,
tidy_eval = TRUE

)

Arguments

plan A drake plan with a transform column

envir Environment for tidy evaluation.

trace Logical, whether to add columns to show what happens during target transfor-
mations.

max_expand Positive integer, optional. max_expand is the maximum number of targets to
generate in each map(), split(), or cross() transform. Useful if you have
a massive plan and you want to test and visualize a strategic subset of tar-
gets before scaling up. Note: the max_expand argument of drake_plan()

transform_plan 135

and transform_plan() is for static branching only. The dynamic branching
max_expand is an argument of make() and drake_config().

tidy_eval Logical, whether to use tidy evaluation (e.g. unquoting/!!) when resolving
commands. Tidy evaluation in transformations is always turned on regardless of
the value you supply to this argument.

Details
https://books.ropensci.org/drake/plans.html#large-plans # nolint

See Also

drake_plan, map, split, cross, combine

Examples

plan1 <- drake_plan(
y = target(
f(x),
transform = map(x = c(1, 2))

),
transform = FALSE

)
plan2 <- drake_plan(

z = target(
g(y),
transform = map(y, .id = x)

),
transform = FALSE

)
plan <- bind_plans(plan1, plan2)
transform_plan(plan)
models <- c("glm", "hierarchical")
plan <- drake_plan(

data = target(
get_data(x),
transform = map(x = c("simulated", "survey"))

),
analysis = target(

analyze_data(data, model),
transform = cross(data, model = !!models, .id = c(x, model))

),
summary = target(

summarize_analysis(analysis),
transform = map(analysis, .id = c(x, model))

),
results = target(

bind_rows(summary),
transform = combine(summary, .by = data)

)
)
plan

136 trigger

if (requireNamespace("styler", quietly = TRUE)) {
print(drake_plan_source(plan))

}
Tags:
drake_plan(

x = target(
command,
transform = map(y = c(1, 2), .tag_in = from, .tag_out = c(to, out))

),
trace = TRUE

)
plan <- drake_plan(

survey = target(
survey_data(x),
transform = map(x = c(1, 2), .tag_in = source, .tag_out = dataset)

),
download = target(

download_data(),
transform = map(y = c(5, 6), .tag_in = source, .tag_out = dataset)

),
analysis = target(

analyze(dataset),
transform = map(dataset)

),
results = target(

bind_rows(analysis),
transform = combine(analysis, .by = source)

)
)
plan
if (requireNamespace("styler", quietly = TRUE)) {

print(drake_plan_source(plan))
}

trigger Customize the decision rules for rebuilding targets [Stable]

Description

Use this function inside a target’s command in your drake_plan() or the trigger argument to
make() or drake_config(). For details, see the chapter on triggers in the user manual: https://books.ropensci.org/drake/triggers.html

Usage

trigger(
command = TRUE,
depend = TRUE,
file = TRUE,
seed = TRUE,
format = TRUE,

trigger 137

condition = FALSE,
change = NULL,
mode = c("whitelist", "blacklist", "condition")

)

Arguments

command Logical, whether to rebuild the target if the drake_plan() command changes.

depend Logical, whether to rebuild if a non-file dependency changes.

file Logical, whether to rebuild the target if a file_in()/file_out()/knitr_in()
file changes. Also applies to external data tracked with target(format = "file").

seed Logical, whether to rebuild the target if the seed changes. Only makes a differ-
ence if you set a custom seed column in your drake_plan() at some point in
your workflow.

format Logical, whether to rebuild the target if the choice of specialized data format
changes: for example, if you use target(format = "qs") one instance and
target(format = "fst") the next. See https://books.ropensci.org/drake/plans.html#special-data-formats-for-targets
nolint for details on formats.

condition R code (expression or language object) that returns a logical. The target will
rebuild if the code evaluates to TRUE.

change R code (expression or language object) that returns any value. The target will
rebuild if that value is different from last time or not already cached.

mode A character scalar equal to "whitelist" (default) or "blacklist" or "condition".
With the mode argument, you can choose how the condition trigger factors into
the decision to build or skip the target. Here are the options.

• "whitelist" (default): we rebuild the target whenever condition evalu-
ates to TRUE. Otherwise, we defer to the other triggers. This behavior is the
same as the decision rule described in the "Details" section of this help file.

• "blacklist": we skip the target whenever condition evaluates to FALSE.
Otherwise, we defer to the other triggers.

• "condition": here, the condition trigger is the only decider, and we ig-
nore all the other triggers. We rebuild target whenever condition evaluates
to TRUE and skip it whenever condition evaluates to FALSE.

Details

A target always builds if it has not been built before. Triggers allow you to customize the conditions
under which a pre-existing target rebuilds. By default, the target will rebuild if and only if:

• Any of command, depend, or file is TRUE, or

• condition evaluates to TRUE, or

• change evaluates to a value different from last time. The above steps correspond to the
"whitelist" decision rule. You can select other decision rules with the mode argument de-
scribed in this help file. On another note, there may be a slight efficiency loss if you set
complex triggers for change and/or condition because drake needs to load any required
dependencies into memory before evaluating these triggers.

138 use_drake

Value

A list of trigger specification details that drake processes internally when it comes time to decide
whether to build the target.

See Also

drake_plan(), make()

Examples

A trigger is just a set of decision rules
to decide whether to build a target.
trigger()
This trigger will build a target on Tuesdays
and when the value of an online dataset changes.
trigger(condition = today() == "Tuesday", change = get_online_dataset())
Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
You can use a global trigger argument:
for example, to always run everything.
make(my_plan, trigger = trigger(condition = TRUE))
make(my_plan, trigger = trigger(condition = TRUE))
You can also define specific triggers for each target.
plan <- drake_plan(

x = sample.int(15),
y = target(

command = x + 1,
trigger = trigger(depend = FALSE)

)
)
Now, when x changes, y will not.
make(plan)
make(plan)
plan$command[1] <- "sample.int(16)" # change x
make(plan)
}
})

End(Not run)

use_drake Use drake in a project [Questioning]

Description

Add top-level R script files to use drake in your data analysis project. For details, read https://books.ropensci.org/drake/projects.html

vis_drake_graph 139

Usage

use_drake(open = interactive())

Arguments

open Logical, whether to open make.R for editing.

Details

Files written:

1. make.R: a suggested main R script for batch mode.
2. _drake.R: a configuration R script for the r_*() functions documented at # nolint https://books.ropensci.org/drake/projects.html#safer-interactivity.

nolint Remarks:

• There is nothing magical about the name, make.R. You can call it whatever you want.

• Other supporting scripts, such as R/packages.R, R/functions.R, and R/plan.R, are not in-
cluded.

• You can find examples at https://github.com/wlandau/drake-examples and download
examples with drake_example() (e.g. drake_example("main")).

Examples

Not run:
use_drake(open = FALSE) # nolint

End(Not run)

vis_drake_graph Show an interactive visual network representation of your drake
project. [Stable]

Description

It is good practice to visualize the dependency graph before running the targets.

Usage

vis_drake_graph(
...,
file = character(0),
selfcontained = FALSE,
build_times = "build",
digits = 3,
targets_only = FALSE,
font_size = 20,
layout = NULL,

140 vis_drake_graph

main = NULL,
direction = NULL,
hover = FALSE,
navigationButtons = TRUE,
from = NULL,
mode = c("out", "in", "all"),
order = NULL,
subset = NULL,
ncol_legend = 1,
full_legend = FALSE,
make_imports = TRUE,
from_scratch = FALSE,
group = NULL,
clusters = NULL,
show_output_files = TRUE,
collapse = TRUE,
on_select_col = NULL,
on_select = NULL,
level_separation = NULL,
config = NULL

)

Arguments

... Arguments to make(), such as plan and targets.

file Name of a file to save the graph. If NULL or character(0), no file is saved and
the graph is rendered and displayed within R. If the file ends in a .png, .jpg,
.jpeg, or .pdf extension, then a static image will be saved. In this case, the
webshot package and PhantomJS are required: install.packages("webshot"); webshot::install_phantomjs().
If the file does not end in a .png, .jpg, .jpeg, or .pdf extension, an HTML file
will be saved, and you can open the interactive graph using a web browser.

selfcontained Logical, whether to save the file as a self-contained HTML file (with external
resources base64 encoded) or a file with external resources placed in an adja-
cent directory. If TRUE, pandoc is required. The selfcontained argument only
applies to HTML files. In other words, if file is a PNG, PDF, or JPEG file, for
instance, the point is moot.

build_times Character string or logical. If character, the choices are 1. "build": runtime of
the command plus the time it take to store the target or import. 2. "command":
just the runtime of the command. 3. "none": no build times. If logical,
build_times selects whether to show the times from ‘build_times(..., type =
"build")“ or use no build times at all. See build_times() for details.

digits Number of digits for rounding the build times

targets_only Logical, whether to skip the imports and only include the targets in the workflow
plan.

font_size Numeric, font size of the node labels in the graph

layout Deprecated.

vis_drake_graph 141

main Character string, title of the graph.

direction Deprecated.

hover Logical, whether to show text (file contents, commands, etc.) when you hover
your cursor over a node.

navigationButtons

Logical, whether to add navigation buttons with visNetwork::visInteraction(navigationButtons
= TRUE)

from Optional collection of target/import names. If from is nonempty, the graph will
restrict itself to a neighborhood of from. Control the neighborhood with mode
and order.

mode Which direction to branch out in the graph to create a neighborhood around
from. Use "in" to go upstream, "out" to go downstream, and "all" to go both
ways and disregard edge direction altogether.

order How far to branch out to create a neighborhood around from. Defaults to as
far as possible. If a target is in the neighborhood, then so are all of its custom
file_out() files if show_output_files is TRUE. That means the actual graph
order may be slightly greater than you might expect, but this ensures consistency
between show_output_files = TRUE and show_output_files = FALSE.

subset Optional character vector. Subset of targets/imports to display in the graph.
Applied after from, mode, and order. Be advised: edges are only kept for
adjacent nodes in subset. If you do not select all the intermediate nodes, edges
will drop from the graph.

ncol_legend Number of columns in the legend nodes. To remove the legend entirely, set
ncol_legend to NULL or 0.

full_legend Logical. If TRUE, all the node types are printed in the legend. If FALSE, only the
node types used are printed in the legend.

make_imports Logical, whether to make the imports first. Set to FALSE to increase speed and
risk using obsolete information.

from_scratch Logical, whether to assume all the targets will be made from scratch on the next
make(). Makes all targets outdated, but keeps information about build progress
in previous make()s.

group Optional character scalar, name of the column used to group nodes into columns.
All the columns names of your original drake plan are choices. The other
choices (such as "status") are column names in the nodes . To group nodes
into clusters in the graph, you must also supply the clusters argument.

clusters Optional character vector of values to cluster on. These values must be elements
of the column of the nodes data frame that you specify in the group argument
to drake_graph_info().

show_output_files

Logical, whether to include file_out() files in the graph.

collapse Logical, whether to allow nodes to collapse if you double click on them. Anal-
ogous to visNetwork::visOptions(collapse = TRUE).

on_select_col Optional string corresponding to the column name in the plan that should pro-
vide data for the on_select event.

142 vis_drake_graph

on_select defines node selection event handling. Either a string of valid JavaScript that
may be passed to visNetwork::visEvents(), or one of the following: TRUE,
NULL/FALSE. If TRUE , enables the default behavior of opening the link specified
by the on_select_col given to drake_graph_info(). NULL/FALSE disables
the behavior.

level_separation

Numeric, levelSeparation argument to visNetwork::visHierarchicalLayout().
Controls the distance between hierarchical levels. Consider setting if the aspect
ratio of the graph is far from 1. Defaults to 150 through visNetwork.

config Deprecated.

Details

For enhanced interactivity in the graph, see the mandrake package.

Value

A visNetwork graph.

See Also

render_drake_graph(), sankey_drake_graph(), drake_ggraph(), text_drake_graph()

Examples

Not run:
isolate_example("Quarantine side effects.", {
if (suppressWarnings(require("knitr"))) {
load_mtcars_example() # Get the code with drake_example("mtcars").
Plot the network graph representation of the workflow.
if (requireNamespace("visNetwork", quietly = TRUE)) {
vis_drake_graph(my_plan)
make(my_plan) # Run the project, build the targets.
vis_drake_graph(my_plan) # The red nodes from before are now green.
Plot a subgraph of the workflow.
vis_drake_graph(

my_plan,
from = c("small", "reg2")

)
}
}
})

End(Not run)

which_clean 143

which_clean Which targets will clean() invalidate? [Stable]

Description

which_clean() is a safety check for clean(). It shows you the targets that clean() will invalidate
(or remove if garbage_collection is TRUE). It helps you avoid accidentally removing targets you
care about.

Usage

which_clean(
...,
list = character(0),
path = NULL,
cache = drake::drake_cache(path = path)

)

Arguments

... Targets to remove from the cache: as names (symbols) or character strings. If the
tidyselect package is installed, you can also supply dplyr-style tidyselect
commands such as starts_with(), ends_with(), and one_of().

list Character vector naming targets to be removed from the cache. Similar to the
list argument of remove().

path Path to a drake cache (usually a hidden .drake/ folder) or NULL.

cache drake cache. See new_cache(). If supplied, path is ignored.

See Also

clean()

Examples

Not run:
isolate_example("Quarantine side effects.", {
plan <- drake_plan(x = 1, y = 2, z = 3)
make(plan)
cached()
which_clean(x, y) # [1] "x" "y"
clean(x, y) # Invalidates targets x and y.
cached() # [1] "z"
})

End(Not run)

Index

assign(), 33, 85, 104
attachNamespace(), 32, 84

bind_plans, 5
build_times, 6
build_times(), 48, 50, 99–101, 121, 140

cached, 7
cached(), 9, 10, 28, 47, 64, 105, 117
cached_planned, 9, 10
cached_planned(), 8
cached_unplanned, 9, 10
cached_unplanned(), 8
cancel, 11
cancel(), 29
cancel_if, 12
cancel_if(), 29
clean, 13
clean(), 13–15, 46, 117, 143
clean_mtcars_example, 15
clean_mtcars_example(), 81
code_to_function, 16
code_to_plan, 18
code_to_plan(), 16, 97, 98
combine (transformations), 131
combine(), 57, 125, 126
cross (transformations), 131
cross(), 57, 125, 126

delayedAssign(), 33, 85, 104
deps_code, 19
deps_code(), 20–22
deps_knitr, 20
deps_knitr(), 19, 22
deps_profile, 21
deps_profile(), 21
deps_target, 22
deps_target(), 19, 20, 105
diagnose, 23
diagnose(), 21, 47, 64

drake (drake-package), 4
drake-package, 4
drake_build, 24
drake_build(), 39
drake_cache, 25
drake_cache(), 28, 32, 52, 68, 84, 117
drake_cache_log, 27
drake_cancelled, 29
drake_cancelled(), 40, 45, 65
drake_config, 30
drake_config(), 21, 26, 30, 32, 38, 58, 84,

91, 96, 104, 106, 109, 110, 119, 123,
126, 130, 136

drake_debug, 39
drake_debug(), 25
drake_done, 40
drake_done(), 45, 65
drake_envir, 41
drake_envir(), 36, 42, 59, 70, 72, 75, 77, 79,

88, 95, 126
drake_example, 42
drake_example(), 44, 54, 55, 139
drake_examples, 43
drake_examples(), 43, 54, 55, 81
drake_failed, 44
drake_failed(), 23, 29, 40, 65
drake_gc, 45
drake_gc(), 14, 117
drake_get_session_info, 46
drake_get_session_info(), 64
drake_ggraph, 47
drake_ggraph(), 111, 113, 115, 116, 122,

130, 142
drake_graph_info, 49
drake_graph_info(), 111, 112, 114–116,

120
drake_history, 52
drake_history(), 26, 36, 46, 52, 88
drake_hpc_template_file, 54

144

INDEX 145

drake_hpc_template_file(), 35, 55, 87
drake_hpc_template_files, 55
drake_hpc_template_files(), 55
drake_plan, 56
drake_plan(), 5, 8, 18, 23, 31, 38, 41, 47, 52,

53, 57, 58, 63, 64, 68, 69, 71, 74–78,
83, 91, 94, 96–98, 105, 110,
125–127, 131, 136–138

drake_plan_source, 62
drake_plan_source(), 62
drake_progress, 63
drake_progress(), 23, 40, 45, 65
drake_running, 65
drake_running(), 29, 40, 45
drake_script, 66
drake_slice, 66
drake_tempfile, 68

file_in, 69
file_in(), 16, 31, 41, 53, 59, 69, 71, 72, 75,

77–79, 83, 94, 95, 126, 137
file_out, 71
file_out(), 14, 16, 31, 41, 48–51, 53, 59,

69–71, 75, 77–79, 83, 94, 95, 122,
126, 129, 137, 141

file_store, 73
file_store(), 20
find_cache, 74
from_plan(), 42

get_trace(), 108, 124, 132
group (transformations), 131
group(), 125

id_chr, 75
id_chr(), 42, 59, 70, 72, 75, 77, 79, 95, 126
ignore, 76
ignore(), 16, 41, 59, 69–72, 75, 77, 79, 94,

95, 105, 126

knitr_in, 78
knitr_in(), 16, 31, 41, 53, 59, 69–72, 75, 77,

79, 83, 94, 95, 126, 137

legend_nodes, 80
library(), 23, 25, 32, 39, 84, 103, 108, 119,

124
load_mtcars_example, 80
load_mtcars_example(), 15

loadd (readd), 102
loadd(), 7, 8, 20, 26, 102, 104, 105
loadNamespace(), 32, 84

make, 82
make(), 5, 8, 14, 18, 21–25, 28–31, 33, 34,

36–41, 43–48, 50, 51, 56–58, 64, 65,
69, 74, 75, 84, 86, 87, 89, 90, 92, 93,
96–102, 105, 106, 109, 110,
119–122, 126, 127, 129, 136, 138,
140, 141

map (transformations), 131
map(), 57, 125, 126
missed, 92
missed(), 96, 110

new_cache, 93
new_cache(), 6, 8–10, 13, 23, 26, 28, 29, 32,

40, 44, 45, 47, 52, 64, 65, 68, 84,
103, 106, 108, 124, 143

no_deps, 94
no_deps(), 16, 41, 59, 69, 70, 72, 75–77, 79,

95, 126

outdated, 96
outdated(), 38, 90–92, 119

plan_to_code, 97
plan_to_code(), 16, 18, 97, 98
plan_to_notebook, 98
plan_to_notebook(), 16, 18, 97, 98
predict_runtime, 99
predict_runtime(), 7, 32, 84, 101
predict_workers, 100
predict_workers(), 100

r_deps_target (r_make), 118
r_drake_build (r_make), 118
r_drake_ggraph (r_make), 118
r_drake_graph_info (r_make), 118
r_make, 118
r_make(), 30, 36, 38, 66, 89, 90, 119
r_missed (r_make), 118
r_outdated (r_make), 118
r_outdated(), 38, 90, 96, 110, 119
r_predict_runtime (r_make), 118
r_predict_workers (r_make), 118
r_recoverable (r_make), 118
r_recoverable(), 36, 89, 110

146 INDEX

r_sankey_drake_graph (r_make), 118
r_text_drake_graph (r_make), 118
r_vis_drake_graph (r_make), 118
r_vis_drake_graph(), 38, 119
read_drake_seed, 106
read_trace, 107
read_trace(), 124, 132
readd, 102
readd(), 7, 8, 20, 23, 47, 64, 102, 104, 105
recoverable, 109
recoverable(), 36, 89
remove(), 8, 64, 104, 143
render_drake_ggraph, 111
render_drake_ggraph(), 49
render_drake_graph, 112
render_drake_graph(), 142
render_sankey_drake_graph, 114
render_sankey_drake_graph(), 120, 122
render_text_drake_graph, 115
render_text_drake_graph(), 130
require(), 32, 84
rescue_cache, 116

sankey_drake_graph, 120
sankey_drake_graph(), 49, 111, 113–116,

130, 142
sessionInfo(), 47
shell_file(), 55
show_source, 123
show_source(), 103
split (transformations), 131
split(), 57, 125, 126
storr::storr_rds(), 93
subtargets, 124
subtargets(), 108
system.time(), 7

target, 125
target(), 41, 58, 59, 69, 71, 75, 77, 78, 94,

126, 132
text_drake_graph, 128
text_drake_graph(), 49, 115, 116, 122, 142
tracked, 130
transform_plan, 134
transformations, 131
trigger, 136
trigger(), 33, 85

use_drake, 138

vis_drake_graph, 139
vis_drake_graph(), 38, 49, 51, 91, 105,

111–113, 115, 116, 119, 122, 128,
130

which_clean, 143
which_clean(), 13, 14

	drake-package
	bind_plans
	build_times
	cached
	cached_planned
	cached_unplanned
	cancel
	cancel_if
	clean
	clean_mtcars_example
	code_to_function
	code_to_plan
	deps_code
	deps_knitr
	deps_profile
	deps_target
	diagnose
	drake_build
	drake_cache
	drake_cache_log
	drake_cancelled
	drake_config
	drake_debug
	drake_done
	drake_envir
	drake_example
	drake_examples
	drake_failed
	drake_gc
	drake_get_session_info
	drake_ggraph
	drake_graph_info
	drake_history
	drake_hpc_template_file
	drake_hpc_template_files
	drake_plan
	drake_plan_source
	drake_progress
	drake_running
	drake_script
	drake_slice
	drake_tempfile
	file_in
	file_out
	file_store
	find_cache
	id_chr
	ignore
	knitr_in
	legend_nodes
	load_mtcars_example
	make
	missed
	new_cache
	no_deps
	outdated
	plan_to_code
	plan_to_notebook
	predict_runtime
	predict_workers
	readd
	read_drake_seed
	read_trace
	recoverable
	render_drake_ggraph
	render_drake_graph
	render_sankey_drake_graph
	render_text_drake_graph
	rescue_cache
	r_make
	sankey_drake_graph
	show_source
	subtargets
	target
	text_drake_graph
	tracked
	transformations
	transform_plan
	trigger
	use_drake
	vis_drake_graph
	which_clean
	Index

