
Package ‘dae’
December 1, 2024

Version 3.2.30

Date 2024-12-01

Title Functions Useful in the Design and ANOVA of Experiments

Depends R (>= 3.5.0), ggplot2

Imports ggpubr, graphics, methods, plyr, stats, tryCatchLog

Suggests testthat, vdiffr, R.rsp

VignetteBuilder R.rsp

Description The content falls into the following groupings: (i) Data, (ii)
Factor manipulation functions, (iii) Design functions, (iv) ANOVA functions, (v)
Matrix functions, (vi) Projector and canonical efficiency functions, and (vii)
Miscellaneous functions. There is a vignette describing how to use the
design functions for randomizing and assessing designs available as a
vignette called 'DesignNotes'. The ANOVA functions facilitate the extraction of
information when the 'Error' function has been used in the call to 'aov'.
The package 'dae' can also be installed from

<http://chris.brien.name/rpackages/>.

License GPL (>= 2)

URL http://chris.brien.name

BugReports https://github.com/briencj/dae/issues

RoxygenNote 5.0.1

NeedsCompilation no

Author Chris Brien [aut, cre] (<https://orcid.org/0000-0003-0581-1817>)

Maintainer Chris Brien <chris.brien@adelaide.edu.au>

Repository CRAN

Date/Publication 2024-12-01 11:20:03 UTC

Contents
dae-package . 4
ABC.Interact.dat . 10

1

http://chris.brien.name/rpackages/
http://chris.brien.name
https://github.com/briencj/dae/issues
https://orcid.org/0000-0003-0581-1817

2 Contents

as.data.frame.pstructure . 11
as.numfac . 12
BIBDWheat.dat . 13
blockboundaryPlot . 14
Cabinet1.des . 16
Casuarina.dat . 16
correct.degfree . 17
dae-deprecated . 18
daeTips . 18
decomp.relate . 19
degfree . 20
designAmeasures . 21
designAnatomy . 23
designBlocksGGPlot . 27
designGGPlot . 30
designLatinSqrSys . 33
designPlot . 34
designPlotlabels . 37
designRandomize . 38
designTwophaseAnatomies . 41
detect.diff . 45
efficiencies . 46
efficiency.criteria . 47
elements . 48
Exp249.munit.des . 49
extab . 50
fac.ar1mat . 51
fac.combine . 52
fac.divide . 53
fac.gen . 54
fac.genfactors . 56
fac.match . 57
fac.meanop . 58
fac.multinested . 59
fac.nested . 61
fac.recast . 62
fac.recode . 64
fac.split . 65
fac.sumop . 66
fac.uncombine . 67
fac.uselogical . 68
fac.vcmat . 69
Fac4Proc.dat . 70
fitted.aovlist . 70
fitted.errors . 72
get.daeRNGkind . 73
get.daeTolerance . 74
harmonic.mean . 74

Contents 3

interaction.ABC.plot . 75
is.allzero . 77
is.projector . 78
LatticeSquare_t49.des . 79
marginality . 79
mat.ar1 . 81
mat.ar2 . 81
mat.ar3 . 82
mat.arma . 84
mat.banded . 85
mat.cor . 86
mat.corg . 86
mat.dirprod . 87
mat.dirsum . 88
mat.exp . 89
mat.gau . 90
mat.ginv . 90
mat.I . 91
mat.J . 92
mat.ma1 . 93
mat.ma2 . 94
mat.ncssvar . 95
mat.random . 96
mat.sar . 97
mat.sar2 . 98
mat.Vpred . 100
mat.Vpredicts . 101
McIntyreTMV.dat . 104
meanop . 105
mpone . 105
no.reps . 106
Oats.dat . 107
p2canon.object . 108
pcanon.object . 109
porthogonalize.list . 110
power.exp . 113
print.aliasing . 114
print.projector . 115
print.pstructure . 116
print.summary.p2canon . 117
print.summary.pcanon . 118
proj2.combine . 119
proj2.efficiency . 121
proj2.eigen . 122
projector . 123
projector-class . 124
projs.2canon . 126
projs.combine.p2canon . 127

4 dae-package

pstructure.formula . 128
pstructure.object . 132
qqyeffects . 133
rep.data.frame . 134
resid.errors . 135
residuals.aovlist . 136
rmvnorm . 137
Sensory3Phase.dat . 138
set.daeRNGkind . 139
set.daeTolerance . 140
show-methods . 141
SPLGrass.dat . 142
strength . 142
summary.p2canon . 144
summary.pcanon . 145
tukey.1df . 147
yates.effects . 148
Zncsspline . 149

Index 151

dae-package Functions Useful in the Design and ANOVA of Experiments

Description

The content falls into the following groupings: (i) Data, (ii) Factor manipulation functions, (iii) De-
sign functions, (iv) ANOVA functions, (v) Matrix functions, (vi) Projector and canonical efficiency
functions, and (vii) Miscellaneous functions. There is a vignette describing how to use the design
functions for randomizing and assessing designs available as a vignette called ’DesignNotes’. The
ANOVA functions facilitate the extraction of information when the ’Error’ function has been used in
the call to ’aov’. The package ’dae’ can also be installed from <http://chris.brien.name/rpackages/>.

Version: 3.2.30

Date: 2024-12-01

Index

(i) Data

ABC.Interact.dat Randomly generated set of values indexed by
three factors

BIBDWheat.dat Data for a balanced incomplete block experiment
Casuarina.dat Data for an experiment with rows and columns from

Williams (2002)
Exp249.munit.des Systematic, main-plot design for an experiment to be

run in a greenhouse
Fac4Proc.dat Data for a 2^4 factorial experiment

dae-package 5

LatticeSquare_t49.des A Lattice square design for 49 treatments
McIntyreTMV.dat The design and data from McIntyre (1955) two-phase

experiment
Oats.dat Data for an experiment to investigate nitrogen response

of 3 oats varieties
Sensory3Phase.dat Data for the three-phahse sensory evaluation

experiment in Brien, C.J. and Payne, R.W. (1999)
Sensory3PhaseShort.dat Data for the three-phase sensory evaluation

experiment in Brien, C.J. and Payne, R.W. (1999),
but with short factor names

SPLGrass.dat Data for an experiment to investigate the
effects of grazing patterns on pasture
composition

(ii) Factor manipulation functions

Forms a new or revised factor:

fac.combine Combines several factors into one
fac.nested Creates a factor, the nested factor, whose values are

generated within those of a nesting factor
fac.recast Recasts a factor by modifying the values in the factor vector

and/or the levels attribute, possibly combining
some levels into a single level.

fac.recode Recodes factor ’levels’ using possibly nonunique
values in a vector. (May be deprecated in future.)

fac.uselogical Forms a two-level factor from a logical object

Forms multiple new factors:

fac.divide Divides a factor into several separate factors
fac.gen Generate all combinations of several factors and,

optionally, replicate them
fac.genfactors Generate all combinations of the levels of the supplied

factors, without replication
fac.multinested Creates several factors, one for each level of the nesting factor

and each of whose values are either generated within those of
a level of the nesting factor or using the values of the nested
factor within the levels of the nesting factor.

fac.split Splits a factor whose levels consist of several delimited
strings into several factors.

fac.uncombine Cleaves a single factor, each of whose levels has delimited
strings, into several factors using the separated strings.

Operates on factors:

as.numfac Convert a factor to a numeric vector, possibly centering or
scaling the values

6 dae-package

mpone Converts the first two levels of a factor into
the numeric values -1 and +1

fac.match Match, for each combination of a set of columns
in ’x’, the row that has the same combination
in ’table’

(iii) Design functions

Designing experiments:

designLatinSqrSys Generate a systematic plan for a Latin Square design.
designRandomize Randomize allocated to recipient factors to produce

a layout for an experiment. It supersedes fac.layout.
no.reps Computes the number of replicates for an experiment
detect.diff Computes the detectable difference for an experiment
power.exp Computes the power for an experiment

Plotting designs:

blockboundaryPlot This function plots a block boundary on a plot
produced by ’designPlot’. It supersedes
blockboundary.plot.

designBlocksGGPlot Adds block boundaries to a plot produced by designGGPlot.
designGGPlot Plots labels on a two-way grid of coloured cells using ggplot2

to represent an experimental design.
designPlot A graphical representation of an experimental design

using labels stored in a matrix.
It superseded design.plot.

designPlotlabels Plots labels on a two-way grid using ggplot2.

Assessing designs:

designAmeasures Calculates the A-optimality measures from the
variance matrix for predictions.

designAnatomy Given the layout for a design, obtain its anatomy via
the canonical analysis of its projectors to show the
confounding and aliasing inherent in the design.

designTwophaseAnatomies Given the layout for a design and three structure formulae,
obtain the anatomies for the (i) two-phase,
(ii) first-phase, (iii) cross-phase, treatments, and
(iv) combined-units designs.

marginality.pstructure Extracts the marginality matrix from a
pstructure.object

marginality.pstructure Extracts a list containing the marginality matrices from
a pcanon.object

print.aliasing Prints an aliasing data.frame
summary.pcanon Summarizes the anatomy of a design, being the

decomposition of the sample space based on its

dae-package 7

canonical analysis.

(iv) ANOVA functions

fitted.aovlist Extract the fitted values for a fitted model
from an aovlist object

fitted.errors Extract the fitted values for a fitted model
interaction.ABC.plot Plots an interaction plot for three factors
qqyeffects Half or full normal plot of Yates effects
resid.errors Extract the residuals for a fitted model
residuals.aovlist Extract the residuals from an aovlist object
strength Generate paper strength values
tukey.1df Performs Tukey’s

one-degree-of-freedom-test-for-nonadditivity
yates.effects Extract Yates effects

(v) Matrix functions

Operates on matrices:

elements Extract the elements of an array specified by
the subscripts

mat.dirprod Forms the direct product of two matrices
mat.dirsum Forms the direct sum of a list of matrices
mat.ginv Computes the generalized inverse of a matrix
Zncsspline Forms the design matrix for fitting the

random effects for a natural cubic smoothing
spline.

Compute variance matrices for
supplied variance component values:

mat.random Calculates the variance matrix for the
random effects from a mixed model, based
on a formula or a supplied matrix

mat.Vpred Forms the variance matrix of predictions
based on supplied matrices

mat.Vpredicts Forms the variance matrix of predictions,
based on supplied matrices or formulae.

Forms matrices using factors
stored in a data.frame:

fac.ar1mat Forms the ar1 correlation matrix for a
(generalized) factor

fac.sumop Computes the summation matrix that produces
sums corresponding to a (generalized) factor

fac.vcmat Forms the variance matrix for the variance

8 dae-package

component of a (generalized) factor

Forms patterned matrices:

mat.I Forms a unit matrix
mat.J Forms a square matrix of ones
mat.ncssvar Forms a variance matrix for random cubic

smoothing spline effects

Forms correlation matrices:

mat.cor Forms a correlation matrix in which all
correlations have the same value

mat.corg Forms a general correlation matrix in which
all correlations have different values

mat.ar1 Forms an ar1 correlation matrix
mat.ar2 Forms an ar2 correlation matrix
mat.ar3 Forms an ar3 correlation matrix
mat.arma Forms an arma correlation matrix
mat.banded Forms a banded matrix
mat.exp Forms an exponential correlation matrix
mat.gau Forms a gaussian correlation matrix
mat.ma1 Forms an ma1 correlation matrix
mat.ma2 Forms an ma2 correlation matrix
mat.sar Forms an sar correlation matrix
mat.sar2 Forms an sar2 correlation matrix

(vi) Projector and canonical efficiency functions

Projector class:

projector Create projectors
projector-class Class projector
is.projector Tests whether an object is a valid object of

class projector
print.projector Print projectors
correct.degfree Check the degrees of freedom in an object of

class projector
degfree Degrees of freedom extraction and replacement

Accepts two or more formulae:

designAnatomy An anatomy of a design, obtained from
a canonical analysis of the relationships
between sets of projectors.

summary.pcanon Summarizes the anatomy of a design, being the
decomposition of the sample space based on its

dae-package 9

canonical analysis
print.summary.pcanon Prints the values in an ’summary.pcanon’ object
efficiencies.pcanon Extracts the canonical efficiency factors from a

list of class ’pcanon’

Accepts exactly two formulae:

projs.2canon A canonical analysis of the relationships between
two sets of projectors

projs.combine.p2canon Extract, from a p2canon object, the projectors
summary.p2canon A summary of the results of an analysis of

the relationships between two sets of projectors
print.summary.p2canon Prints the values in an ’summary.p2canon’ object

that give the combined decomposition
efficiencies.p2canon Extracts the canonical efficiency factors from

a list of class ’p2canon’

Accepts a single formula:

as.data.frame.pstructure Coerces a pstructure.object to a data.frame
print.pstructure Prints a pstructure.object
pstructure.formula Takes a formula and constructs a pstructure.object

that includes the orthogonalized projectors for the
terms in a formula

porthogonalize.list Takes a list of projectors and constructs
a pstructure.object that includes projectors,
each of which has been orthogonalized to all projectors
preceding it in the list.

Others:

decomp.relate Examines the relationship between the
eigenvectors for two decompositions

efficiency.criteria Computes efficiency criteria from a set of
efficiency factors

fac.meanop Computes the projection matrix that produces means
proj2.eigen Canonical efficiency factors and eigenvectors

in joint decomposition of two projectors
proj2.efficiency Computes the canonical efficiency factors for

the joint decomposition of two projectors
proj2.combine Compute the projection and Residual operators

for two, possibly nonorthogonal, projectors
show-methods Methods for Function ’show’ in Package dae

(vii) Miscellaneous functions

extab Expands the values in table to a vector
get.daeRNGkind Gets the value of daeRNGkind for the package dae from

the daeEnv environment.

10 ABC.Interact.dat

get.daeTolerance Gets the value of daeTolerance for the package dae.
harmonic.mean Calcuates the harmonic mean.
is.allzero Tests whether all elements are approximately zero
rep.data.frame Replicate the rows of a data.frame by repeating

each row consecutively and/or repeating all rows
as a group.

rmvnorm Generates a vector of random values from a
multivariate normal distribution

set.daeRNGkind Sets the values of daeRNGkind for the package dae in
the daeEnv environment’

set.daeTolerance Sets the value of daeTolerance for the package dae.

Author(s)

Chris Brien [aut, cre] (<https://orcid.org/0000-0003-0581-1817>)

Maintainer: Chris Brien <chris.brien@adelaide.edu.au>

ABC.Interact.dat Randomly generated set of values indexed by three factors

Description

This data set has randomly generated values of the response variable MOE (Measure Of Effective-
ness) which is indexed by the two-level factors A, B and C.

Usage

data(ABC.Interact.dat)

Format

A data.frame containing 8 observations of 4 variables.

Source

Generated by Chris Brien

as.data.frame.pstructure 11

as.data.frame.pstructure

Coerces a pstructure.object to a data.frame.

Description

Coerces a pstructure.object, which is of class pstructure, to a data.frame. One can choose
whether or not to include the marginality matrix in the data.frame. The aliasing component is
excluded.

Usage

S3 method for class 'pstructure'
as.data.frame(x, row.names = NULL, optional = FALSE, ...,

omit.marginality = FALSE)

Arguments

x The pstructure.object, which is of class pstructure and is to be coerced.

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

optional A logical passed to as.data.frame. If TRUE, setting row names and con-
verting column names (to syntactic names: see make.names) is optional. Note
that all of R’s base package as.data.frame() methods use optional only for
column names treatment, basically with the meaning of
data.frame(*, check.names = !optional).

... Further arguments passed to or from other methods.
omit.marginality

A logical, which, if TRUE, results in the marginality matrix being omitted
from the data.frame.

Value

A data.frame with as many rows as there are non-aliased terms in the pstructure.object. The
columns are df, terms, sources and, if omit.marginality is FALSE, the columns of the generated
levels with columns of the marginality matrix that is stored in the marginality component of
the object.

Author(s)

Chris Brien

See Also

as.data.frame.

12 as.numfac

Examples

Generate a data.frame with 4 factors, each with three levels, in standard order
ABCD.lay <- fac.gen(list(A = 3, B = 3, C = 3, D = 3))

create a pstructure object based on the formula ((A*B)/C)*D
ABCD.struct <- pstructure.formula(~ ((A*B)/C)*D, data =ABCD.lay)

print the object either using the Method function or the generic function
ABCS.dat <- as.data.frame.pstructure(ABCD.struct)
as.data.frame(ABCD.struct)

as.numfac Convert a factor to a numeric vector, possibly centering or scaling the
values

Description

Converts a factor to a numeric vector with approximately the numeric values of its levels.
Hence, the levels of the factor must be numeric values, stored as characters. It uses the method
described in factor. Use as.numeric to convert a factor to a numeric vector with integers
1, 2, ... corresponding to the positions in the list of levels. The numeric values can be centred
and/or scaled. You can also use fac.recast to recode the levels to numeric values. If a numeric is
supplied and both center and scale are FALSE, it is left unchanged; otherwise, it will be centred
and scaled according to the settings of center and scale.

Usage

as.numfac(factor, center = FALSE, scale = FALSE)

Arguments

factor The factor to be converted.

center Either a logical value or a numeric-alike value, where numeric-alike means
that as.numeric will be applied successfully if is.numeric is not TRUE.

scale Either a logical value, a numeric-alike vector, where numeric-alike means that
as.numeric will be applied successfully if is.numeric is not TRUE.

Details

The value of center specifies how the centring is done. If it is TRUE, the mean of the unique values
of the factor are subtracted, after the factor is converted to a numeric. If center is numeric, it
is subtracted from factor’s converted numeric values. If center is FALSE no scaling is done.

The value of scale specifies how scaling is performed, after any centring is done. If scale is TRUE,
the unique converted values of the factor are divided by (i) the standard deviaton when the values
have been centred and (ii) the root-mean-square error if they have not been centred; the root-mean-
square is given by

√
Σ(x2)/(n− 1), where x contains the unique converted factor values and n

is the number of unique values. If scale is FALSE no scaling is done.

BIBDWheat.dat 13

Value

A numeric vector. An NA will be stored for any value of the factor whose level is not a number.

Author(s)

Chris Brien

See Also

as.numeric, fac.recast in package dae, factor, scale.

Examples

set up a factor and convert it to a numeric vector
a <- factor(rep(1:6, 4))
x <- as.numfac(a)
x <- as.numfac(a, center = TRUE)
x <- as.numfac(a, center = TRUE, scale = TRUE)

BIBDWheat.dat Data for a balanced incomplete block experiment

Description

The data set comes from Joshi (1987) and is the data from an experiment to investigate six varieties
of wheat that employs a balanced incomplete block design (BIBD) with ten blocks, each con-
sisting of three plots. For more details see the vignette accessed via vignette("DesignNotes",
package="dae").

Usage

data(BIBDWheat.dat)

Format

A data.frame containing 30 observations of 4 variables.

Source

Joshi, D. D. (1987) Linear Estimation and Design of Experiments. Wiley Eastern, New Delhi.

14 blockboundaryPlot

blockboundaryPlot This function plots a block boundary on a plot produced by
designPlot.

Description

This function plots a block boundary on a plot produced by designPlot. It allows control of the
starting unit, through rstart and cstart, and the number of rows (nrows) and columns (ncolumns)
from the starting unit that the blocks to be plotted are to cover.

Usage

blockboundaryPlot(blockdefinition = NULL, blocksequence = FALSE,
rstart= 0, cstart = 0, nrows, ncolumns,
blocklinecolour = 1, blocklinewidth = 2)

Arguments

blockdefinition

A matrix of block sizes:

• if there is only one row, then the first element is interpreted as the no. rows
in each block and blocks with this number of rows are to be repeated across
the rows of the design.

• if there is more than one row, then each row of the matrix specifies a block,
with the sequence of rows in the matrix specifying a corresponding se-
quence of blocks down the rows of the design.

Similarly, a single value for a column specifies a repetition of blocks of that
size across the columns of the design, while several column values specifies a
sequence of blocks across the columns of the size specified.

blocksequence A logical that determines whether block numbers are repetitions or sequences
of block numbers.

rstart A numeric speccifying the row after which the plotting of block boundaries is
to start.

cstart A numeric speccifying the column after which the plotting of block boundaries
is to start.

nrows A numeric the number of rows (nrows), from the starting unit, that the blocks
to be plotted are to cover.

ncolumns A numeric the number of columns (ncolumns), from the starting unit, that the
blocks to be plotted are to cover.

blocklinecolour

A character string specifying the colour of the block boundary.
See Colour specification under the par function.

blocklinewidth A numeric giving the width of the block boundary to be plotted.

blockboundaryPlot 15

Value

no values are returned, but modifications are made to the currently active plot.

Author(s)

Chris Brien

See Also

designPlot, par, DiGGer

Examples

Not run:
SPL.Lines.mat <- matrix(as.numfac(Lines), ncol=16, byrow=T)
colnames(SPL.Lines.mat) <- 1:16
rownames(SPL.Lines.mat) <- 1:10
SPL.Lines.mat <- SPL.Lines.mat[10:1, 1:16]
designPlot(SPL.Lines.mat, labels=1:10, new=TRUE,

rtitle="Rows",ctitle="Columns",
chardivisor=3, rcellpropn = 1, ccellpropn=1,
plotcellboundary = TRUE)

#Plot Mainplot boundaries
blockboundaryPlot(blockdefinition = cbind(4,16), rstart = 1,

blocklinewidth = 3, blockcolour = "green",
nrows = 9, ncolumns = 16)

blockboundaryPlot(blockdefinition = cbind(1,4),
blocklinewidth = 3, blockcolour = "green",
nrows = 1, ncolumns = 16)

blockboundaryPlot(blockdefinition = cbind(1,4), rstart= 9, nrows = 10, ncolumns = 16,
blocklinewidth = 3, blockcolour = "green")

#Plot all 4 block boundaries
blockboundaryPlot(blockdefinition = cbind(8,5,5,4), blocksequence=T,

cstart = 1, rstart= 1, nrows = 9, ncolumns = 15,
blocklinewidth = 3,blockcolour = "blue")

blockboundaryPlot(blockdefinition = cbind(10,16), blocklinewidth=3, blockcolour="blue",
nrows=10, ncolumns=16)

#Plot border and internal block boundaries only
blockboundaryPlot(blockdefinition = cbind(8,14), cstart = 1, rstart= 1,

nrows = 9, ncolumns = 15,
blocklinewidth = 3, blockcolour = "blue")

blockboundaryPlot(blockdefinition = cbind(10,16),
blocklinewidth = 3, blockcolour = "blue",
nrows = 10, ncolumns = 16)

End(Not run)

16 Casuarina.dat

Cabinet1.des A design for one of the growth cabinets in an experiment with 50 lines
and 4 harvests

Description

The systematic design for a lattice square for 49 treatments consisting of four 7 x 7 squares. For
more details see the vignette daeDesignNotes.pdf.

Usage

data(Cabinet1.des)

Format

A data.frame containing 160 observations of 15 variables.

Casuarina.dat Data for an experiment with rows and columns from Williams (2002)

Description

Williams (2002, p.144) provides an example of a resolved, Latinized, row-column design with four
rectangles (blocks) each of six rows by ten columns. The experiment investigated differences be-
tween 60 provenances of a species of Casuarina tree, these provenances coming from 18 countries;
the trees were inoculated prior to planting at two different times, time of inoculation being assigned
to the four replicates so that each occurred in two replicates. At 30 months, diameter at breast height
(Dbh) was measured. For more details see the vignette accessed via vignette("DesignNotes",
package="dae").

Usage

data(Casuarina.dat)

Format

A data.frame containing 240 observations of 7 variables.

Source

Williams, E. R., Matheson, A. C. and Harwood, C. E. (2002) Experimental design and analysis for
tree improvement. 2nd edition. CSIRO, Melbourne, Australia.

correct.degfree 17

correct.degfree Check the degrees of freedom in an object of class projector

Description

Check the degrees of freedom in an object of class "projector".

Usage

correct.degfree(object)

Arguments

object An object of class "projector" whose degrees of freedom are to be checked.

Details

The degrees of freedom of the projector are obtained as its number of nonzero eigenvalues. An
eigenvalue is regarded as zero if it is less than daeTolerance, which is initially set to.Machine$double.eps
^ 0.5 (about 1.5E-08). The function set.daeTolerance can be used to change daeTolerance.

Value

TRUE or FALSE depending on whether the correct degrees of freedom have been stored in the
object of class "projector".

Author(s)

Chris Brien

See Also

degfree, projector in package dae.

projector for further information about this class.

Examples

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

create a projector based on the matrix m
proj.m <- new("projector", data=m)

add its degrees of freedom
degfree(proj.m) <- 1

check degrees of freedom are correct
correct.degfree(proj.m)

18 daeTips

dae-deprecated Deprecated Functions in Package dae

Description

These functions have been renamed and deprecated in dae.

Usage

Ameasures(...)
blockboundary.plot(...)
design.plot(...)
proj2.decomp(...)
proj2.ops(...)
projs.canon(...)
projs.structure(...)

Arguments

... absorbs arguments passed from the old functions of the style foo.bar().

Author(s)

Chris Brien

daeTips The intermittent, randomly-presented, startup tips.

Description

The intermittent, randomly-presented, startup tips.

Startup tips

Need help? Enter help(package = ’dae’) and click on ’User guides, package vignettes and other
docs’.

Need help? The manual is in the doc subdirectory of the package’s install directory.

Find out what has changed in dae: enter news(package = ’dae’).

Need help to produce randomized designs? Enter vignette(’DesignNotes’, package = ’dae’).

Need help to do the canonical analysis of a design? Enter vignette(’DesignNotes’, package = ’dae’).
Use suppressPackageStartupMessages() to eliminate all package startup messages.

To see all the intermittent, randomly-presented, startup tips enter ?daeTips.

For versions between CRAN releases (and more) go to http://chris.brien.name/rpackages.

http://chris.brien.name/rpackages

decomp.relate 19

Author(s)

Chris Brien

decomp.relate Examines the relationship between the eigenvectors for two decompo-
sitions

Description

Two decompositions produced by proj2.eigen are compared by computing all pairs of crossprod-
uct sums of eigenvectors from the two decompositions. It is most useful when the calls to proj2.eigen
have the same Q1.

Usage

decomp.relate(decomp1, decomp2)

Arguments

decomp1 A list containing components efficiencies and eigenvectors such as is produced
by proj2.eigen.

decomp2 Another list containing components efficiencies and eigenvectors such as is
produced by proj2.eigen.

Details

Each element of the r1 x r2 matrix is the sum of crossproducts of a pair of eigenvectors, one from
each of the two decompositions. A sum is regarded as zero if it is less than daeTolerance, which
is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The function set.daeTolerance can
be used to change daeTolerance.

Value

A matrix that is r1 x r2 where r1 and r2 are the numbers of efficiencies of decomp1 and decomp2,
respectively. The rownames and columnnames of the matrix are the values of the efficiency factors
from decomp1 and decomp2, respectively.

Author(s)

Chris Brien

See Also

proj2.eigen, proj2.combine in package dae, eigen.

20 degfree

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

##obtain sets of projectors
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
trt.struct <- pstructure(~ trt, data = PBIBD2.lay)

obtain intra- and inter-block decompositions
decomp.inter <- proj2.eigen(unit.struct$Q[["Block"]], trt.struct$Q[["trt"]])
decomp.intra <- proj2.eigen(unit.struct$Q[["Unit[Block]"]], trt.struct$Q[["trt"]])

check that intra- and inter-block decompositions are orthogonal
decomp.relate(decomp.intra, decomp.inter)

degfree Degrees of freedom extraction and replacement

Description

Extracts the degrees of freedom from or replaces them in an object of class "projector".

Usage

degfree(object)

degfree(object) <- value

Arguments

object An object of class "projector" whose degrees of freedom are to be extracted
or replaced.

value An integer to which the degrees of freedom are to be set or an object of class
"projector" or "matrix" from which the degrees of freedom are to be calulated.

Details

There is no checking of the correctness of the degrees of freedom, either already stored or as a
supplied integer value. This can be done using correct.degfree.

When the degrees of freedom of the projector are to be calculated, they are obtained as the number
of nonzero eigenvalues. An eigenvalue is regarded as zero if it is less than daeTolerance, which
is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The function set.daeTolerance
can be used to change daeTolerance.

designAmeasures 21

Value

An object of class "projector" that consists of a square, summetric, idempotent matrix and degrees
of freedom (rank) of the matrix.

Author(s)

Chris Brien

See Also

correct.degfree, projector in package dae.

projector for further information about this class.

Examples

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

coerce to a projector
proj.m <- projector(m)

extract its degrees of freedom
degfree(proj.m)

create a projector based on the matrix m
proj.m <- new("projector", data=m)

add its degrees of freedom and print the projector
degfree(proj.m) <- proj.m
print(proj.m)

designAmeasures Calculates the average variance of pairwise differences from the vari-
ance matrix for predictions

Description

Calculates the average variance of pairwise differences between, or of elementary contrasts of, pre-
dictions using the variance matrix for the predictions. The weighted average variance of pairwise
differences can be computed from a vector of replications, as described by Williams and Piepho
(2015). It is possible to compute either A-optimality measure for different subgroups of the pre-
dictions. If groups are specified then the A-optimality measures are calculated for the differences
between predictions within each group and for those between predictions from different groups. If
groupsizes are specified, but groups are not, the predictions will be sequentially broken into groups
of the size specified by the elements of groupsizes. The groups can be named.

Usage

designAmeasures(Vpred, replications = NULL, groupsizes = NULL, groups = NULL)

22 designAmeasures

Arguments

Vpred The variance matrix of the predictions. It can be obtained using mat.Vpredicts.

replications A numeric vector whose length is equal to the number of rows (columns) in
Vpred and whose elements are to be used to calculate weights for each pair of
differences.

groupsizes A numeric containing group sizes. The sum of the elements of groupsizes
must be less than or equal to the order of Vpred. If groupsizes is a named
vector, the names are used to label the groups. If NULL, either groups is used
or the average for all pairwise differences is obtained.

groups A list, each element of which is a numeric, vector with integers that specify
the subroup of the predictions over whose pairwise differences the variances are
to be averaged. If there is more than one group, the variances of all between
and within group pairwise differences are averaged. If the elements of groups
are named , the names are used to label the groups. If groups is NULL, either
groupsizes is used or the average for all pairwise differences is obtained.

Details

The variance matrix of pairwise differences is calculated as vii+vjj−2vij , where vij is the element
from the ith row and jth column of Vpred. if replication is not NULL then weights are computed
as ri ∗ rj/mean(r), where r is the replication vector and ri and rj are elements of r. The (i, j)
element of the variance matrix of pairwise differences is multiplied by the (i, j)th weight. Then the
mean of the variances of the pairwise differences is computed for the nominated groups.

Value

A matrix containing the within and between group A-optimality measures.

Author(s)

Chris Brien

References

Smith, A. B., D. G. Butler, C. R. Cavanagh and B. R. Cullis (2015). Multi-phase variety trials
using both composite and individual replicate samples: a model-based design approach. Journal of
Agricultural Science, 153, 1017-1029.

Williams, E. R., and Piepho, H.-P. (2015). Optimality and contrasts in block designs with unequal
treatment replication. Australian & New Zealand Journal of Statistics, 57, 203-209.

See Also

mat.Vpred, designAnatomy.

designAnatomy 23

Examples

Reduced example from Smith et al. (2015)
Generate two-phase design
mill.fac <- fac.gen(list(Mrep = 2, Mday = 2, Mord = 3))
field.lay <- fac.gen(list(Frep = 2, Fplot = 4))
field.lay$Variety <- factor(c("D","E","Y","W","G","D","E","M"),

levels = c("Y","W","G","M","D","E"))
start.design <- cbind(mill.fac, field.lay[c(3,4,5,8,1,7,3,4,5,8,6,2),])
rownames(start.design) <- NULL

Set up matrices
n <- nrow(start.design)
W <- model.matrix(~ -1+ Variety, start.design)
ng <- ncol(W)
Gg<- diag(1, ng)
Vu <- with(start.design, fac.vcmat(Mrep, 0.3) +

fac.vcmat(fac.combine(list(Mrep, Mday)), 0.2) +
fac.vcmat(Frep, 0.1) +
fac.vcmat(fac.combine(list(Frep, Fplot)), 0.2))

R <- diag(1, n)

Calculate the variance matrix of the predicted random Variety effects
Vp <- mat.Vpred(W = W, Gg = Gg, Vu = Vu, R = R)

Calculate A-optimality measure
designAmeasures(Vp)
designAmeasures(Vp, groups=list(fldUndup = c(1:4), fldDup = c(5,6)))
grpsizes <- c(4,2)
names(grpsizes) <- c("fldUndup", "fldDup")
designAmeasures(Vp, groupsizes = grpsizes)
designAmeasures(Vp, groupsizes = c(4))
designAmeasures(Vp, groups=list(c(1,4),c(5,6)))

Calculate the variance matrix of the predicted fixed Variety effects, elminating the grand mean
Vp.reduc <- mat.Vpred(W = W, Gg = 0, Vu = Vu, R = R,

eliminate = projector(matrix(1, nrow = n, ncol = n)/n))
Calculate A-optimality measure
designAmeasures(Vp.reduc)

designAnatomy Given the layout for a design, obtain its anatomy via the canonical
analysis of its projectors to show the confounding and aliasing inher-
ent in the design.

Description

Computes the canonical efficiency factors for the joint decomposition of two or more structures
or sets of mutually orthogonally projectors (Brien and Bailey, 2009; Brien, 2017; Brien, 2019),

24 designAnatomy

orthogonalizing projectors in a set to those earlier in the set of projectors with which they are
partially aliased. The results can be summarized in the form of a decomposition table that shows
the confounding between sources from different sets. For examples of the function’s use also see
the vignette accessed via vignette("DesignNotes", package="dae") and for a discussion of its
use see Brien, Sermarini and Demetro (2023).

Usage

designAnatomy(formulae, data, keep.order = TRUE, grandMean = FALSE,
orthogonalize = "hybrid", labels = "sources",
marginality = NULL, check.marginality = TRUE,
which.criteria = c("aefficiency","eefficiency","order"),
aliasing.print = FALSE,
omit.projectors = c("pcanon", "combined"), ...)

Arguments

formulae An object of class list whose components are of class formula. Usually, the
terms in a single formula have the same status in the allocation of factors in the
design. For example, all involve only factors that were allocated, or all involve
factors that were recipients of allocated factors. The names of the components
are used to identify the sources in the summary.pcanon object. They will also be
used to name the terms, sources and marginality lists in the pcanon.object.

data A data.frame contains the values of the factors and variables that occur in
formulae.

keep.order A logical indicating whether the terms should keep their position in the ex-
panded formula projector, or reordered so that main effects precede two-factor
interactions, which precede three-factor interactions and so on.

grandMean A logical indicating whether the projector for the grand mean is to be included
for each structure.

orthogonalize A character vector indicating the method for orthogonalizing a projector to
those for terms that occurred previously in a single formula. Three options are
available: hybrid; differencing; eigenmethods. The hybrid option is the
most general and uses the relationships between the projection operators for the
terms in the formula to decide which projectors to substract and which to or-
thogonalize using eigenmethods. The differencing option subtracts, from the
current projector, those previously orthogonalized projectors for terms whose
factors are a subset of the current projector’s factors. The eigemethods option
recursively orthogonalizes the projects using an eigenanalysis of each projector
with previously orthogonalized projectors. If a single value is given, it is used
for all formulae.

labels A character nominating the type of labels to be used in labelling the projectors,
and which will be used also in the output tables, such the tables of the aliasing
in the structure. The two alternatives are terms and sources. Terms have all
factors/variables in it separated by colons (:). Sources have factors/variables
in them that represent interactions separated by hashes (#); if some factors are
nested within others, the nesting factors are surrounded by square brackets ([

designAnatomy 25

and]) and separated by colons (:). If some generalized, or combined, factors
have no marginal terms, the constituent factors are separated by colons (:) and
if they interact with other factors in the source they will be parenthesized.

marginality A list that can be used to supply some or all of the marginality matrices when
it is desired to overwrite calculated marginality matrices or when they are not
calculated. If the list is the same length as the formulae list, they will
be associated in parallel with the components of formulae, irrespective of the
naming of the two lists. If the number of components in marginlaity is less
than the number of components in formulae then both lists must be named so
that those in the marginality list can be matched with those in the formulae
list.
Each component of the marginality list must be either NULL or a square
matrix consisting of zeroes and ones that gives the marginalites of the terms in
the formula. It must have the row and column names set to the terms from the
expanded formula, including being in the same order as these terms. The entry
in the ith row and jth column will be one if the ith term is marginal to the jth
term i.e. the column space of the ith term is a subspace of that for the jth term
and so the source for the jth term is to be made orthogonal to that for the ith
term. Otherwise, the entries are zero. A row and column should not be included
for the grand mean even if grandMean is TRUE.

check.marginality

A logical indicating whether the marginality matrix, when it is supplied, is to
be checked against that computed by pstructure.formula. It is ignored when
orthogonalize is set to eigenmethods.

which.criteria A character vector nominating the efficiency criteria to be included in the sum-
mary of aliasing between terms within a structure. It can be none, all or some
combination of aefficiency, mefficiency, sefficiency, eefficiency, xefficiency,
order and dforthog – for details see efficiency.criteria. If none, no sum-
mary is printed.

aliasing.print A logical indicating whether the aliasing between sources is to be printed.
omit.projectors

A character vector of the types of projectors to omit from the returned pcanon
object. If pcanon is included in the vector then the projectors in these ob-
jects will be replaced with a numeric containing their degrees of freedom. If
combined is included in the vector then the projectors for the combined decom-
position will be replaced with a numeric containing their degrees of freedom. If
none is included in the vector then no projectors will be omitted.

... further arguments passed to terms.

Details

For each formula supplied in formulae, the set of projectors is obtained using pstructure; there
is one projector for each term in a formula. Then projs.2canon is used to perform an analysis of
the canonical relationships between two sets of projectors for the first two formulae. If there are
further formulae, the relationships between its projectors and the already established decomposition
is obtained using projs.2canon. The core of the analysis is the determination of eigenvalues of
the products of pairs of projectors using the results of James and Wilkinson (1971). However, if the

26 designAnatomy

order of balance between two projection matrices is 10 or more or the James and Wilkinson (1971)
methods fails to produce an idempotent matrix, equation 5.3 of Payne and Tobias (1992) is used to
obtain the projection matrices for their joint decompostion.

The hybrid method is recommended for general use. However, of the three methods, eigenmethods
is least likely to fail, but it does not establish the marginality between the terms. It is often needed
when there is nonorthogonality between terms, such as when there are several linear covariates. It
can also be more efficeint in these circumstances.

The process can be computationally expensive, particularly for a large data set (500 or more obser-
vations) and/or when many terms are to be orthogonalized.

If the error Matrix is not idempotent should occur then, especially if there are many terms, one
might try using set.daeTolerance to reduce the tolerance used in determining if values are either
the same or are zero; it may be necessary to lower the tolerance to as low as 0.001. Also, setting
orthogonalize to eigenmethods is worth a try.

Value

A pcanon.object.

Author(s)

Chris Brien

References

Brien, C. J. (2017) Multiphase experiments in practice: A look back. Australian & New Zealand
Journal of Statistics, 59, 327-352.

Brien, C. J. (2019) Multiphase experiments with at least one later laboratory phase . II. Northogonal
designs. Australian & New Zealand Journal of Statistics, 61, 234-268.

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184-4213.

Brien, C. J., Sermarini, R. A., & Demetrio, C. G. B. (2023). Exposing the confounding in experi-
mental designs to understand and evaluate them, and formulating linear mixed models for analyzing
the data from a designed experiment. Biometrical Journal, accepted for publication.

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279-294.

Payne, R. W. and R. D. Tobias (1992). General balance, combination of information and the analysis
of covariance. Scandinavian Journal of Statistics, 19, 3-23.

See Also

designRandomize, designLatinSqrSys, designPlot,
pcanon.object, p2canon.object, summary.pcanon, efficiencies.pcanon, pstructure ,
projs.2canon, proj2.efficiency, proj2.combine, proj2.eigen, efficiency.criteria, in
package dae,
eigen.

projector for further information about this class.

designBlocksGGPlot 27

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

##obtain combined decomposition and summarize
unit.trt.canon <- designAnatomy(formulae = list(unit=~ Block/Unit, trt=~ trt),

data = PBIBD2.lay)
summary(unit.trt.canon, which.criteria = c("aeff","eeff","order"))
summary(unit.trt.canon, which.criteria = c("aeff","eeff","order"), labels.swap = TRUE)

Three-phase sensory example from Brien and Payne (1999)
Not run:
data(Sensory3Phase.dat)
Eval.Field.Treat.canon <- designAnatomy(formulae = list(

eval= ~ ((Occasions/Intervals/Sittings)*Judges)/Positions,
field= ~ (Rows*(Squares/Columns))/Halfplots,
treats= ~ Trellis*Method),

data = Sensory3Phase.dat)
summary(Eval.Field.Treat.canon, which.criteria =c("aefficiency", "order"))

End(Not run)

designBlocksGGPlot Adds block boundaries to a plot produced by designGGPlot.

Description

This function adds block boundaries to a plot produced by designGGPlot. It allows control of the
starting unit, through originrow and origincolumn, and the number of rows (nrows) and columns
(ncolumns) from the starting unit that the blocks to be plotted are to cover.

Usage

designBlocksGGPlot(ggplot.obj, blockdefinition = NULL, blocksequence = FALSE,
originrow= 0, origincolumn = 0, nrows, ncolumns,
blocklinecolour = "blue", blocklinesize = 2,
facetstrips.placement = "inside",
printPlot = TRUE)

Arguments

ggplot.obj An object produced by ggplot2.

28 designBlocksGGPlot

blockdefinition

A matrix of block sizes:

• if there is only one row, then the first element is interpreted as the no. rows
in each block and blocks with this number of rows are to be repeated across
the rows of the design.

• if there is more than one row, then each row of the matrix specifies a block,
with the sequence of rows in the matrix specifying a corresponding se-
quence of blocks down the rows of the design.

Similarly, a single value for a column specifies a repetition of blocks of that
size across the columns of the design, while several column values specifies a
sequence of blocks across the columns of the size specified.

blocksequence A logical that determines whether block numbers are repetitions or sequences
of block numbers.

originrow A numeric speccifying the row after which the plotting of block boundaries is
to start.

origincolumn A numeric speccifying the column after which the plotting of block boundaries
is to start.

nrows A numeric the number of rows (nrows), from the starting unit, that the blocks
to be plotted are to cover.

ncolumns A numeric the number of columns (ncolumns), from the starting unit, that the
blocks to be plotted are to cover.

blocklinecolour

A character string specifying the colour of the block boundary.
See Colour specification under the par function.

blocklinesize A numeric giving the width of the block boundary to be plotted.
facetstrips.placement

A character nominating where the strip is to be placed with respect to axes text
and titles, either "inside" both text and titles, "outside.text" or "outside.title".
This argument is important only when axes and strips are on the same side
of the plot. When this occurs, the default is to place them inside the axis
text. Note: This argument must be specified only once in the constructon of
the plot and after every other aspect of the plot has been finalized. In par-
ticular, if designBlocksGGPlot is to called after designGGPlot to add block
boundaries, then facetstrips.placement should be specified in the last call
to designBlocksGGPlot, not in the call to designGGPlot.

printPlot A logical indicating whether to print the plot after adding the block bound-
aries.

Value

An object of class "ggplot", formed by adding to the input ggplot.obj and which can be plotted
using print.

Author(s)

Chris Brien

designBlocksGGPlot 29

Source

Brien, C.J., Harch, B.D., Correll, R.L., and Bailey, R.A. (2011) Multiphase experiments with at
least one later laboratory phase. I. Orthogonal designs. Journal of Agricultural, Biological, and
Environmental Statistics, 16:422-450.

See Also

designGGPlot, par, DiGGer

Examples

Construct a randomized layout for the split-unit design described by
Brien et al. (2011, Section 5)
split.sys <- cbind(fac.gen(list(Months = 4, Athletes = 3, Tests = 3)),

fac.gen(list(Intensities = LETTERS[1:3], Surfaces = 3),
times = 4))

split.lay <- designRandomize(allocated = split.sys[c("Intensities", "Surfaces")],
recipient = split.sys[c("Months", "Athletes", "Tests")],
nested.recipients = list(Athletes = "Months",

Tests = c("Months", "Athletes")),
seed = 2598)

Plot the design
cell.colours <- c("lightblue","lightcoral","lightgoldenrod","lightgreen","lightgrey",

"lightpink","lightsalmon","lightcyan","lightyellow","lightseagreen")

split.lay <- within(split.lay,
Treatments <- fac.combine(list(Intensities, Surfaces),

combine.levels = TRUE))
plt <- designGGPlot(split.lay, labels = "Treatments",

row.factors = "Tests", column.factors = c("Months", "Athletes"),
colour.values = cell.colours[1:9], label.size = 6,
blockdefinition = rbind(c(3,1)), blocklinecolour = "darkgreen",
printPlot = FALSE)

#Add Month boundaries
designBlocksGGPlot(plt, nrows = 3, ncolumns = 3, blockdefinition = rbind(c(3,3)))

A layout for a growth cabinet experiment that allows for edge effects
data(Cabinet1.des)
plt <- designGGPlot(Cabinet1.des, labels = "Combinations", cellalpha = 0.75,

title = "Lines and Harvests allocation for Cabinet 1",
printPlot = FALSE)

Plot Mainplot boundaries
plt <- designBlocksGGPlot(plt, blockdefinition = cbind(4,16), originrow= 1 ,

blocklinecolour = "green", nrows = 9, ncolumns = 16,
printPlot = FALSE)

plt <- designBlocksGGPlot(plt, blockdefinition = cbind(1,4),
blocklinecolour = "green", nrows = 1, ncolumns = 16,
printPlot = FALSE)

plt <- designBlocksGGPlot(plt, blockdefinition = cbind(1,4), originrow= 9,

30 designGGPlot

blocklinecolour = "green", nrows = 10, ncolumns = 16,
printPlot = FALSE)

Plot all 4 block boundaries
plt <- designBlocksGGPlot(plt, blockdefinition = cbind(8,5,5,4), blocksequence = TRUE,

origincolumn = 1, originrow= 1,
blocklinecolour = "blue", nrows = 9, ncolumns = 15,
printPlot = FALSE)

plt <- designBlocksGGPlot(plt, blockdefinition = cbind(10,16),
blocklinecolour = "blue", nrows = 10, ncolumns = 16,
printPlot = FALSE)

Plot border and internal block boundaries only
plt <- designBlocksGGPlot(plt, blockdefinition = cbind(8,14), origincolumn = 1, originrow= 1,

blocklinecolour = "blue", nrows = 9, ncolumns = 15,
printPlot = FALSE)

plt <- designBlocksGGPlot(plt, blockdefinition = cbind(10,16),
blocklinecolour = "blue", nrows = 10, ncolumns = 16)

designGGPlot Plots labels on two-way grids of coloured cells using ggplot2 to rep-
resent an experimental design

Description

Plots the labels in a grid of cells specified by row.factors and column.factors. The cells can
be coloured by the values of the column specified by column.name and can be divided into facets
by specifying multiple row and or column factors.

Usage

designGGPlot(design, labels = NULL, label.size = NULL,
row.factors = "Rows", column.factors = "Columns",
scales.free = "free", facetstrips.switch = NULL,
facetstrips.placement = "inside",
cellfillcolour.column = NULL, colour.values = NULL,
cellalpha = 1, celllinetype = "solid", celllinesize = 0.5,
celllinecolour = "black", cellheight = 1, cellwidth = 1,
reverse.x = FALSE, reverse.y = TRUE, x.axis.position = "top",
xlab, ylab, title, labeller = label_both,
title.size = 15, axis.text.size = 15,
blocksequence = FALSE, blockdefinition = NULL,
blocklinecolour = "blue", blocklinesize = 2,
printPlot = TRUE, ggplotFuncs = NULL, ...)

Arguments

design A data.frame containing labels, column.factors, row.factors and, if spec-
ified, colour.column.

labels A character giving the name of the column in data containing the labels to be
plotted on the grid. If labels is NULL, no labels are added.

designGGPlot 31

label.size A numeric giving the size of the labels.
row.factors A character giving the names of the factors (or numerics) in data that index

the rows of the plot grid used to represent the design. If there is more than one
name, then facet_grid is used to facet the plot in the y direction, based on
all but the last name. The factor corresponding to the last name will index the
rows in each facet.

column.factors A character giving the names of the factors (or numerics) in data that index
the columns of the plot grid used to represent the design. If there is more than
one name, then facet_grid is used to facet the plot in the x direction, based
on all but the last name. The factor corresponding to the last name will index
the columns in each facet.

scales.free When plots are facetted, a character specifying whether scales are shared
across all facets (fixed), or vary across rows (free_x), columns (free_y), or
both rows and columns (the default, free). The free_x, free_y and free op-
tions may not work when the plot grid is indexed using numerics.

facetstrips.switch

When plots are facetted, the strip text are displayed on the top and right of
the plot by default. If facetstrips.switch is "x", the top strip text will be
switched to the bottom. If "y", the right-hand side labels will be switched to the
left. The argument can also be set to "both". The argument facetstrips.placement
can be used to change the relationship between the strip text and the axis.text
and the axis.title.

facetstrips.placement

A character nominating where the strip is to be placed with respect to axes text
and titles, either "inside" both text and titles, "outside.text" or "outside.title".
This argument is important only when axes and strips are on the same side
of the plot. When this occurs, the default is to place them inside the axis
text. Note: This argument must be specified only once in the constructon of
the plot and after every other aspect of the plot has been finalized. In par-
ticular, if designBlocksGGPlot is to called after designGGPlot to add block
boundaries, then facetstrips.placement should be specified in the call to
designBlocksGGPlot, not in the call to designGGPlot.

reverse.x A logical which, if true, causes the order of values on the x-axis to be reversed,
the natural order being to increase from left to right.

reverse.y A logical which, if true, causes the order of values on the y-axis to be reversed,
the natural order being to increase from bottom to top.

x.axis.position

A character giving the position of the x-axis; can be top or bottom.
cellfillcolour.column

A character giving the name of the column in data that is to be used to vary
the colour the used to fill a cell.

colour.values A character giving the name or names of the colours to be used in filling the
cell. If cellfillcolour.column is not NULL then the number of colours sepcified
needs to match the number of unique values in the cellfillcolour.column.

cellalpha A numeric specifying the degree of transparency to be used in cell fill. It is
a ratio in which the denominator specifies the number of points (or lines) that
must be overplotted to give a solid cover.

32 designGGPlot

celllinetype A numeric or character giving the type of line for the cell border. An integer
or name: 0 = blank, 1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash,
6 = twodash. For more information see vignette("ggplot2-specs").

celllinesize A numeric specifying the size of the line in mm.

celllinecolour A character giving the name of the colour to use for the cell outline.

cellheight A numeric specifying the height of a cell.

cellwidth A numeric specifying the width of of a cell.

xlab Label for the x-axis. By default it is the last name in the column.factors.

ylab Label for the y-axis. By default it is the last name in the row.factors.

title Title for plot window. By default it is "Plot of labels".

labeller A function for specifying the formatting of the strip labels of the facet grids
used when there is more than one row.factors or column.factors. (See
labellers from ggplot2.)

title.size A numeric giving the size for all titles: xlab, ylab and title.

axis.text.size A numeric giving the size for tick labels.

blocksequence A logical that determines whether block numbers are repetitions or sequences
of block numbers.

blockdefinition

A matrix of block sizes:

• if there is only one row, then the first element is interpreted as the no. rows
in each block and blocks with this number of rows are to be repeated across
the rows of the design.

• if there is more than one row, then each row of the matrix specifies a block,
with the sequence of rows in the matrix specifying a corresponding se-
quence of blocks down the rows of the design.

Similarly, a single value for a column specifies a repetition of blocks of that
size across the columns of the design, while several column values specifies a
sequence of blocks across the columns of the size specified.

blocklinecolour

A character string specifying the colour of the block boundary.
See also the scale_colour_* functions or Colour specification under the
par function.

blocklinesize A numeric giving the width of the block boundary to be plotted.

printPlot A logical indicating whether to print the plot produced.

ggplotFuncs A list, each element of which contains the results of evaluating a ggplot2
function. It is created by calling the list function with a ggplot2 function call
for each element. These functions are applied in creating the ggplot object.

... Other arguments that are passed down to the geom_text call that plots the
labels.

Value

An object of class "ggplot", which can be plotted using print.

designLatinSqrSys 33

Author(s)

Chris Brien

See Also

designBlocksGGPlot, fac.combine in package dae, designPlot.

Examples

Plot a randomized complete block design
Treatments <- factor(rep(1:6, times = 5))
RCBD.lay <- designRandomize(allocated = Treatments,

recipient = list(Blocks = 5, Units = 6),
nested.recipients = list(Units = "Blocks"),
seed = 74111)

designGGPlot(RCBD.lay, labels = "Treatments", label.size = 5,
row.factors = "Blocks", column.factors = "Units",
blockdefinition = cbind(1,5))

Plot without labels
designGGPlot(RCBD.lay, cellfillcolour.column = "Treatments",

row.factors = "Blocks", column.factors = "Units",
colour.values = c("lightblue","lightcoral","lightgoldenrod",

"lightgreen","lightgrey", "lightpink"),
blockdefinition = cbind(1,6))

Plot a lattice square design
data(LatticeSquare_t49.des)
designGGPlot(LatticeSquare_t49.des, labels = "Lines", label.size = 5,

row.factors = c("Intervals", "Runs"), column.factors = "Times",
blockdefinition = cbind(7,7))

designLatinSqrSys Generate a systematic plan for a Latin Square design

Description

Generates a systematic plan for a Latin Square design using the method of cycling the integers 1 to
the number of treatments. The start of the cycle for each row, or the first column, can be specified
as a vector of integers.

Usage

designLatinSqrSys(order, start = NULL)

34 designPlot

Arguments

order The number of treatments.

start A numeric containing order unique values between one and order. These are
interpreted as the value for the fist column for each row. If NULL, 1:order is
used.

Value

A numeric containing order x order integers between 1 and order such that, when the numeric
is considered as a square matrix of size order, each integer occurs once and only once in each row
and column of the matrix.

See Also

designRandomize, designPlot, designAnatomy in package dae.

Examples

matrix(designLatinSqrSys(5, start = c(seq(1, 5, 2), seq(2, 5, 2))), nrow=5)
designLatinSqrSys(3)

designPlot A graphical representation of an experimental design using labels
stored in a matrix.

Description

This function uses labels, usually derived from treatment and blocking factors from an experimental
design and stored in a matrix, to build a graphical representation of the matrix, highlighting the
position of certain labels . It is a modified version of the function supplied with DiGGer. It includes
more control over the labelling of the rows and columns of the design and allows for more flexible
plotting of designs with unequal block size.

Usage

designPlot(designMatrix, labels = NULL, altlabels = NULL, plotlabels = TRUE,
rtitle = NULL, ctitle = NULL,
rlabelsreverse = FALSE, clabelsreverse = FALSE,
font = 1, chardivisor = 2, rchardivisor = 1, cchardivisor = 1,
cellfillcolour = NA, plotcellboundary = TRUE,
rcellpropn = 1, ccellpropn = 1,
blocksequence = FALSE, blockdefinition = NULL,
blocklinecolour = 1, blocklinewidth = 2,
rotate = FALSE, new = TRUE, ...)

designPlot 35

Arguments

designMatrix A matrix containing a set of numerics or characters being the labels as they
have been assigned to the cells of the grid represented by the matrix.

labels A numeric or character vector giving the cells in designMatrix that are to be
plotted in this call to designPlot. If NULL then all the cells are plotted.
What is actually plotted for a cell is controlled jointly by labels, plotlabels,
altlabels, plotcellboundary and cellfillcolour. If plotlabels is TRUE
and altlabels is NULL then labels are plotted in the cells, unless labels is
NULL when the labels in designMatrix are plotted.
Whatever is being plotted, altlabels and cellfillcolour must have an ap-
propriate number of values. See text for more information on specifying the
labels.

altlabels Either a character vector containing an alternative set of labels for the labels
currently being plotted or a single integer specifying an alternative symbol to
be used in plotting cells when plotlabels is TRUE. The length of altlabels
must be one or the same length as labels, unless labels is NULL in which case
it must equal the number of unique labels in designMatrix.
If altlabels is NULL, the labels specified in labels are plotted when plotlabels
is TRUE. If labels is also NULL, the labels in designMatrix are plotted. See
text for more information on specifying the labels.

plotlabels A logical to indicate whether labels are to be plotted in the cells. If TRUE,
print all labels or the specific labels listed in labels. If FALSE, no labels are
printed in the cells.

rtitle A character string to use as a title for rows of the plot. If rtitle is NULL then
no title is plotted.

ctitle A character string to use as a title for columns of the plot. If ctitle is NULL
then no title is plotted.

rlabelsreverse A logical indicating whether to reverse the row labels.
clabelsreverse A logical indicating whether to reverse the column labels.
font An integer specifying the font to be used for row and column labelling. See

par for further details.
chardivisor A numeric that changes the size of text and symbols in the cells by dividing the

default size by it.
rchardivisor A numeric that changes the size of the labels of the rows of the design by divid-

ing the default size by it.
cchardivisor A numeric that changes the size of the labels of the columns of the design by

dividing the default size by it.
cellfillcolour A character string specifying the colour of the fill for the cells to be plotted in

this call. If there is only one colour then all cells being plotted with that colour.
If there is more than one colour then, unless labels is NULL, the number of
colours must at least equal the number of labels and then the fill colours will be
matched, one for one from the first colour, with the labels. If labels is NULL
then the number of colours must at least equal the number of unique labels in
designMatrix. The default, NA, is to leave ther cells unfilled.
See also Colour specification under the par function.

36 designPlot

plotcellboundary

A logical indicting whether a boundary is to plotted around a cell.

rcellpropn a value between 0 and 1 giving the proportion of the standard row size of a cell
size to be plotted as a cell.

ccellpropn a value between 0 and 1 giving the proportion of the standard column size of a
cell size to be plotted as a cell.

blocksequence A logical that determines whether block numbers are repetitions or sequences
of block numbers.

blockdefinition

A matrix of block sizes:

• if there is only one row, then the first element is interpreted as the no. rows
in each block and blocks with this number of rows are to be repeated across
the rows of the design.

• if there is more than one row, then each row of the matrix specifies a block,
with the sequence of rows in the matrix specifying a corresponding se-
quence of blocks down the rows of the design.

Similarly, a single value for a column specifies a repetition of blocks of that
size across the columns of the design, while several column values specifies a
sequence of blocks across the columns of the size specified.

blocklinecolour

A character string specifying the colour of the block boundary.
See also Colour specification under the par function.

blocklinewidth A numeric giving the width of the block boundary to be plotted.

rotate A logical which, if TRUE, results in the matrix being rotated 90 degrees for
plotting.

new A logical indicating if a new plot is to be produced or the current plot is added
to.

... further arguments passed to polygon in plotting the cell.

Value

no values are returned, but a plot is produced.

Author(s)

Chris Brien

References

Coombes, N. E. (2009). DiGGer design search tool in R. http://nswdpibiom.org/austatgen/
software/

See Also

blockboundaryPlot, designPlotlabels, designLatinSqrSys, designRandomize, designAnatomy
in package dae.
Also, par, polygon, DiGGer

http://nswdpibiom.org/austatgen/software/
http://nswdpibiom.org/austatgen/software/

designPlotlabels 37

Examples

Not run:
designPlot(des.mat, labels=1:4, cellfillcolour="lightblue", new=TRUE,

plotcellboundary = TRUE, chardivisor=3,
rtitle="Lanes", ctitle="Positions",
rcellpropn = 1, ccellpropn=1)

designPlot(des.mat, labels=5:87, plotlabels=TRUE, cellfillcolour="grey", new=FALSE,
plotcellboundary = TRUE, chardivisor=3)

designPlot(des.mat, labels=88:434, plotlabels=TRUE, cellfillcolour="lightgreen",
new=FALSE, plotcellboundary = TRUE, chardivisor=3,
blocksequence=TRUE, blockdefinition=cbind(4,10,12),
blocklinewidth=3, blockcolour="blue")

End(Not run)

designPlotlabels Plots labels on a two-way grid using ggplot2

Description

Plots the labels in a grid specified by grid.xand grid.y. The labels can be coloured by the values
of the column specified by column.name.

Usage

designPlotlabels(data, labels, grid.x = "Columns", grid.y = "Rows",
colour.column=NULL, colour.values=NULL,
reverse.x = FALSE, reverse.y = TRUE,
xlab, ylab, title, printPlot = TRUE, ggplotFuncs = NULL, ...)

Arguments

data A data.frame containing labels, grid.x, grid.y and, if specified, colour.column.

labels A character giving the name of the column in data containing the labels to be
plotted on the grid.

grid.x A character giving the name of the column in data that specifies the x-coordinates
of the plot grid.

grid.y A character giving the name of the column in data that specifies the y-coordinates
of the plot grid.

reverse.x A logical which, if true, causes the order of values on the x-axis to be reversed.

reverse.y A logical which, if true, causes the order of values on the y-axis to be reversed.

colour.column A character giving the name of the column in data that is to be used to colour
the values plotted on the grid.

colour.values A character giving the name of the column in data that is to be used to colour
the values plotted on the grid.

xlab Label for the x-axis. By default it is the name of the grid.x.

38 designRandomize

ylab Label for the y-axis. By default it is the name of the grid.y.

title Title for plot window. By default it is "Plot of labels".

printPlot A logical indicating whether to print the plot.

ggplotFuncs A list, each element of which contains the results of evaluating a ggplot2
function. It is created by calling the list function with a ggplot2 function call
for each element. These functions are applied in creating the ggplot object.

... Other arguments that are passed down to the geom_text call that plots the
labels.

Value

An object of class "ggplot", which can be plotted using print.

Author(s)

Chris Brien

See Also

fac.combine in package dae, designPlot.

Examples

Treatments <- factor(rep(1:6, times = 5))
RCBD.lay <- designRandomize(allocated = Treatments,

recipient = list(Blocks = 5, Units = 6),
nested.recipients = list(Units = "Blocks"),
seed = 74111)

designPlotlabels(RCBD.lay, labels = "Treatments",
grid.x = "Units", grid.y = "Blocks",
colour.column = "Treatments", size = 5)

designRandomize Randomize allocated to recipient factors to produce a layout for an
experiment

Description

A systematic design is specified by a set of allocated factors that have been assigned to a set of
recipient factors. In textbook designs the allocated factors are the treatment factors and the
recipient factors are the factors indexing the units. To obtain a randomized layout for a sys-
tematic design it is necessary to provide (i) the systematic arrangement of the allocated factors,
(ii) a list of the recipient factors or a data.frame with their values, and (iii) the nesting of
the recipient factors for the design being randomized. Given this information, the allocated
factors will be randomized to the recipient factors, taking into account the nesting between
the recipient factors for the design. However, allocated factors that have different values as-
sociated with those recipient factors that are in the except vector will remain unchanged from
the systematic design.

designRandomize 39

Also, if allocated is NULL then a random permutation of the recipient factors is produced that
is consistent with their nesting as specified by nested.recipients.

For examples of its use also see the vignette accessed via vignette("DesignNotes", package="dae")
and for a discussion of its use see Brien, Sermarini and Demetro (2023).

Usage

designRandomize(allocated = NULL, recipient, nested.recipients = NULL,
except = NULL, seed = NULL, unit.permutation = FALSE, ...)

Arguments

allocated A factor or a data.frame containing the systematically allocated values of the
factor(s). If NULL, a random permutation of the recipient factors is pro-
duced that is consistent with their nesting as specified by nested.recipients.

recipient A data.frame or a list of factors, along with their levels that specify the
set of recipient factors that are allocated levels of the allocated factors.
If a list, the name of each component of the list is a factor name and the
component is either (i) a single numeric value that is the number of levels, (ii)
a numeric vector that contains the levels of the factor, (iii) or a character
vector that contains the labels of the levels of the factor. The values of
factors will be generated in standard order using fac.gen and so the values in
allocated must match this.

nested.recipients

A list of the recipient factors that are nested in other factors in recipient.
The name of each component is the name of a factor that is nested and the com-
ponent is a character vector containing the factors within which it is nested.
The randomization is controlled by nested.recipients: nested recipient fac-
tors are permuted within those factors that nest them. Only the nesting is speci-
fied: it is assumed that if two factors are not nested then they must be crossed. It
is emphasized that the nesting is a property of the design that is being employed
(it is only partly based on the intrinsic or physical crossing and nesting).

except A character vector containing the names of recipient factors that are to
be excepted from the permutation; any allocated factors whose values dif-
fer between the levels of the factors in this vector will not have those values
randomized.

seed A single numeric value, interpreted as an integer, that specifies the starting value
of the random number generator.

unit.permutation

A logical indicating whether to include the .Unit and .Permutation columns
in the data.frame.

... Further arguments passed to or from other methods. Unused at present.

Details

A systematic design is specified by the matching of the supplied allocated and recipient factors.
If recipient is a list then fac.gen is used to generate a data.frame with the combinations of the

40 designRandomize

levels of the recipient factors in standard order. Although, the data.frames are not combined
at this stage, the systematic design is the combination, by columns, of the values of the allocated
factors with the values of recipient factors in the recipient data.frame.

The method of randomization described by Bailey (1981) is used to randomize the allocated
factors to the recipient factors. That is, a permutation of the recipient factors is obtained
that respects the nesting for the design, but does not permute any of the factors in the except vector.
A permutation is generated for all combinations of the recipient factors, except that a nested
factor, specifed using the nested.recipients argument, cannot occur in a combination without
its nesting factor(s). These permutations are combined into a single, units permutation that is
applied to the recipient factors. Then the data.frame containing the permuted recipient
factors and that containng the unpermuted allocated factors are combined columnwise, as in
cbind. To produce the randomized layout, the rows of the combined data.frame are reordered
so that its recipient factors are in either standard order or, if a data.frame was suppled to
recipient, the same order as for the supplied data.frame.

The .Units and .Permutation vectors enable one to swap between this combined, units permu-
tation and the randomized layout. The ith value in .Permutation gives the unit to which unit i was
assigned in the randomization.

Value

A data.frame with the values for the recipient and allocated factors that specify the layout
for the experiment and, if unit.permutation is TRUE, the values for .Units and .Permutation
vectors.

Author(s)

Chris Brien

References

Bailey, R.A. (1981) A unified approach to design of experiments. Journal of the Royal Statistical
Society, Series A, 144, 214–223.

See Also

fac.gen, designLatinSqrSys, designPlot, designAnatomy in package dae.

Examples

Generate a randomized layout for a 4 x 4 Latin square
(the nested.recipients argument is not needed here as none of the
factors are nested)
Firstly, generate a systematic layout
LS.sys <- cbind(fac.gen(list(row = c("I","II","III","IV"),

col = c(0,2,4,6))),
treat = factor(designLatinSqrSys(4), label = LETTERS[1:4]))

obtain randomized layout
LS.lay <- designRandomize(allocated = LS.sys["treat"],

recipient = LS.sys[c("row","col")],
seed = 7197132, unit.permutation = TRUE)

designTwophaseAnatomies 41

LS.lay[LS.lay$.Permutation,]

Generate a randomized layout for a replicated randomized complete
block design, with the block factors arranged in standard order for
rep then plot and then block
Firstly, generate a systematic order such that levels of the
treatment factor coincide with plot
RCBD.sys <- cbind(fac.gen(list(rep = 2, plot=1:3, block = c("I","II"))),

tr = factor(rep(1:3, each=2, times=2)))
obtain randomized layout
RCBD.lay <- designRandomize(allocated = RCBD.sys["tr"],

recipient = RCBD.sys[c("rep", "block", "plot")],
nested.recipients = list(plot = c("block","rep"),

block="rep"),
seed = 9719532,
unit.permutation = TRUE)

#sort into the original standard order
RCBD.perm <- RCBD.lay[RCBD.lay$.Permutation,]
#resort into randomized order
RCBD.lay <- RCBD.perm[order(RCBD.perm$.Units),]

Generate a layout for a split-unit experiment in which:
- the main-unit factor is A with 4 levels arranged in
a randomized complete block design with 2 blocks;
- the split-unit factor is B with 3 levels.
Firstly, generate a systematic layout
SPL.sys <- cbind(fac.gen(list(block = 2, main.unit = 4, split.unit = 3)),

fac.gen(list(A = 4, B = 3), times = 2))
obtain randomized layout
SPL.lay <- designRandomize(allocated = SPL.sys[c("A","B")],

recipient = SPL.sys[c("block", "main.unit", "split.unit")],
nested.recipients = list(main.unit = "block",

split.unit = c("block", "main.unit")),
seed=155251978)

Generate a permutation of Seedlings within Species
seed.permute <- designRandomize(recipient = list(Species = 3, Seedlings = 4),

nested.recipients = list(Seedlings = "Species"),
seed = 75724, except = "Species",
unit.permutation = TRUE)

designTwophaseAnatomies

Given the layout for a design and three structure formulae, obtain
the anatomies for the (i) two-phase, (ii) first-phase, (iii) cross-phase,
treatments, and (iv) combined-units designs.

Description

Uses designAnatomy to obtain the four species of designs, described by Brien (2019), that are
associated with a standard two-phase design: the anatomies for the (i) two-phase, (ii) first-phase,

42 designTwophaseAnatomies

(iii) cross-phase, treatments, and (iv) combined-units designs. (The names of the last two designs
in Brien (2019) were cross-phase and second-phase designs.) For the standard two-phase design,
the first-phase design is the design that allocates first-phase treatments to first-phase units. The
cross-phase, treatments design allocates the first-phase treatments to the second-phase units and the
combined-units design allocates the the first-phase units to the second-phase units. The two-phase
design combines the other three species of designs. However, it is not mandatory that the three
formula correspond to second-phase units, first-phase units and first-phase treatments, respectively,
as is implied above; this is just the correspondence for a standard two-phase design. The essential
requirement is that three structure formulae are supplied. For example, if there are both first- and
second-phase treatments in a two-phase design, the third formula might involve the treatment factors
from both phases. In this case, the default anatomy titles when printing occurs will not be correct,
but can be modifed using the titles argument.

Usage

designTwophaseAnatomies(formulae, data, which.designs = "all",
printAnatomies = TRUE, titles,
orthogonalize = "hybrid",
marginality = NULL,
which.criteria = c("aefficiency", "eefficiency",

"order"), ...)

Arguments

formulae An object of class list with three components of class formula. Usually, the
terms in a single formula have the same status in the allocation of factors in the
design. For example, all involve only factors that were allocated, or all involve
factors that were recipients of allocated factors. The names of the components
are used to identify the sources in the summary.pcanon object. They will also be
used to name the terms, sources and marginality lists in the pcanon.object.

data A data.frame contains the values of the factors and variables that occur in
formulae.

which.designs A character vector indicating the species of designs that are to be obtained.
It should include one or more of two-phase, first-phase, cross-phase and
combined-units; all, the default, results in all four being obtained.

printAnatomies A logical indicating whether or not the anatomies are to be printed.

titles A character vector of length four providing titles for the printed anatomies.
It should have the titles, in the following order, for the antomies based on : (i)
all three formulae, (ii) the second and third formulae, (iii) the first and third
formulae, and (iv) the first and second formulae. If any element of titles
is NA then that element is replaced with the corresponding default element of
titles, these being, in order: Anatomy for the full two-phase design; Anatomy
for the first-phase design; Anatomy for the cross-phase, treatments design;
and Anatomy for the combined-units design. The titles generated will be
saved as an attribute of the returned list.

orthogonalize A character vector indicating the method for orthogonalizing a projector to
those for terms that occurred previously in a single formula. Three options are

designTwophaseAnatomies 43

available: hybrid; differencing; eigenmethods. The hybrid option is the
most general and uses the relationships between the projection operators for the
terms in the formula to decide which projectors to substract and which to or-
thogonalize using eigenmethods. The differencing option subtracts, from the
current projector, those previously orthogonalized projectors for terms whose
factors are a subset of the current projector’s factors. The eigemethods option
recursively orthogonalizes the projects using an eigenanalysis of each projector
with previously orthogonalized projectors. If a single value is given, it is used
for all formulae.

marginality A list that can be used to supply some or all of the marginality matrices when
it is desired to overwrite calculated marginality matrices or when they are not
calculated. If the list is the same length as the formulae list, they will
be associated in parallel with the components of formulae, irrespective of the
naming of the two lists. If the number of components in marginlaity is less
than the number of components in formulae then both lists must be named so
that those in the marginality list can be matched with those in the formulae
list.
Each component of the marginality list must be either NULL or a square
matrix consisting of zeroes and ones that gives the marginalites of the terms in
the formula. It must have the row and column names set to the terms from the
expanded formula, including being in the same order as these terms. The entry
in the ith row and jth column will be one if the ith term is marginal to the jth
term i.e. the column space of the ith term is a subspace of that for the jth term
and so the source for the jth term is to be made orthogonal to that for the ith
term. Otherwise, the entries are zero. A row and column should not be included
for the grand mean even if grandMean is TRUE.

which.criteria A character vector nominating the efficiency criteria to be included in the sum-
mary of aliasing between terms within a structure. It can be none, all or some
combination of aefficiency, mefficiency, sefficiency, eefficiency, xefficiency,
order and dforthog – for details see efficiency.criteria. If none, no sum-
mary is printed.

... further arguments passed to designAnatomy.

Details

To produce the anatomies, designAnatomy is called. The two-phase anatomy is based on the three
formulae supplied in formulae, the first-phase anatomy uses the second and third formulae, the
cross-phase, treatments anatomy derives from the first and third formulae and the combined-units
anatomy is obtained with the first and second formulae.

Value

A list containing the components twophase, first, cross and combined.Each contains the
pcanon.object for one of the four designs produced by designTwophaseAnatomies, unless it
is NULL because the design was omitted from the which.designs argument. The returned list
has an attribute titles, being a character vector of length four and containing the titles used in
printing the anatomies.

44 designTwophaseAnatomies

Author(s)

Chris Brien

References

Brien, C. J. (2017) Multiphase experiments in practice: A look back. Australian & New Zealand
Journal of Statistics, 59, 327-352.

Brien, C. J. (2019) Multiphase experiments with at least one later laboratory phase . II. Northogonal
designs. Australian & New Zealand Journal of Statistics61, 234-268.

See Also

designAnatomy, pcanon.object, p2canon.object, summary.pcanon, efficiencies.pcanon,
pstructure , projs.2canon, proj2.efficiency, proj2.combine, proj2.eigen,
efficiency.criteria, in package dae, eigen.

projector for further information about this class.

Examples

#'## Microarray example from Jarrett & Ruggiero (2008) - see Brien (2019)
jr.lay <- fac.gen(list(Set = 7, Dye = 2, Array = 3))
jr.lay <- within(jr.lay,

{
Block <- factor(rep(1:7, each=6))
Plant <- factor(rep(c(1,2,3,2,3,1), times=7))
Sample <- factor(c(rep(c(2,1,2,2,1,1, 1,2,1,1,2,2), times=3),

2,1,2,2,1,1))
Treat <- factor(c(1,2,4,2,4,1, 2,3,5,3,5,2, 3,4,6,4,6,3,

4,5,7,5,7,4, 5,6,1,6,1,5, 6,7,2,7,2,6,
7,1,3,1,3,7),

labels=c("A","B","C","D","E","F","G"))
})

jr.anat <- designTwophaseAnatomies(formulae = list(array = ~ (Set:Array)*Dye,
plot = ~ Block/Plant/Sample,
trt = ~ Treat),

which.designs = c("first","cross"),
data = jr.lay)

Three-phase sensory example from Brien and Payne (1999)
Not run:
data(Sensory3Phase.dat)
Sensory.canon <- designTwophaseAnatomies(formulae = list(

eval= ~ ((Occasions/Intervals/Sittings)*Judges)/Positions,
field= ~ (Rows*(Squares/Columns))/Halfplots,
treats= ~ Trellis*Method),

data = Sensory3Phase.dat)

End(Not run)

detect.diff 45

detect.diff Computes the detectable difference for an experiment

Description

Computes the delta that is detectable for specified replication, power, alpha.

Usage

detect.diff(rm=5, df.num=1, df.denom=10, sigma=1, alpha=0.05, power=0.8,
tol = 0.001, print=FALSE)

Arguments

rm The number of observations used in computing a mean.

df.num The degrees of freedom of the numerator of the F for testing the term involving
the means.

df.denom The degrees of freedom of the denominator of the F for testing the term involv-
ing the means.

sigma The population standard deviation.

alpha The significance level to be used.

power The minimum power to be achieved.

tol The maximum difference tolerated between the power required and the power
computed in determining the detectable difference.

print TRUE or FALSE to have or not have a table of power calculation details printed
out.

Value

A single numeric value containing the computed detectable difference.

Author(s)

Chris Brien

See Also

power.exp, no.reps in package dae.

Examples

Compute the detectable difference for a randomized complete block design
with four treatments given power is 0.8 and alpha is 0.05.
rm <- 5
detect.diff(rm = rm, df.num = 3, df.denom = 3 * (rm - 1),sigma = sqrt(20))

46 efficiencies

efficiencies Extracts the canonical efficiency factors from a pcanon.object or a
p2canon.object.

Description

Produces a list containing the canonical efficiency factors for the joint decomposition of two or
more sets of projectors (Brien and Bailey, 2009) obtained using designAnatomy or projs.2canon.

Usage

S3 method for class 'pcanon'
efficiencies(object, which = "adjusted", ...)
S3 method for class 'p2canon'
efficiencies(object, which = "adjusted", ...)

Arguments

object A pcanon.object or an object of class p2canon produced by projs.2canon.

which A character string, either adjusted or pairwise. For adjusted, the canonical
efficiency factor are adjusted for other projectors from from the same set. For
pairwise, they are the unadjusted canonical efficiency factors between pairs of
projectors consisting of one projector from each of two sets.

... Further arguments passed to or from other methods. Unused at present.

Value

For a pcanon.object, a list with a component for each component of object, except for the last
component – for more information about the components see pcanon.object .

For a p2canon object, a list with a component for each element of the Q1 argument from projs.2canon.
Each component is list, each its components corresponding to an element of the Q2 argument from
projs.2canon

Author(s)

Chris Brien

References

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

See Also

designAnatomy, summary.pcanon, proj2.efficiency, proj2.combine, proj2.eigen,
pstructure in package dae, eigen.

projector for further information about this class.

efficiency.criteria 47

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

##obtain combined decomposition using designAnatomy and get the efficiencies
unit.trt.canon <- designAnatomy(list(unit=~ Block/Unit, trt=~ trt), data = PBIBD2.lay)
efficiencies.pcanon(unit.trt.canon)

##obtain the projectors for each formula using pstructure
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
trt.struct <- pstructure(~ trt, data = PBIBD2.lay)

##obtain combined decomposition projs.2canon and get the efficiencies
unit.trt.p2canon <- projs.2canon(unit.struct$Q, trt.struct$Q)
efficiencies.p2canon(unit.trt.p2canon)

efficiency.criteria Computes efficiency criteria from a set of efficiency factors

Description

Computes efficiency criteria from a set of efficiency factors.

Usage

efficiency.criteria(efficiencies)

Arguments

efficiencies A numeric containing a set of efficiency factors.

Details

The aefficiency criterion is the harmonic mean of the nonzero efficiency factors. The mefficiency
criterion is the mean of the nonzero efficiency factors. The eefficiency criterion is the minimum
of the nonzero efficiency factors. The sefficiency criterion is the variance of the nonzero effi-
ciency factors. The xefficiency is the maximum of the efficiency factors. The order is the order
of balance and is the number of unique nonzero efficiency factors. The dforthog is the number of
efficiency factors that are equal to one.

Value

A list whose components are aefficiency, mefficiency, sefficiency, eefficiency, xefficiency,
order and dforthog.

48 elements

Author(s)

Chris Brien

See Also

proj2.efficiency, proj2.eigen, proj2.combine in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

obtain sets of projectors
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
trt.struct <- pstructure(~ trt, data = PBIBD2.lay)

save intrablock efficiencies
eff.inter <- proj2.efficiency(unit.struct$Q[["Unit[Block]"]], trt.struct$Q[["trt"]])

calculate efficiency criteria
efficiency.criteria(eff.inter)

elements Extract the elements of an array specified by the subscripts

Description

Elements of the array x corresponding to the rows of the two dimensional object subscripts are
extracted. The number of columns of subscripts corresponds to the number of dimensions of x.
The effect of supplying less columns in subscripts than the number of dimensions in x is the same
as for "[".

Usage

elements(x, subscripts)

Arguments

x An array with at least two dimensions whose elements are to be extracted.

subscripts A two dimensional object interpreted as elements by dimensions.

Exp249.munit.des 49

Value

A vector containing the extracted elements and whose length equals the number of rows in the
subscripts object.

Author(s)

Chris Brien

See Also

Extract

Examples

Form a table of the means for all combinations of Row and Line.
Then obtain the values corresponding to the combinations in the data frame x,
excluding Row 3.
x <- fac.gen(list(Row = 2, Line = 4), each =2)
x$y <- rnorm(16)
RowLine.tab <- tapply(x$y, list(x$Row, x$Line), mean)
xs <- elements(RowLine.tab, subscripts=x[x$"Line" != 3, c("Row", "Line")])

Exp249.munit.des Systematic, main-unit design for an experiment to be run in a green-
house

Description

In this main-unit design, there are 24 lanes by 11 Positions, the lanes being blocked into 6 Zones
of 4 lanes. The design for the main units is for assigning 75 wheat lines, of which 73 are Nested
Association Mapping (NAM) wheat lines and the other two are two check lines, Scout and Gladius.
A row and column design was generated with DiGGer (Coombes, 2009). For more details see the
vignette accessed via vignette("DesignNotes", package="dae").

Usage

data(Exp249.munit.des)

Format

A data.frame containing 264 observations of 3 variables.

Source

Coombes, N. E. (2009) Digger: design search tool in R. URL: http://nswdpibiom.org/austatgen/
software/, (accessed June 3, 2015).

http://nswdpibiom.org/austatgen/software/
http://nswdpibiom.org/austatgen/software/

50 extab

extab Expands the values in table to a vector

Description

Expands the values in table to a vector according to the index.factors that are considered
to index the table, either in standard or Yates order. The order of the values in the vector is
determined by the order of the values of the index.factors.

Usage

extab(table, index.factors, order="standard")

Arguments

table A numeric vector containing the values to be expanded. Its length must equal
the product of the number of used levels for the factors in index.factors and
the values in it correspond to all levels combinations of these factors. That is,
the values of the index.factors are irrelevant to table.

index.factors A list of factors that index the table. All the factors must be the same
length.

order The order in which the levels combinations of the index.factors are to be
considered as numbered in indexing table; standard numbers them as if they
are arranged in standard order, that is with the first factor moving slowest and
the last factor moving fastest; yates numbers them as if they are arranged in
Yates order, that is with the first factor moving fastest and last factor moving
slowest.

Value

A vector of length equal to the factors in index.factor whose values are taken from table.

Author(s)

Chris Brien

Examples

generate a small completely randomized design with the two-level
factors A and B
n <- 12
CRD.unit <- list(Unit = n)
CRD.treat <- fac.gen(list(A = 2, B = 2), each = 3)
CRD.lay <- designRandomize(allocated = CRD.treat, recipient = CRD.unit,

seed = 956)

set up a 2 x 2 table of A x B effects
AB.tab <- c(12, -12, -12, 12)

fac.ar1mat 51

add a unit-length vector of expanded effects to CRD.lay
attach(CRD.lay)
CRD.lay$AB.effects <- extab(table=AB.tab, index.factors=list(A, B))

fac.ar1mat forms the ar1 correlation matrix for a (generalized) factor

Description

Form the correlation matrix for a (generalized) factor where the correlation between the levels
follows an autocorrelation of order 1 (ar1) pattern.

Usage

fac.ar1mat(factor, rho)

Arguments

factor The (generalized) factor for which the correlation between its levels displays
an ar1 pattern.

rho The correlation parameter for the ar1 process.

Details

The method is: a) form an n x n matrix of all pairwise differences in the numeric values correspond-
ing to the observed levels of the factor by taking the difference between the following two n x n
matrices are equal: 1) each row contains the numeric values corresponding to the observed levels of
the factor, and 2) each column contains the numeric values corresponding to the observed levels of
the factor, b) replace each element of the pairwise difference matrix with rho raised to the absolute
value of the difference.

Value

An n x n matrix, where n is the length of the factor.

Author(s)

Chris Brien

See Also

fac.vcmat, fac.meanop, fac.sumop in package dae.

52 fac.combine

Examples

set up a two-level factor and a three-level factor, both of length 12
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

create a 12 x 12 ar1 matrix corrresponding to B
ar1.B <- fac.ar1mat(B, 0.6)

fac.combine Combines several factors into one

Description

Combines several factors into one whose levels are the combinations of the used levels of the
individual factors.

Usage

fac.combine(factors, order="standard", combine.levels=FALSE, sep=",", ...)

Arguments

factors A list of factors all of the same length.

order Either standard or yates. The order in which the levels combinations of
the factors are to be considered as numbered when forming the levels of the
combined factor; standard numbers them as if they are arranged in standard
order, that is with the levels of the first factor moving slowest and those of the
last factor moving fastest; yates numbers them as if they are arranged in Yates
order, that is with the levels of the first factor moving fastest and those of the
last factor moving slowest.

combine.levels A logical specifying whether the levels labels of the new factor are to be
combined from those of the factors being combined. The default is to use the
integers from 1 to the product of the numbers of combinations of used levels
of the individual factors, numbering the levels according to order.

sep A character string to separate the levels when combine.levels = TRUE.

... Further arguments passed to the factor call creating the new factor.

Value

A factor whose levels are formed form the observed combinations of the levels of the individ-
ual factors.

Author(s)

Chris Brien

fac.divide 53

See Also

fac.uncombine, fac.split, fac.divide in package dae.

Examples

set up two factors
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

obtain six-level factor corresponding to the combinations of A and B
AB <- fac.combine(list(A,B))

fac.divide Divides a factor into several separate factors

Description

Takes a factor and divides it into several separate factors as if the levels in the original
combined.factor are numbered from one to its number of levels and correspond to the numbering
of the levels combinations of the new factors when these are arranged in standard or Yates order.

Usage

fac.divide(combined.factor, factor.names, order="standard")

Arguments

combined.factor

A factor that is to be divided into the individual factors listed in factor.names.

factor.names A list of factors to be formed. The names in the list are the names of the
factors and the component of a name is either a) a single numeric value that
is the number of levels, b) a numeric vector that contains the levels of the
factor, or c) a character vector that contains the labels of the levels of the
factor.

order Either standard or yates. The order in which the levels combinations of
the factors in factor.names are to be considered as numbered; standard
numbers them as if they are arranged in standard order, that is with the first
factor moving slowest and the last factor moving fastest; yates numbers them
as if they are arranged in Yates order, that is with the first factor moving fastest
and last factor moving slowest.

Value

A data.frame whose columns consist of the factors listed in factor.names and whose values
have been computed from the combined factor. All the factors will be of the same length.

54 fac.gen

Note

A single factor name may be supplied in the list in which case a data.frame is produced that
contains the single factor computed from the numeric vector. This may be useful when calling
this function from others.

Author(s)

Chris Brien

See Also

fac.split, fac.uncombine, fac.combine in package dae.

Examples

generate a small completely randomized design for 6 treatments
n <- 12
CRD.unit <- list(Unit = n)
treat <- factor(rep(1:4, each = 3))
CRD.lay <- designRandomize(allocated = treat, recipient = CRD.unit, seed=956)

divide the treatments into two two-level factors A and B
CRD.facs <- fac.divide(CRD.lay$treat, factor.names = list(A = 2, B = 2))

fac.gen Generate all combinations of several factors and, optionally, replicate
them

Description

Generate all combinations of several factors and, optionally, replicate them.

Usage

fac.gen(generate, each=1, times=1, order="standard")

Arguments

generate A list of named objects and numbers that specify the factors whose levels
are to be generated and the pattern in these levels.If a component of the list
is named, then the component should be either a) a single numeric value that
is the number of levels, b) a numeric vector that contains the levels of the
factor, or c) a character vector that contains the labels of the levels of the
factor.

each The number of times to replicate consecutively the elements of the levels gen-
erated according to pattern specified by the generate argument.

times The number of times to repeat the whole generated pattern of levels generated
according to pattern specified by the generate argument.

fac.gen 55

order Either standard or yates. The order in which the speed of cycling through
the levels is to move; combinations of the factors are to be considered as
numbered; standard cycles through the levels of the first factor slowest and
the last factor moving fastest; yates cycles through the levels of the first factor
fastest and last factor moving slowest.

Details

The levels of each factor are generated in a hierarchical pattern, such as standard order, where
the levels of one factor are held constant while those of the adjacent factor are cycled through
the complete set once. If a number is supplied instead of a name, the pattern is generated as if a
factor with that number of levels had been supplied in the same position as the number. However,
no levels are stored for this unamed factor.

Value

A data.frame of factors whose generated levels are those supplied in the generate list. The
number of rows in the data.frame will equal the product of the numbers of levels of the supplied
factors and the values of the each and times arguments.

Warning

Avoid using factor names F and T as these might be confused with FALSE and TRUE.

Author(s)

Chris Brien

See Also

fac.genfactors , fac.combine in package dae

Examples

generate a 2^3 factorial experiment with levels - and +, and
in Yates order
mp <- c("-", "+")
fnames <- list(Catal = mp, Temp = mp, Press = mp, Conc = mp)
Fac4Proc.Treats <- fac.gen(generate = fnames, order="yates")

Generate the factors A, B and D. The basic pattern has 4 repetitions
of the levels of D for each A and B combination and 3 repetitions of
the pattern of the B and D combinations for each level of A. This basic
pattern has each combination repeated twice, and the whole of this
is repeated twice. It generates 864 A, B and D combinations.
gen <- list(A = 3, 3, B = c(0,100,200), 4, D = c("0","1"))
fac.gen(gen, times=2, each=2)

56 fac.genfactors

fac.genfactors Generate all combinations of the levels of the supplied factors, without
replication

Description

Generate all combinations of the levels of the supplied factors, without replication. This function
extracts the levels from the supplied factors and uses them to generate the new factors. On the
other hand, the levels must supplied in the generate argument of the function fac.gen.

Usage

fac.genfactors(factors, ...)

Arguments

factors A list of factors, or an object of factors that is coercible to a list.

... Further arguments passed to the fac.gen in creating the data.frame of new
factors.

Details

The levels of each factor are generated in standard order, unless order is supplied to fac.gen
via the ‘...’ argument. The levels of the new factors will be in the same order as in the supplied
factors.

Value

A data.frame whose columns correspond to factors in the factors list. The values in a column
are the generated levels of the factor. The number of rows in the data.frame will equal the
product of the numbers of levels of the supplied factors.

Author(s)

Chris Brien

See Also

fac.gen in package dae

Examples

generate a treatments key for the Variety and Nitrogen treatments factors in Oats.dat
data(Oats.dat)
trts.key <- fac.genfactors(factors = Oats.dat[c("Variety", "Nitrogen")])
trts.key$Treatment <- factor(1:nrow(trts.key))

fac.match 57

fac.match Match, for each combination of a set of columns in x, the row that has
the same combination in table

Description

Match, for each combination of a set of columns in x, the rows that has the same combination in
table. The argument multiples.allow controls what happens when there are multple matches in
table of a combination in x.

Usage

fac.match(x, table, col.names, nomatch = NA_integer_, multiples.allow = FALSE)

Arguments

x an R object, normally a data.frame, possibly a matrix.

table an R object, normally a data.frame, possibly a matrix.

col.names A character vector giving the columns in x and table that are to be matched.

nomatch The value to be returned in the case when no match is found. Note that it is
coerced to integer.

multiples.allow

A logical indicating whether multiple matches of a combination in x to those
in table is allowed. If multiples.allow is FALSE, an error is generated. If
multiples.allow is TRUE, the first occuence in table is matched. This func-
tion can be viewed as a generalization to multiple vectors of the match function
that applies to single vectors.

Value

A vector of length equal to x that gives the rows in table that match the combinations of col.names
in x. The order of the rows is the same as the order of the combintions in x. The value returned if a
combination is unmatched is specified in the nomatch argument.

Author(s)

Chris Brien

See Also

match

58 fac.meanop

Examples

Not run:
#A single unmatched combination
kdata <- data.frame(Expt="D197-5",

Row=8,
Column=20, stringsAsFactors=FALSE)

index <- fac.match(kdata, D197.dat, c("Expt", "Row", "Column"))

A matched and an unmatched combination
kdata <- data.frame(Expt=c("D197-5", "D197-4"),

Row=c(8, 10),
Column=c(20, 8), stringsAsFactors=FALSE)

index <- fac.match(kdata, D197.dat, c("Expt", "Row", "Column"))

End(Not run)

fac.meanop computes the projection matrix that produces means

Description

Computes the symmetric projection matrix that produces the means corresponding to a (general-
ized) factor.

Usage

fac.meanop(factor)

Arguments

factor The (generalized) factor whose means the projection matrix computes from an
observation-length vector.

Details

The design matrix X for a (generalized) factor is formed with a column for each level of the
(generalized) factor, this column being its indicator variable. The projection matrix is formed as
X %*% (1/diag(r) %*% t(X), where r is the vector of levels replications.

A generalized factor is a factor formed from the combinations of the levels of several original
factors. Generalized factors can be formed using fac.combine.

Value

A projector containing the symmetric, projection matrix and its degrees of freedom.

Author(s)

Chris Brien

fac.multinested 59

See Also

fac.combine, projector, degfree, correct.degfree, fac.sumop in package dae.

projector for further information about this class.

Examples

set up a two-level factor and a three-level factor, both of length 12
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

create a generalized factor whose levels are the combinations of A and B
AB <- fac.combine(list(A,B))

obtain the operator that computes the AB means from a vector of length 12
M.AB <- fac.meanop(AB)

fac.multinested Creates several factors, one for each level of the nesting factor and
each of whose values are either generated within those of a level of
the nesting factor or using the values of the nested factor within the
levels of the nesting factor.

Description

Creates several factors, one for each level of nesting.fac and each of whose values are either (i)
generated within those of the level of nesting.fac or (ii) using the values of nested.fac within
the levels of the nesting.fac. For (i), all elements having the same level of nesting.fac are
numbered from 1 to the number of different elements having that level. For (ii), the values of
nested.fac for a level of nesting.fac are copied. In both cases, for the values of nested.fac
not equal to the level of the values of nested.fac for which a nested factor is being created, the
levels are set to outlevel and labelled using outlabel. A factor is not created for a level of
nesting.fac with label equal to outlabel. The names of the factors are equal to the levels of
nesting.fac; optionally fac.prefix is added to the beginning of the names of the factors. The
function is used to split up a nested term into separate terms for each level of nesting.fac.

Usage

fac.multinested(nesting.fac, nested.fac = NULL, fac.prefix = NULL,
nested.levs = NA, nested.labs = NA,
outlevel = 0, outlabel = "rest", ...)

Arguments

nesting.fac The factor for each of whose levels a nested facor is to be generated, except
one is not generated for the outlabel level.

60 fac.multinested

nested.fac The factor whose values for a level are to be used for the factor being created
for that level. If nested.fac is NULL, then the values of the levels is the the list
of numbers from 1 to the replication of the level of nesting.fac, represented
as characters.

fac.prefix The prefix to be added to a level in naming a nested factor.

nested.levs Optional vector of levels for the nested factors. Any data value that does not
match a value in nested.levs will be NA in the nested factor being generated.
The default value of nested.levs is the list of numbers from 1 to the replication
of the levels of nesting.fac, represented as characters. When nested.fac is
not NULL, nested.levs is not used.

nested.labs Optional vector of values to use as labels for the levels of the new nested
factors; they are combined with outlabel. The default is as.character(levels).

outlevel The level to use in the new factor for all values of old factor that do not cor-
respond to the level of the nesting.fac to which the new factor corresponds.

outlabel The label to use the outlevel level.

... Further arguments passed to the factor call creating a new factor.

Value

A data.frame containing a factor for each level of nesting.fac.

Note

The levels of nesting.fac do not have to be equally replicated.

Author(s)

Chris Brien

See Also

fac.gen, fac.nested in package dae, factor.

Examples

lay <- data.frame(A = factor(rep(c(1:3), c(3,6,4)), labels = letters[1:3]))
lay$B <-fac.nested(lay$A)

#Add factors for B within each level of A
lay2 <- cbind(lay, fac.multinested(lay$A))
canon2 <- designAnatomy(list(~A/(a+b+c)), data = lay2)
summary(canon2)

#Add factors for B within each level of A, but with levels and outlabel given
lay2 <- cbind(lay, fac.multinested(lay$A, nested.levs = seq(10,60,10), outlabel = "other"))

canon2 <- designAnatomy(list(~A/(a+b+c)), data = lay2)
summary(canon2)

fac.nested 61

#Replicate the combinations of A and B three times and index them with the factor sample
lay3 <- rbind(lay,lay,lay)
lay3$sample <- with(lay3, fac.nested(fac.combine(list(A,B))))

#Add factors for B within each level of A
lay4 <- cbind(lay3, fac.multinested(nesting.fac = lay$A, nested.fac = lay$B))

canon4 <- designAnatomy(list(~(A/(a+b+c))/sample), data = lay4)
summary(canon4)

#Add factors for sample within each combination of A and B
lay5 <- with(lay4, cbind(lay4,

fac.multinested(nesting.fac = a, fac.prefix = "a"),
fac.multinested(nesting.fac = b, fac.prefix = "b"),
fac.multinested(nesting.fac = c, fac.prefix = "c")))

canon5 <- designAnatomy(list(~A/(a/(a1+a2+a3)+b/(b1+b2+b3+b4+b5+b6)+c/(c1+c2+c3))), data = lay5)
summary(canon5)

#Add factors for sample within each level of A
lay6 <- cbind(lay4,

fac.multinested(nesting.fac = lay4$A, nested.fac = lay$sample, fac.prefix = "samp"))
canon6 <- designAnatomy(list(~A/(a/sampa+b/sampb+c/sampc)), data = lay6)
summary(canon6)

fac.nested creates a factor, the nested factor, whose values are generated within
those of the factor nesting.fac

Description

Creates a nested factor whose levels are generated within those of the factor nesting.fac. All
elements of nesting.fac having the same level are numbered from 1 to the number of different
elements having that level.

Usage

fac.nested(nesting.fac, nested.levs=NA, nested.labs=NA, ...)

Arguments

nesting.fac The factor within each of whose levels the created factor is to be generated.

nested.levs Optional vector of levels for the factor. Any data value that does not match
a value in levels will be NA in the factor. The default value of nested.levs
is the list of numbers from 1 to the maximum replication of the levels of
nesting.fac, represented as characters.

62 fac.recast

nested.labs Optional vector of values to use as labels for the levels of the factor. The
default is as.character(nested.levs).

... Further arguments passed to the factor call creating the new factor.

Value

A factor that is a character vector with class attribute "factor" and a levels attribute which
determines what character strings may be included in the vector. It has a different level for of the
values of the nesting.fac with the same level.

Note

The levels of nesting.fac do not have to be equally replicated.

Author(s)

Chris Brien

See Also

fac.gen, fac.multinested in package dae, factor.

Examples

set up factor A
A <- factor(c(1, 1, 1, 2, 2))

create nested factor
B <- fac.nested(A)

fac.recast Recasts a factor by modifying the values in the factor vector and/or
the levels attribute, possibly combining some levels into a single level.

Description

A factor is comprised of a vector of values and a levels attribute. This function can modify these
separately or jointly. The newlevels argument recasts both the values of a factor vector and the
levels attribute, using each value in the newlevels vector to replace the corresponding value in
both factor vector and the levels attribute. The factor, possibly with the new levels, can have its
levels attribute reordered and/or new labels associated with the levels using the levels.order
and newlabels arguments.

Usage

fac.recast(factor, newlevels = NULL, levels.order = NULL, newlabels = NULL, ...)

fac.recast 63

Arguments

factor The factor to be recast.

newlevels A vector of length levels(factor) that changes both the values in the factor
vector and its levels attribute. The values in the newlevels vector need not be
unique, but there must be as many values as there are levels in the supplied
factor. The levels in the vector of the supplied factor that have the same
value in newlevels will be combined in the recast factor. The values in the
new levels attribute can be re-oredered using levels.order.

levels.order A vector that specifies the order of the levels in the levels attribute of the
recast factor. If newlevels is NULL, must be of length levels(factor) and
contain the old levels in the new order for the recast factor. If newlevels is
not NULL, the vector must be of length(unique(newlevels)) and contain the
unique values in newlevels in the new order for the recast factor. The values
in the factor vector whose levels are being re-ordered will be unchanged. If
levels.order is NULL, then the current levels attribute of factor is used.

newlabels A vector of length levels(factor) if newlevels is NULL, and of length
unique(newlevels) if it is not NULL. It should contain the values to be used as
labels in the recast factor. Effectively, this changes the values in the factor
vector to those given in newlabels and the levels attribute to newlabels.

... Further arguments passed to the factor call creating the new factor.

Value

A factor.

Author(s)

Chris Brien

See Also

fac.uselogical, as.numfac and mpone in package dae, factor, relevel.

Examples

set up a factor with labels
Treats <- factor(rep(1:4, 4), labels=letters[1:4])

recast to reduce the levels: "a" and "d" to 1 and "b" and "c" to 2, i.e. from 4 to 2 levels
A <- fac.recast(Treats, newlevels = c(1,2,2,1), labels = letters[1:2])
A <- fac.recast(Treats, newlevels = letters[c(1,2,2,1)])

#reduce the levels from 4 to 2, with re-ordering the levels vector without changing the values
#of the new recast factor vector
A <- fac.recast(Treats, newlevels = letters[c(1,2,2,1)], levels.order = letters[2:1])

#reassign the values in the factor vector without re-ordering the levels attribute
A <- fac.recast(Treats, newlevels = letters[4:1])

64 fac.recode

#reassign the values in the factor vector, with re-ordering the levels attribute
A <- fac.recast(Treats, newlabels = letters[4:1])

#reorder the levels attribute with changing the values in the factor vector
A <- fac.recast(Treats, levels.order = letters[4:1])

#reorder the values in the factor vector without changing the levels attribute
A <- fac.recast(Treats, newlevels = 4:1, newlabels = levels(Treats))

fac.recode Recodes factor levels using values in a vector. The values in the
vector do not have to be unique.

Description

Recodes the levels and values of a factor using each value in the newlevels vector to replace the
corresponding value in the vector of levels of the factor.

This function has been superseded by fac.recast, which has extended functionality. Calls to
fac.recast that use only the factor and newlevels argument will produce the same results as a
call to fa.recode. fac.recode may be deprecated in future versions of dae and is being retained
for now to maintain backwards compatibility.

Usage

fac.recode(factor, newlevels, ...)

Arguments

factor The factor to be recoded.

newlevels A vector of length levels(factor) containing values to use in the recoding.

... Further arguments passed to the factor call creating the new factor.

Value

A factor.

Author(s)

Chris Brien

See Also

fac.recast, fac.uselogical, as.numfac and mpone in package dae, factor, relevel.

fac.split 65

Examples

set up a factor with labels
Treats <- factor(rep(1:4, 4), labels=c("A","B","C","D"))

recode "A" and "D" to 1 and "B" and "C" to 2
B <- fac.recode(Treats, c(1,2,2,1), labels = c("a","b"))

fac.split Splits a factor whose levels consist of several delimited strings into
several factors

Description

Splits a factor, whose levels consist of strings delimited by a separator character, into several
factors. It uses the function strsplit, with fixed = TRUE to split the levels.

Usage

fac.split(combined.factor, factor.names, sep=",", ...)

Arguments

combined.factor

A factor to be split into several factors.

factor.names A list of names for factors and associated levels, if required. The names of
the components of the list are used for the names of the new factors. Each
component of the list should either be NULL or a vector of levels for the new
factor. If a component is NULL then the unique values for the supplied factor
are used as the levels, which are sorted into alphabetical order. If a either
a numeric or a character vector is supplied for a component, then these are
supplied as the levels of the new factor.

sep A character string that separates the levels in the combined.factor.

... Further arguments passed to the factor call creating the new factor.

Value

A data.frame containing the new factors.

Author(s)

Chris Brien

See Also

fac.divide, fac.uncombine, fac.combine in package dae and strsplit.

66 fac.sumop

Examples

Form a combined factor to split
data(Oats.dat)
tmp <- within(Oats.dat, Trts <- fac.combine(list(Variety, Nitrogen), combine.levels = TRUE))

##Variety levels sorted into alphabetical order
trts.dat <- fac.split(combined.factor = tmp$Trts,

factor.names = list(Variety = NULL, Nitrogen = NULL))

##Variety levels order from Oats.dat retained
trts.dat <- fac.split(combined.factor = tmp$Trts,

factor.names = list(Variety = levels(tmp$Variety), Nitrogen = NULL))

fac.sumop computes the summation matrix that produces sums corresponding to
a (generalized) factor

Description

Computes the matrix that produces the sums corresponding to a (generalized) factor.

Usage

fac.sumop(factor)

Arguments

factor The (generalized) factor whose sums the summation matrix computes from an
observation-length vector.

Details

The design matrix X for a (generalized) factor is formed with a column for each level of the
(generalized) factor, this column being its indicator variable. The summation matrix is formed as
X %*% t(X).

A generalized factor is a factor formed from the combinations of the levels of several original
factors. Generalized factors can be formed using fac.combine.

Value

A symmetric matrix.

Author(s)

Chris Brien

See Also

fac.combine, fac.meanop in package dae.

fac.uncombine 67

Examples

set up a two-level factoir and a three-level factor, both of length 12
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

create a generlaized factor whose levels are the combinations of A and B
AB <- fac.combine(list(A,B))

obtain the operator that computes the AB means from a vector of length 12
S.AB <- fac.sumop(AB)

fac.uncombine Cleaves a single factor, each of whose levels has delimited strings, into
several factors using the separated strings.

Description

Cleaves a single factor into several factors whose levels, the levels of the original factor con-
sisting of several delimited strings that can be separated to form the levels of the new.factors.
That is, it reverses the process of combining factors that fac.combine performs.

Usage

fac.uncombine(factor, new.factors, sep=",", ...)

Arguments

factor A factor or character that has values that are strings deleimited by the delim-
iter specified by sep.

new.factors A list, whose component names are the names of the new factors to be
formed. If a component is not NULL, then they are used as the levels of the
corresponding factor.

sep A character string that separates the levels of the new.factors in the levels
factor.

... Further arguments passed to the factor call creating the new factor.

Value

A data.frame whose columns consist of the factors listed in new.factors and whose values
have been computed from the values of the combined factor.

Author(s)

Chris Brien

See Also

fac.split, fac.combine, fac.divide in package dae and strsplit.

68 fac.uselogical

Examples

set up two factors and combine them
facs <- fac.gen(list(A = letters[1:3], B = 1:2), each = 4)
facs$AB <- with(facs, fac.combine(list(A, B), combine.levels = TRUE))

now reverse the proces and uncombine the two factors
new.facs <- fac.uncombine(factor = facs$AB,

new.factors = list(A = letters[1:3], B = NULL),
sep = ",")

new.facs <- fac.uncombine(factor = facs$AB,
new.factors = list(A = NULL, B = NULL),
sep = ",")

fac.uselogical Forms a two-level factor from a logical object.

Description

Forms a two-level factor from a logical object. It can be used to recode a factor when the
resulting factor is to have only two levels.

Usage

fac.uselogical(x, levels = c(TRUE, FALSE), labels = c("yes", "no"), ...)

Arguments

x A logical vector with values TRUE or FALSE. If the vector is not a logical,
as.logical will be used in an attempt to coerce it to logical.

levels A vector of length two with values TRUE or T and FALSE or F, in either order
depending on which of TRUE or FALSE is to be the first level.

labels A vector of length two with values to be used as labels for the first and second
levels, respectively.

... Further arguments passed to the factor call creating the new factor.

Value

A factor.

Author(s)

Chris Brien

See Also

fac.recast, as.numfac and mpone in package dae, factor, relevel.

fac.vcmat 69

Examples

set up a factor with labels
Treats <- factor(rep(1:4, 4), labels=c("A","B","C","D"))

recode "A" and "D" to "a" and "B" and "C" to "b"
B <- fac.uselogical(Treats %in% c("A", "D"), labels = c("a","b"))
B <- fac.uselogical(Treats %in% c("A", "D"), labels = c(-1,1))

suppose level A in factor a is a control treatment
set up a factor Control to discriminate between control and treated
Control <- fac.uselogical(Treats == "A")

fac.vcmat forms the variance matrix for the variance component of a (general-
ized) factor

Description

Form the variance matrix for a (generalized) factor whose effects for its different levels are indepen-
dently and identically distributed, with their variance given by the variance component; elements of
the matrix will equal either zero or sigma2 and displays compound symmetry.

Usage

fac.vcmat(factor, sigma2)

Arguments

factor The (generalized) factor for which the variance matrix is required.

sigma2 The variance component, being the of the random effects for the factor.

Details

The method is: a) form the n x n summation or relationship matrix whose elements are equal to zero
except for those elements whose corresponding elements in the following two n x n matrices are
equal: 1) each row contains the numeric values corresponding to the observed levels of the factor,
and 2) each column contains the numeric values corresponding to the observed levels of the factor,
b) multiply the summation matrix by sigma2.

Value

An n x n matrix, where n is the length of the factor.

Author(s)

Chris Brien

70 fitted.aovlist

See Also

fac.ar1mat, fac.meanop, fac.sumop in package dae.

Examples

set up a two-level factor and a three-level factor, both of length 12
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

create a 12 x 12 ar1 matrix corrresponding to B
vc.B <- fac.vcmat(B, 2)

Fac4Proc.dat Data for a 2^4 factorial experiment

Description

The data set come from an unreplicated 24 factorial experiment to investigate a chemical process.
The response variable is the Conversion percentage (Conv) and this is indexed by the 4 two-level
factors Catal, Temp, Press and Conc, with levels “-” and “+”. The data is aranged in Yates order.
Also included is the 16-level factor Runs which gives the order in which the combinations of the
two-level factors were run.

Usage

data(Fac4Proc.dat)

Format

A data.frame containing 16 observations of 6 variables.

Source

Table 10.6 of Box, Hunter and Hunter (1978) Statistics for Experimenters. New York, Wiley.

fitted.aovlist Extract the fitted values for a fitted model from an aovlist object

Description

Extracts the fitted values as the sum of the effects for all the fitted terms in the model, stopping at
error.term if this is specified. It is a method for the generic function fitted.

Usage

S3 method for class 'aovlist'
fitted(object, error.term=NULL, ...)

fitted.aovlist 71

Arguments

object An aovlist object created from a call to aov.

error.term The term from the Error function down to which effects are extracted for adding
to the fitted values. The order of terms is as given in the ANOVA table. If
error.term is NULL effects are extracted from all Error terms.

... Further arguments passed to or from other methods.

Value

A numeric vector of fitted values.

Note

Fitted values will be the sum of effects for terms from the model, but only for terms external to any
Error function. If you want effects for terms in the Error function to be included, put them both
inside and outside the Error function so they are occur twice.

Author(s)

Chris Brien

See Also

fitted.errors, resid.errors, tukey.1df in package dae.

Examples

set up data frame for randomized complete block design in Table 4.4 from
Box, Hunter and Hunter (2005) Statistics for Experimenters. 2nd edn
New York, Wiley.
RCBDPen.dat <- fac.gen(list(Blend=5, Flask=4))
RCBDPen.dat$Treat <- factor(rep(c("A","B","C","D"), times=5))
RCBDPen.dat$Yield <- c(89,88,97,94,84,77,92,79,81,87,87,

85,87,92,89,84,79,81,80,88)

perform the analysis of variance
RCBDPen.aov <- aov(Yield ~ Blend + Treat + Error(Blend/Flask), RCBDPen.dat)
summary(RCBDPen.aov)

two equivalent ways of extracting the fitted values
fit <- fitted.aovlist(RCBDPen.aov)
fit <- fitted(RCBDPen.aov, error.term = "Blend:Flask")

72 fitted.errors

fitted.errors Extract the fitted values for a fitted model

Description

An alias for the generic function fitted. When it is available, the method fitted.aovlist extracts
the fitted values, which is provided in the dae package to cover aovlist objects.

Usage

S3 method for class 'errors'
fitted(object, error.term=NULL, ...)

Arguments

object An aovlist object created from a call to aov.

error.term The term from the Error function down to which effects are extracted for adding
to the fitted values. The order of terms is as given in the ANOVA table. If
error.term is NULL effects are extracted from all Error terms.

... Further arguments passed to or from other methods.

Value

A numeric vector of fitted values.

Warning

See fitted.aovlist for specific information about fitted values when an Error function is used
in the call to the aov function.

Author(s)

Chris Brien

See Also

fitted.aovlist, resid.errors, tukey.1df in package dae.

Examples

set up data frame for randomized complete block design in Table 4.4 from
Box, Hunter and Hunter (2005) Statistics for Experimenters. 2nd edn
New York, Wiley.
RCBDPen.dat <- fac.gen(list(Blend=5, Flask=4))
RCBDPen.dat$Treat <- factor(rep(c("A","B","C","D"), times=5))
RCBDPen.dat$Yield <- c(89,88,97,94,84,77,92,79,81,87,87,

85,87,92,89,84,79,81,80,88)

get.daeRNGkind 73

perform the analysis of variance
RCBDPen.aov <- aov(Yield ~ Blend + Treat + Error(Blend/Flask), RCBDPen.dat)
summary(RCBDPen.aov)

three equivalent ways of extracting the fitted values
fit <- fitted.aovlist(RCBDPen.aov)
fit <- fitted(RCBDPen.aov, error.term = "Blend:Flask")
fit <- fitted.errors(RCBDPen.aov, error.term = "Blend:Flask")

get.daeRNGkind Gets the value of daeRNGkind for the package dae from the daeEnv
environment

Description

A function that gets the character value of daeRNGkind from the daeEnv environment. The value
specifies the name of the Random Number Generator to use in dae.

Usage

get.daeRNGkind()

Value

The character value of daeRNGkind.

Author(s)

Chris Brien

See Also

set.daeRNGkind.

Examples

get daeRNGkind.
get.daeRNGkind()

74 harmonic.mean

get.daeTolerance Gets the value of daeTolerance for the package dae

Description

A function that gets the vector of values such that, in dae functions, values less than it are consid-
ered to be zero.

Usage

get.daeTolerance()

Value

The vector of two values for daeTolerance, one named element.tol that is used for elements of
matrices and a second named element.eigen that is used for eigenvalues and quantities based on
them, such as efficiency factors.

Author(s)

Chris Brien

See Also

set.daeTolerance.

Examples

get daeTolerance.
get.daeTolerance()

harmonic.mean Calcuates the harmonic mean.

Description

A function to calcuate the harmonic mean of a set of nonzero numbers.

Usage

harmonic.mean(x)

Arguments

x An object from whose elements the harmonic mean is to be computed.

interaction.ABC.plot 75

Details

All the elements of x are tested as being less than daeTolerance, which is initially set to .Machine$double.eps
^ 0.5 (about 1.5E-08). The function set.daeTolerance can be used to change daeTolerance.

Value

A numeric. Returns Inf if x contains a value close to zero

Examples

y <- c(seq(0.1,1,0.2))
harmonic.mean(y)

interaction.ABC.plot Plots an interaction plot for three factors

Description

Plots a function (the mean by default) of the response for the combinations of the three factors
specified as the x.factor (plotted on the x axis of each plot), the groups.factor (plotted as sepa-
rate lines in each plot) and the trace.factor (its levels are plotted in different plots). Interaction
plots for more than three factors can be produced by using fac.combine to combine all but two
of them into a single factor that is specified as the trace.factor.

Usage

interaction.ABC.plot(response, x.factor, groups.factor,
trace.factor,data, fun="mean", title="A:B:C Interaction Plot",
xlab, ylab, key.title, lwd=4, columns=2, ggplotFuncs = NULL, ...)

Arguments

response A numeric vector containing the response variable from which a function (the
mean by default) is computed for plotting on the y-axis.

x.factor The factor to be plotted on the x-axis of each plot. If the levels are numeric
values stored as characters, they will be converted to numeric values for plotting.
If they are actually numeric codes for nonnumeric categories and you want them
plotted on a discrete scale then you should employ nonumeric codings, such as
‘-’ and ‘+’ or ‘N’ and ‘Y’ or something similar.

groups.factor The factor plotted as separate lines in each plot.

trace.factor The factor for whose levels there are separate plots.

data A data.frame containing the three factors and the response.

fun The function to be computed from the response for each combination of the
three factors x.factor, groups.factor and trace.factor. By default, the
mean is computed for each combination.

76 interaction.ABC.plot

title Title for plot window. By default it is "A:B:C Interaction Plot".

xlab Label for the x-axis. By default it is the name of the x.factor.

ylab Label for the y-axis. By default it is the name of the response.

key.title Label for the key (legend) to the lines in each plot. By default it is the name of
the groups.factor.

lwd The width of the lines. By default it is 4.

columns The number of columns for arranging the several plots for the levels of the
groups.factor. By default it is 2.

ggplotFuncs A list, each element of which contains the results of evaluating a ggplot2
function. It is created by calling the list function with a ggplot2 function call
for each element. These functions are applied in creating the ggplot object.

... Other arguments that are passed down to ggplot2 methods.

Value

An object of class "ggplot", which can be plotted using print.

Author(s)

Chris Brien

See Also

fac.combine in package dae, interaction.plot.

Examples

Not run:
plot for Example 14.1 from Mead, R. (1990). The Design of Experiments:
Statistical Principles for Practical Application. Cambridge,
Cambridge University Press.
use ?SPLGrass.dat for details
data(SPLGrass.dat)
interaction.ABC.plot(Main.Grass, x.factor=Period,

groups.factor=Spring, trace.factor=Summer,
data=SPLGrass.dat,
title="Effect of Period, Spring and Summer on Main Grass")

plot for generated data
use ?ABC.Interact.dat for data set details
data(ABC.Interact.dat)
Add standard errors for plotting
- here data contains a single value for each combintion of A, B and C
- need to supply name for data twice
ABC.Interact.dat$se <- rep(c(0.5,1), each=4)
interaction.ABC.plot(MOE, A, B, C, data=ABC.Interact.dat,

ggplotFunc=list(geom_errorbar(data=ABC.Interact.dat,
aes(ymax=MOE+se, ymin=MOE-se),
width=0.2)))

is.allzero 77

End(Not run)

is.allzero Tests whether all elements are approximately zero

Description

A single-line function that tests whether all elements are zero (approximately).

Usage

is.allzero(x)

Arguments

x An object whose elements are to be tested.

Details

The mean of the absolute values of the elements of x is tested to determine if it is less than
daeTolerance, which is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The func-
tion set.daeTolerance can be used to change daeTolerance.

Value

A logical.

Author(s)

Chris Brien

Examples

create a vector of 9 zeroes and a one
y <- c(rep(0,9), 1)

check that vector is only zeroes is FALSE
is.allzero(y)

78 is.projector

is.projector Tests whether an object is a valid object of class projector

Description

Tests whether an object is a valid object of class "projector".

Usage

is.projector(object)

Arguments

object The matrix to be made into a projector.

Details

The function is.projector tests whether the object consists of a matrix that is square, symmetric
and idempotent. In checking symmetry and idempotency, the equality of the matrix with either its
transpose or square is tested. In this, a difference in elements is considered to be zero if it is less
than daeTolerance, which is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The
function set.daeTolerance can be used to change daeTolerance.

Value

TRUE or FALSE depending on whether the object is a valid object of class "projector".

Warning

The degrees of freedom are not checked. correct.degfree can be used to check them.

Author(s)

Chris Brien

See Also

projector, correct.degfree in package dae.

projector for further information about this class.

Examples

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

create an object of class projector
proj.m <- projector(m)

LatticeSquare_t49.des 79

check that it is a valid projector
is.projector(proj.m)

LatticeSquare_t49.des A Lattice square design for 49 treatments

Description

The systematic design for a lattice square for 49 treatments consisting of four 7 x 7 squares. For
more details see the vignette accessed via vignette("DesignNotes", package="dae").

Usage

data(LatticeSquare_t49.des)

Format

A data.frame containing 196 observations of 4 variables.

Source

Cochran and Cox (1957) Experimental Designs. 2nd edn Wiley, New York.

marginality Extracts the marginality matrix (matrices) from a
pstructure.object or a pcanon.object.

Description

Produces (i) a marginality matrix for the formula in a call to pstructure.formula or (ii) a list
containing the marginlity matrices, one for each formula in the formulae argument of a call to
designAnatomy.

A marginality matrix for a set of terms is a square matrix with a row and a column for each ternon-
aliased term. Its elements are zeroes and ones, the entry in the ith row and jth column indicates
whether or not the ith term is marginal to the jth term i.e. the column space of the ith term is a
subspace of that for the jth term and so the source for the jth term will be orthogonal to that for the
ith term.

Usage

S3 method for class 'pstructure'
marginality(object, ...)
S3 method for class 'pcanon'
marginality(object, ...)

80 marginality

Arguments

object A pstructure.object produced by pstructure.formula or pcanon.object
produced by designAnatomy.

... Further arguments passed to or from other methods. Unused at present.

Value

If object is a pstructure.object then a matrix containing the marginality matrix for the terms
obtained from the formuula in the call to pstructure.formula.

If object is a pcanon.object then a list with a component for each formula, each component
having a marginality matrix that corresponds to one of the formulae in the call to designAnatomy.
The components of the list will have the same names as the componeents of the formulae list
and so will be unnamed if the components of the latter list are unnamed.

Author(s)

Chris Brien

See Also

pstructure.formula, designAnatomy, summary.pcanon, proj2.efficiency, proj2.combine,
proj2.eigen,
pstructure in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

##obtain pstructure.object and extract marginality matrix
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
unit.marg <- marginality(unit.struct)

##obtain combined decomposition and extract marginality matrices
unit.trt.canon <- designAnatomy(list(unit=~ Block/Unit, trt=~ trt), data = PBIBD2.lay)
marg <- marginality(unit.trt.canon)

mat.ar1 81

mat.ar1 Forms an ar1 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the ar1 pattern. The matrix
is banded and has diagonal elements equal to one and the off-diagonal element in the ith row and
jth column equal to ρk where k = |i− j|.

Usage

mat.ar1(rho, order)

Arguments

rho The correlation on the first off-diagonal.

order The order of the matrix to be formed.

Value

A banded correlation matrix whose elements follow an ar1 pattern.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.cor, mat.corg, mat.exp, mat.gau, mat.banded, mat.ar2, mat.ar3, mat.sar2,
mat.ma1, mat.ma2, mat.arma

Examples

corr <- mat.ar1(rho=0.4, order=4)

mat.ar2 Forms an ar2 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the ar2 pattern. The resulting
matrix is banded.

Usage

mat.ar2(ARparameters, order)

82 mat.ar3

Arguments

ARparameters A numeric containing the two autoregressive parameter values of the process,
being the weights given to the lag 1 and lag 2 response values.

order The order of the matrix to be formed.

Details

The correlations in the correlation matrix, corr say, are calculated from the autoregressive param-
eters, ARparameters. The values in

• the diagonal (k = 1) of corr are one;

• the first subdiagonal band (k = 2) of corr are equal to
ARparameters[1]/(1-ARparameters[2]);

• in subsequent disgonal bands, (k = 3:order), of corr are
ARparameters[1]*corr[k-1] + ARparameters[2]*corr[k-2].

Value

A banded correlation matrix whose elements follow an ar2 pattern.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.cor, mat.corg, mat.exp, mat.gau, mat.banded, mat.ar1, mat.ar3, mat.sar2,
mat.ma1, mat.ma2, mat.arma

Examples

corr <- mat.ar2(ARparameters = c(0.4, 0.2), order = 4)

mat.ar3 Forms an ar3 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the ar3 pattern. The resulting
matrix is banded.

Usage

mat.ar3(ARparameters, order)

mat.ar3 83

Arguments

ARparameters A numeric containing the three autoregressive parameter values of the process,
being the weights given to the lag 1, lag 2 and lag 3 response values.

order The order of the matrix to be formed.

Details

The correlations in the correlation matrix, corr say, are calculated from the autoregressive param-
eters, ARparameters.
Let omega = 1 - ARparameters[2] - ARparameters[3] * (ARparameters[1] + ARparameters[3]).
Then the values in

• the diagonal of corr (k = 1) are one;

• the first subdiagonal band (k = 2) of corr are equal to
(ARparameters[1] + ARparameters[2]*ARparameters[3]) / omega;

• the second subdiagonal band (k = 3) of corr are equal to
(ARparameters[1] * (ARparameters[1] + ARparameters[3]) +
ARparameters[2] * (1 - ARparameters[2])) / omega;

• the subsequent subdiagonal bands, (k = 4:order), of corr are equal to
ARparameters[1]*corr[k-1] + ARparameters[2]*corr[k-2] + ARparameters[3]*corr[k-3].

Value

A banded correlation matrix whose elements follow an ar3 pattern.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.cor, mat.corg, mat.banded, mat.exp, mat.gau, mat.ar1, mat.ar2, mat.sar2,
mat.ma1, mat.ma2, mat.arma

Examples

corr <- mat.ar3(ARparameters = c(0.4, 0.2, 0.1), order = 4)

84 mat.arma

mat.arma Forms an arma correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the arma pattern. The re-
sulting matrix is banded.

Usage

mat.arma(ARparameter, MAparameter, order)

Arguments

ARparameter A numeric value for the autoregressive parameter of the process, being the
weight given to the lag 1 response values.

MAparameter A numeric value for the moving average parameter of the process, being the
weight given to the lag 1 random variable.

order The order of the matrix to be formed.

Details

The correlations in the correlation matrix, corr say, are calculated from the correlation parameters,
ARparameters. The values in

• the diagonal (k = 1) of corr are one;

• the first subdiagonal band (k = 2) of corr are equal to
ARparameters[1]/(1-ARparameters[2]);

• in subsequent disgonal bands, (k = 3:order), of corr are
ARparameters[1]*corr[k-1] + ARparameters[2]*corr[k-2].

Value

A banded correlation matrix whose elements follow an arma pattern.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.cor, mat.corg, mat.exp, mat.gau, mat.banded, mat.ar1, mat.ar3, mat.sar2,
mat.ma1, mat.ma2

Examples

corr <- mat.arma(ARparameter = 0.4, MAparameter = -0.2, order = 4)

mat.banded 85

mat.banded Form a banded matrix from a vector of values

Description

Takes the first value in x and places it down the diagonal of the matrix. Takes the second value
in x and places it down the first subdiagonal, both below and above the diagonal of the matrix.
The third value is placed in the second subdiagonal and so on, until the bands for which there are
elements in x have been filled. All other elements in the matrix will be zero.

Usage

mat.banded(x, nrow, ncol)

Arguments

x A numeric containing the values for each band from 1 to the length of x.

nrow The number of rows in the banded matrix being formed.

ncol The number of columns in the banded matrix being formed.

Value

An nrow × ncol matrix.

Author(s)

Chris Brien

See Also

mat.cor, mat.corg, mat.ar1, mat.ar2, mat.ar3, mat.sar2, mat.exp, mat.gau, mat.ma1, mat.ma2,
mat.arma mat.I, mat.J

Examples

m <- mat.banded(c(1,0.6,0.5), 5,5)
m <- mat.banded(c(1,0.6,0.5), 3,4)
m <- mat.banded(c(1,0.6,0.5), 4,3)

86 mat.corg

mat.cor Forms a correlation matrix in which all correlations have the same
value.

Description

Form the correlation matrix of order order in which all correlations have the same value.

Usage

mat.cor(rho, order)

Arguments

rho A numeric containing the single correlation value.

order The order of the correlation matrix to be formed.

Value

A correlation matrix.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.corg, mat.banded, mat.exp, mat.gau, mat.ar1, mat.ar2, mat.sar2, mat.ma1,
mat.ma2, mat.arma

Examples

corr <- mat.cor(rho = 0.4, order = 3)

mat.corg Forms a general correlation matrix

Description

Form the correlation matrix of order order for which all correlations potentially differ.

Usage

mat.corg(rhos, order, byrow = FALSE)

mat.dirprod 87

Arguments

rhos A numeric containing the p(p -1)/2 correlation values ordered either by columns
(if byrow is FALSE) or by rows (if byrow is TRUE).

order The order of the correlation matrix to be formed.

byrow A logical. If FALSE the lower-traingle of the matrix is filled by columns, oth-
erwise the the ower triangle is filled by rows.

Value

A correlation matrix.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.cor, mat.banded, mat.exp, mat.gau, mat.ar1, mat.ar2, mat.sar2, mat.ma1,
mat.ma2, mat.arma

Examples

corr <- mat.corg(rhos = c(0.4, 0.2, 0.1), order = 3)

mat.dirprod Forms the direct product of two matrices

Description

Form the direct product of the m×n matrix A and the p×q matrix B. It is also called the Kroneker
product and the right direct product. It is defined to be the result of replacing each element of A,
aij , with aijB. The result matrix is mp× nq.

The method employed uses the rep function to form two mp×nq matrices: (i) the direct product of
A and J, and (ii) the direct product of J and B, where each J is a matrix of ones whose dimensions
are those required to produce an mp × nq matrix. Then the elementwise product of these two
matrices is taken to yield the result.

Usage

mat.dirprod(A, B)

Arguments

A The left-hand matrix in the product.

B The right-hand matrix in the product.

88 mat.dirsum

Value

An mp× nq matrix.

Author(s)

Chris Brien

See Also

matmult, mat.dirprod

Examples

col.I <- mat.I(order=4)
row.I <- mat.I(order=28)
V <- mat.dirprod(col.I, row.I)

mat.dirsum Forms the direct sum of a list of matrices

Description

The direct sum is the partitioned matrices whose diagonal submatrices are the matrices from which
the direct sum is to be formed and whose off-diagonal submatrices are conformable matrices of ze-
roes. The resulting matrix is m×n, where m is the sum of the numbers of rows of the contributing
matrices and n is the sum of their numbers of columns.

Usage

mat.dirsum(matrices)

Arguments

matrices A list, each of whose component is a matrix.

Value

An m× n matrix.

Author(s)

Chris Brien

See Also

mat.dirprod, matmult

mat.exp 89

Examples

m1 <- matrix(1:4, nrow=2)
m2 <- matrix(11:16, nrow=3)
m3 <- diag(1, nrow=2, ncol=2)
dsum <- mat.dirsum(list(m1, m2, m3))

mat.exp Forms an exponential correlation matrix

Description

Form the correlation matrix of order equal to the length of coordinates. The matrix has diagonal
elements equal to one and the off-diagonal element in the ith row and jth column equal to ρk where
k = |coordinate[i]− coordinate[j]|.

Usage

mat.exp(rho, coordinates)

Arguments

rho The correlation for points a distance of one apart.

coordinates The coordinates of points whose correlation matrix is to be formed.

Value

A correlation matrix whose elements depend on the power of the absolute distance apart.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.cor, mat.corg, mat.banded, mat.ar1, mat.ar2, mat.ar3, mat.sar2, mat.ma1,
mat.ma2, mat.arma, mat.gau

Examples

corr <- mat.exp(coordinates=c(3:6, 9:12, 15:18), rho=0.1)

90 mat.ginv

mat.gau Forms an exponential correlation matrix

Description

Form the correlation matrix of order equal to the length of coordinates. The matrix has diagonal
elements equal to one and the off-diagonal element in the ith row and jth column equal to ρk where
k = (coordinate[i]− coordinate[j])2.

Usage

mat.gau(rho, coordinates)

Arguments

rho The correlation for points a distance of one apart.

coordinates The coordinates of points whose correlation matrix is to be formed.

Value

A correlation matrix whose elements depend on the power of the absolute distance apart.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.cor, mat.corg, mat.banded, mat.ar1, mat.ar2, mat.ar3, mat.sar2, mat.ma1,
mat.ma2, mat.arma, mat.exp

Examples

corr <- mat.gau(coordinates=c(3:6, 9:12, 15:18), rho=0.1)

mat.ginv Computes the generalized inverse of a matrix

Description

Computes the Moore-Penrose generalized inverse of a matrix.

Usage

mat.ginv(x, tol = .Machine$double.eps ^ 0.5)

mat.I 91

Arguments

x A matrix whose generalized inversed is to be computed.

tol A numeric specifying the relative tolerance to determine whether an eigenvalue
of x is nonzero.

Value

A matrix. An NA is returned if svd fails during the compution of the generalized inverse.

Author(s)

Chris Brien

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

Compute the projector for a linear trend across Blocks
PBIBD2.lay <- within(PBIBD2.lay,

{
cBlock <- as.numfac(Block)
cBlock <- cBlock - mean(unique(cBlock))

})
X <- model.matrix(~ cBlock, data = PBIBD2.lay)
Q.cB <- projector((X %*% mat.ginv(t(X) %*% X) %*% t(X)))

mat.I Forms a unit matrix

Description

Form the unit or identity matrix of order order.

Usage

mat.I(order)

Arguments

order The order of the matrix to be formed.

92 mat.J

Value

A square matrix whose diagonal elements are one and its off-diagonal are zero.

Author(s)

Chris Brien

See Also

mat.J, mat.ar1

Examples

col.I <- mat.I(order=4)

mat.J Forms a square matrix of ones

Description

Form the square matrix of ones of order order.

Usage

mat.J(order)

Arguments

order The order of the matrix to be formed.

Value

A square matrix all of whose elements are one.

Author(s)

Chris Brien

See Also

mat.I, mat.ar1

Examples

col.J <- mat.J(order=4)

mat.ma1 93

mat.ma1 Forms an ma1 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the ma1 pattern. The matrix
is banded and has diagonal elements equal to one and subdiagonal element equal to
-MAparameter / (1 + MAparameter*MAparameter).

Usage

mat.ma1(MAparameter, order)

Arguments

MAparameter The moving average parameter, being the weight applied to the lag 1 random
pertubation.

order The order of the matrix to be formed.

Value

A banded correlation matrix whose elements follow an ma1 pattern.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.cor, mat.corg, mat.exp, mat.gau, mat.banded, mat.ar2, mat.ar3, mat.sar2,
mat.ma2, mat.arma

Examples

corr <- mat.ma1(MAparameter=0.4, order=4)

94 mat.ma2

mat.ma2 Forms an ma2 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the ma2 pattern. The result-
ing matrix is banded.

Usage

mat.ma2(MAparameters, order)

Arguments

MAparameters A numeric containing the two moving average parameter values of the process,
being the weights given to the lag 1 and lag 2 random pertubations.

order The order of the matrix to be formed.

Details

The correlations in the correlation matrix, corr say, are calculated from the moving average param-
eters, MAparameters. The values in

• the diagonal (k = 1) of corr are one;

• the first subdiagonal band (k = 2) of corr are equal to
-MAparameters[1]*(1 - MAparameters[2]) / div;

• the second subdiagonal bande (k = 3) of corr are equal to -MAparameters[2] / div;

• in subsequent disgonal bands, (k = 4:order), of corr are zero,

where div = 1 + MMAparameters[1]*MAparameter[1] + MAparameters[2]*MAparameters[2].

Value

A banded correlation matrix whose elements follow an ma2 pattern.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.cor, mat.corg, mat.exp, mat.gau, mat.banded, mat.ar1, mat.ar3, mat.sar2,
mat.ma1, mat.arma

Examples

corr <- mat.ma2(MAparameters = c(0.4, -0.2), order = 4)

mat.ncssvar 95

mat.ncssvar Calculates the variance matrix of the random effects for a natural cu-
bic smoothing spline

Description

Calculates the variance matrix of the random effects for a natural cubic smoothing spline. It is the
tri-diagonal matrix Gs given by Verbyla et al., (1999) multiplied by the variance component for the
random spline effects.

Usage

mat.ncssvar(sigma2s = 1, knot.points, print = FALSE)

Arguments

sigma2s A numeric giving the value of the variance component for the random spline ef-
fects. The smoothing parameter is then the inverse of the ratio of this component
to the residual variance.

knot.points A numeric giving the values of the knots point used in fitting the spline. These
must be orderd in increasing order.

print A logical indicating whether to print the matrix.

Value

A matrix containing the variances and covariances of the random spline effects.

Author(s)

Chris Brien

References

Verbyla, A. P., Cullis, B. R., Kenward, M. G., and Welham, S. J. (1999). The analysis of designed
experiments and longitudinal data by using smoothing splines (with discussion). Journal of the
Royal Statistical Society, Series C (Applied Statistics), 48, 269-311.

See Also

Zncsspline.

Examples

Gs <- mat.ncssvar(knot.points = 1:10)

96 mat.random

mat.random Calculates the variance matrix for the random effects from a mixed
model, based on a supplied formula or a matrix.

Description

For n observations, compute the variance matrix of the random effects. The matrix can be specified
using a formula for the random effects and a list of values of the variance components for the
terms specified in the random formula. If a matrix specifying the variances of the nuisance random
effects is supplied then it is returned as the value from the function.

Usage

mat.random(random, G, design, keep.order = TRUE)

Arguments

random A formula or a matrix. If a formula, it specifies the random effects from which
the matrix for the contribution of the random effects to the variance matrix can
be generated. If it is a matrix, it must be an n x n matrix and will be passed
through as the required variance matrix for the random effects. The default is 0,
which implies that there are no random effects.

G This term only needs to be set if random is a formula. Then it is set to a list,
in which each component is either a single value or a matrix; there needs to be
a component for each term in the expanded formula, with the order of the terms
and components matching. If it is a single value, a diagonal matrix of dimension
equal to the product of the numbers of levels of the factors in its term. If it is a
matrix, its dimension must be equal to the product of the numbers of levels of
the factors in its term.

design A data.frame containing the design to be used in an experiment and for which
the variane matrix is required. It is not required when the only formula specified
is an intercept-only formula.

keep.order A logical indicating whether the terms should keep their position in the ex-
panded formula projector, or reordered so that main effects precede two-factor
interactions, which precede three-factor interactions and so on.

Details

If Zi is the is incidence matrix for the random nuisance effects in ui for a term in random and ui

has variance matrix Gi so that the contribution of the random effectst to the variance matrix for Y
is Vu = Σ(ZiGi(Zi)

T).

Value

A n x n matrix containing the variance matrix for the random effects.

mat.sar 97

Author(s)

Chris Brien

See Also

mat.Vpredicts.

Examples

Reduced example from Smith et al. (2015)
Generate two-phase design
mill.fac <- fac.gen(list(Mrep = 2, Mday = 2, Mord = 3))
field.lay <- fac.gen(list(Frep = 2, Fplot = 4))
field.lay$Variety <- factor(c("D","E","Y","W","G","D","E","M"),

levels = c("Y","W","G","M","D","E"))
start.design <- cbind(mill.fac, field.lay[c(3,4,5,8,1,7,3,4,5,8,6,2),])
rownames(start.design) <- NULL

Set gammas
terms <- c("Variety", "Frep", "Frep:Fplot", "Mrep", "Mrep:Mday", "Mrep:Mday:Mord")
gammas <- c(1, 0.1, 0.2, 0.3, 0.2, 1)
names(gammas) <- terms

Specify matrices to calculate the variance matrix of the predicted fixed Variety effects
Vu <- with(start.design, fac.vcmat(Mrep, gammas["Mrep"]) +

fac.vcmat(fac.combine(list(Mrep,Mday)), gammas["Mrep:Mday"]) +
fac.vcmat(Frep, gammas["Frep"]) +
fac.vcmat(fac.combine(list(Frep,Fplot)), gammas["Frep:Fplot"]))

Calculate the variance matrix of the predicted random Variety effects using formulae
Vu <- mat.random(random = ~ -1 + Mrep/Mday + Frep/Fplot,

G = as.list(gammas[c(4,5,2,3)]),
design = start.design)

mat.sar Forms an sar correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the sar pattern. The resulting
matrix is banded.

Usage

mat.sar(SARparameter, order)

98 mat.sar2

Arguments

SARparameter A numeric containing the single value of the parameter from which the correla-
tions are calculated.

order The order of the matrix to be formed.

Details

The values of the correlations in the correlation matrix, corr say, are calculated from the SARpa-
rameter, gamma as follows. The values in

• the diagonal of corr (k = 1) are one;

• the first subdiagonal band (k = 2) of corr are equal to gamma/(1 + (gamma * gamma / 4));

• the subsequent subdiagonal bands, (k = 3:order), of corr are equal to
gamma * corr[k-1] - (gamma * gamma/4) * corr[k-2].

Value

A banded correlation matrix whose elements follow an sar pattern.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.cor, mat.corg, mat.banded, mat.exp, mat.gau, mat.ar1, mat.ar2, mat.ar3,
mat.sar2, mat.ma1, mat.ma2, mat.arma

Examples

corr <- mat.sar(SARparameter = -0.4, order = 4)

mat.sar2 Forms an sar2 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the sar2 pattern, a pattern
used in crop competition models. The resulting matrix is banded and is a constrained AR3 matrix.

Usage

mat.sar2(gamma, order, print = NULL)

mat.sar2 99

Arguments

gamma A numeric containing the two values of gamma, being parameters linked with
spatial dependence and competition.

order The order of the matrix to be formed.

print A character giving the object to be printed. Currently, only the claculated
values of the ar3parameters can be printed. If NULL, nothing is printed.

Details

The values of the AR3 parameters, phi, are calculated from the gammas as follows:
phi[1] = gamma[1] + 2 * gamma[2]; phi[2] = -gamma[2] * (2*gamma[2] + gamma[1]);
phi[3] = gamma[1] * gamma[2] * gamma[2].

Then the correlations in the correlation matrix, corr say, are calculated from the correlation param-
eters, phi. Let omega = 1 - phi[2] - phi[3] * (phi[1] + phi[3]). Then the values in

• the diagonal of corr (k = 1) are one;

• the first subdiagonal band (k = 2) of corr are equal to (phi[1] + phi[2]*phi[3]) / omega;

• the second subdiagonal band (k = 3) of corr are equal to
(phi[1] * (phi[1] + phi[3]) + phi[2] * (1 - phi[2])) / omega;

• the subsequent subdiagonal bands, (k = 4:order), of corr are equal to
phi[1]*corr[k-1] + phi[2]*corr[k-2] + phi[3]*corr[k-3].

Value

A banded correlation matrix whose elements follow an sar2 pattern.

Author(s)

Chris Brien

See Also

mat.I, mat.J, mat.cor, mat.corg, mat.banded, mat.exp, mat.gau, mat.ar1, mat.ar2, mat.ar3,
mat.sar, mat.ma1, mat.ma2, mat.arma

Examples

corr <- mat.sar2(gamma = c(-0.4, 0.2), order = 4)
corr <- mat.sar2(gamma = c(-0.4, 0.2), order = 4, print = "ar3")

100 mat.Vpred

mat.Vpred Calculates the variances of a set of predicted effects from a mixed
model

Description

For n observations, w effects to be predicted, f nuiscance fixed effects and r nuisance random effects,
the variances of a set of predicted effects is calculated using the incidence matrix for the effects to
be predicted and, optionally, a variance matrix of the effects, an incidence matrix for the nuisance
fixed factors and covariates, the variance matrix of the nuisance random effects in the mixed model
and the residual variance matrix.

This function has been superseded by mat.Vpredicts, which allows the use of both matrices and
formulae.

Usage

mat.Vpred(W, Gg = 0, X = matrix(1, nrow = nrow(W), ncol = 1), Vu = 0, R, eliminate)

Arguments

W The n x w incidence matrix for the w effects to be predicted.

Gg The w x w variance matrix of the w effects to be predicted. If the effects to be
predicted are fixed, set to 0.

X The n x f incidence matrix for the f nuisance fixed factors and covariates. The
default is a column vector of ones.

Vu The n x r variance matrix of the r nuisance random effects. If there are none,
set to zero.

R The residual variance matrix.

eliminate The n x n projector onto the subspace corresponding to the effects to be elim-
inated from the information matrix prior to inverting it to form the variance
matrix of the predicted effects. It is only appropriate to use this option when
the effects to be predicted are fixed.

Details

Firstly the information matrix is calculated as
A <- t(W) %*% Vinv %*% W + ginv(Gg) - A%*%ginv(t(X)%*%Vinv%*%X)%*%t(A), where Vinv <- ginv(Vu
+ R), A = t(W) %*% Vinv %*% X and ginv(B) is the unique Moore-Penrose inverse of B formed using
the eigendecomposition of B.

If eliminate is set and the effects to be predicted are fixed then the reduced information matrix is
calculated as A <- (I - eliminate) Vinv (I - eliminate).

Finally, the variance of the predicted effects is calculated: Vpred <- ginv(A).

Value

A w x w matrix containing the variances and covariances of the predicted effects.

mat.Vpredicts 101

Author(s)

Chris Brien

References

Smith, A. B., D. G. Butler, C. R. Cavanagh and B. R. Cullis (2015). Multi-phase variety trials
using both composite and individual replicate samples: a model-based design approach. Journal of
Agricultural Science, 153, 1017-1029.

See Also

designAmeasures, mat.Vpredicts.

Examples

Reduced example from Smith et al. (2015)
Generate two-phase design
mill.fac <- fac.gen(list(Mrep = 2, Mday = 2, Mord = 3))
field.lay <- fac.gen(list(Frep = 2, Fplot = 4))
field.lay$Variety <- factor(c("D","E","Y","W","G","D","E","M"),

levels = c("Y","W","G","M","D","E"))
start.design <- cbind(mill.fac, field.lay[c(3,4,5,8,1,7,3,4,5,8,6,2),])
rownames(start.design) <- NULL

Set up matrices
n <- nrow(start.design)
W <- model.matrix(~ -1+ Variety, start.design)
ng <- ncol(W)
Gg<- diag(1, ng)
Vu <- with(start.design, fac.vcmat(Mrep, 0.3) +

fac.vcmat(fac.combine(list(Mrep, Mday)), 0.2) +
fac.vcmat(Frep, 0.1) +
fac.vcmat(fac.combine(list(Frep, Fplot)), 0.2))

R <- diag(1, n)

Calculate the variance matrix of the predicted random Variety effects
Vp <- mat.Vpred(W = W, Gg = Gg, Vu = Vu, R = R)
designAmeasures(Vp)

Calculate the variance matrix of the predicted fixed Variety effects,
elminating the grand mean
Vp.reduc <- mat.Vpred(W = W, Gg = 0, Vu = Vu, R = R,

eliminate = projector(matrix(1, nrow = n, ncol = n)/n))
designAmeasures(Vp.reduc)

mat.Vpredicts Calculates the variances of a set of predicted effects from a mixed
model, based on supplied matrices or formulae.

102 mat.Vpredicts

Description

For n observations, w effects to be predicted, f nuiscance fixed effects, r nuisance random effects
and n residuals, the variances of a set of predicted effects is calculated using the incidence matrix for
the effects to be predicted and, optionally, a variance matrix of these effects, an incidence matrix for
the nuisance fixed factors and covariates, the variance matrix of the nuisance random effects and the
residual variance matrix. The matrices can be supplied directly or using formulae and a matrix
specifying the variances of the nuisance random effects. The difference between mat.Vpredicts
and mat.Vpred is that the former has different names for equivalent arguments and the latter does
not allow for the use of formulae.

Usage

mat.Vpredicts(target, Gt = 0, fixed = ~ 1, random, G, R, design,
eliminate, keep.order = TRUE, result = "variance.matrix")

Arguments

target The n x w incidence matrix for the w effects targetted for prediction, or a formula
from which the matrix can be generated.

Gt The value of the variance component for the targetted effects or the w x w vari-
ance matrix of the w targetted effects. If the targetted effects are fixed, set Gt to
0.

fixed The n x f incidence matrix for the f nuisance fixed effects and covariates, or a
formula from which the matrix can be generated. The default is a formula for
an intercept-only model.

random A formula or a matrix. If a formula, it specifies the random effects from which
the matrix for the contribution of the random effects to the variance matrix can
be generated. If it is a matrix, it must be an n x n matrix and will be passed on
to form the variance matrix of the observations. The default is 0, which implies
that there are no random effects.

G This term only needs to be set if random is a formula. Then it is set to a list,
in which each component is either a single value or a matrix; there needs to be
a component for each term in the expanded formula, with the order of the terms
and components matching. If it is a single value, a diagonal matrix of dimension
equal to the product of the numbers of levels of the factors in its term. If it is a
matrix, its dimension must be equal to the product of the numbers of levels of
the factors in its term.

R The n x n residual variance matrix. If R is not set in the call, then it is set to the
identity matrix.

design A data.frame containing the design to be used in an experiment from which
predictions are to be obtained. It is not required when the only formula specified
is an intercept-only formula.

eliminate The n x n projector onto the subspace corresponding to the effects to be elim-
inated from the information matrix prior to inverting it to form the variance
matrix of the predicted effects. It is only appropriate to use this option when
the effects to be predicted are fixed.

mat.Vpredicts 103

keep.order A logical indicating whether the terms should keep their position in the ex-
panded formula projector, or reordered so that main effects precede two-factor
interactions, which precede three-factor interactions and so on.

result A character indicating which matrix is to be returned: variance.matrix or
information.matrix.

Details

The mixed model for which the predictions are to be obtained is of the form Y = Xβ +Ww +
Zu+e, where W is the incidence matrix for the target predicted effects w, X is the is incidence
matrix for the fixed nuisance effects β, Z is the is incidence matrix for the random nuisance effects
u, e are the residuals; the u are assumed to have variance matrix G so that their contribution to the
variance matrix for Y is V u = ZGZT and e is assumed to have variance matrix R. If the target
effects are random then the variance matrix for w is Gt so that their contribution to the variance
matrix for Y is WGtW

T .

As described in Hooks et al. (2009, Equation 19), the information matrix is calculated as
A <- t(W) %*% Vinv %*% W + ginv(Gg) - A%*%ginv(t(X)%*%Vinv%*%X)%*%t(A), where Vinv <- ginv(Vu
+ R), A = t(W) %*% Vinv %*% X and ginv(B) is the unique Moore-Penrose inverse of B formed using
the eigendecomposition of B.

Then, if eliminate is set and the effects to be predicted are fixed then the reduced information
matrix is calculated as A <- (I - eliminate) Vinv (I - eliminate).

Finally, if result is set to variance.matrix, the variance of the predicted effects is calculated:
Vpred <- ginv(A) and returned; otherwise the information matrix A is returned. The rank of the
matrix to be returned is obtain via a singular value decomposition of the information matrix, it
being the number of nonzero eigenvalues. An eigenvalue is regarded as zero if it is less than
daeTolerance, which is initially set to.Machine$double.eps ^ 0.5 (about 1.5E-08). The function
set.daeTolerance can be used to change daeTolerance.

Value

A w x w matrix containing the variances and covariances of the predicted effects or the information
matrix for the effects, depending on the setting of result. The matrix has its rank as an attribute.

Author(s)

Chris Brien

References

Hooks, T., Marx, D., Kachman, S., and Pedersen, J. (2009). Optimality criteria for models with
random effects. Revista Colombiana de Estadistica, 32, 17-31.

Smith, A. B., D. G. Butler, C. R. Cavanagh and B. R. Cullis (2015). Multi-phase variety trials
using both composite and individual replicate samples: a model-based design approach. Journal of
Agricultural Science, 153, 1017-1029.

See Also

designAmeasures, mat.random, mat.Vpred.

104 McIntyreTMV.dat

Examples

Reduced example from Smith et al. (2015)
Generate two-phase design
mill.fac <- fac.gen(list(Mrep = 2, Mday = 2, Mord = 3))
field.lay <- fac.gen(list(Frep = 2, Fplot = 4))
field.lay$Variety <- factor(c("D","E","Y","W","G","D","E","M"),

levels = c("Y","W","G","M","D","E"))
start.design <- cbind(mill.fac, field.lay[c(3,4,5,8,1,7,3,4,5,8,6,2),])
rownames(start.design) <- NULL

Set gammas
terms <- c("Variety", "Frep", "Frep:Fplot", "Mrep", "Mrep:Mday", "Mrep:Mday:Mord")
gammas <- c(1, 0.1, 0.2, 0.3, 0.2, 1)
names(gammas) <- terms

Specify matrices to calculate the variance matrix of the predicted fixed Variety effects
W <- model.matrix(~ -1 + Variety, start.design)
Vu <- with(start.design, fac.vcmat(Mrep, gammas["Mrep"]) +

fac.vcmat(fac.combine(list(Mrep,Mday)), gammas["Mrep:Mday"]) +
fac.vcmat(Frep, gammas["Frep"]) +
fac.vcmat(fac.combine(list(Frep,Fplot)), gammas["Frep:Fplot"]))

R <- diag(1, nrow(start.design))

Calculate variance matrix
Vp <- mat.Vpredicts(target = W, random=Vu, R=R, design = start.design)

Calculate the variance matrix of the predicted random Variety effects using formulae
Vp <- mat.Vpredicts(target = ~ -1 + Variety, Gt = 1,

fixed = ~ 1,
random = ~ -1 + Mrep/Mday + Frep/Fplot,
G = as.list(gammas[c(4,5,2,3)]),
R = R, design = start.design)

designAmeasures(Vp)

Calculate the variance matrix of the predicted fixed Variety effects,
elminating the grand mean
n <- nrow(start.design)
Vp.reduc <- mat.Vpredicts(target = ~ -1 + Variety,

random = ~ -1 + Mrep/Mday + Frep/Fplot,
G = as.list(gammas[c(4,5,2,3)]),
eliminate = projector(matrix(1, nrow = n, ncol = n)/n),
design = start.design)

designAmeasures(Vp.reduc)

McIntyreTMV.dat The design and data from McIntyre’s (1955) two-phase experiment

Description

McIntyre (1955) reports an investigation of the effect of four light intensities on the synthesis of
tobacco mosaic virus in leaves of tobacco Nicotiana tabacum var. Hickory Pryor. It is a two-phase

meanop 105

experiment: the first phase is a treatment phase, in which the four light treatments are random-
ized to the tobacco leaves, and the second phase is an assay phase, in which the tobacco leaves
are randomized to the half-leaves of assay plants. For more details see the vignette accessed via
vignette("DesignNotes", package="dae").

Usage

data(McIntyreTMV.dat)

Format

A data.frame containing 196 observations of 4 variables.

Source

McIntyre, G. A. (1955) Design and Analysis of Two Phase Experiments. Biometrics, 11, 324–334.

meanop computes the projection matrix that produces means

Description

Replaced by fac.meanop.

mpone Converts the first two levels of a factor into the numeric values -1 and
+1

Description

Converts the first two levels of a factor into the numeric values -1 and +1.

Usage

mpone(factor)

Arguments

factor The factor to be converted.

Value

A numeric vector.

Warning

If the factor has more than two levels they will be coerced to numeric values.

106 no.reps

Author(s)

Chris Brien

See Also

mpone in package dae, factor, relevel.

Examples

generate all combinations of two two-level factors
mp <- c("-", "+")
Frf3.trt <- fac.gen(list(A = mp, B = mp))

add factor C, whose levels are the products of the levles of A and B
Frf3.trt$C <- factor(mpone(Frf3.trt$A)*mpone(Frf3.trt$B), labels = mp)

no.reps Computes the number of replicates for an experiment

Description

Computes the number of pure replicates required in an experiment to achieve a specified power.

Usage

no.reps(multiple=1., df.num=1.,
df.denom=expression((df.num + 1.) * (r - 1.)), delta=1.,
sigma=1., alpha=0.05, power=0.8, tol=0.1, print=FALSE)

Arguments

multiple The multiplier, m, which when multiplied by the number of pure replicates of a
treatment, r, gives the number of observations rm used in computing means for
some, not necessarily proper, subset of the treatment factors; m is the replica-
tion arising from other treatment factors. However, for single treatment factor
experiments the subset can only be the treatment factor and m = 1.

df.num The degrees of freedom of the numerator of the F for testing the term involving
the treatment factor subset.

df.denom The degrees of freedom of the denominator of the F for testing the term involv-
ing the treatment factor subset.

delta The true difference between a pair of means for some, not necessarily proper,
subset of the treatment factors.

sigma The population standard deviation.

alpha The significance level to be used.

power The minimum power to be achieved.

Oats.dat 107

tol The maximum difference tolerated between the power required and the power
computed in determining the number of replicates.

print TRUE or FALSE to have or not have a table of power calculation details printed
out.

Value

A list containing nreps, a single numeric value containing the computed number of pure repli-
cates, and power, a single numeric value containing the power for the computed number of pure
replicates.

Author(s)

Chris Brien

See Also

power.exp, detect.diff in package dae.

Examples

Compute the number of replicates (blocks) required for a randomized
complete block design with four treatments.
no.reps(multiple = 1, df.num = 3,

df.denom = expression(df.num * (r - 1)), delta = 5,
sigma = sqrt(20), print = TRUE)

Oats.dat Data for an experiment to investigate nitrogen response of 3 oats va-
rieties

Description

Yates (1937) describes a split-plot experiment that investigates the effects of three varieties of oats
and four levels of Nitrogen fertilizer. The varieties are assigned to the main plots using a randomized
complete block design with 6 blocks and the nitrogen levels are randomly assigned to the subplots
in each main plot.

The columns in the data frame are: Blocks, Wplots, Subplots, Variety, Nitrogen, xNitrogen, Yield.
The column xNitrogen is a numeric version of the factor Nitrogen. The response variable is Yield.

Usage

data(Oats.dat)

Format

A data.frame containing 72 observations of 7 variables.

108 p2canon.object

Author(s)

Chris Brien

Source

Yates, F. (1937). The Design and Analysis of Factorial Experiments. Imperial Bureau of Soil
Science, Technical Communication, 35, 1-95.

p2canon.object Description of a p2canon object

Description

An object of class p2canon that contains information derived from two formulae using projs.2canon.

Value

A list of class p2canon. It has two components: decomp and aliasing. The decomp component
iscomposed as follows:

• It has a component for each component of Q1.

• Each of the components for Q1 is a list; each of these lists has one component for each of
Q2 and a component Pres.

• Each of the Q2 components is a list of three components: pairwise, adjusted and Qproj.
These components are based on an eigenalysis of the relationship between the projectors for
the parent Q1 and Q2 components.

1. Each pairwise component is based on the nonzero canonical efficiency factors for the
joint decomposition of the two parent projectors (see proj2.eigen).

2. An adjusted component is based on the nonzero canonical efficiency factors for the joint
decomposition of the Q1 component and the Q2 component, the latter adjusted for all Q2
projectors that have occured previously in the list.

3. The Qproj component is the adjusted projector for the parent Q2 component.

• The pairwise and adjusted components have the following components: efficiencies,
aefficiency, mefficiency, sefficiency, eefficiency, xefficiency, order and dforthog
– for details see efficiency.criteria.

The aliasing component is a data.frame decribing the aliasing between terms corresponding to
two Q2 projectors when estimated in subspaces corresponding to a Q1 projector.

Author(s)

Chris Brien

See Also

projs.2canon, designAnatomy, pcanon.object.

pcanon.object 109

pcanon.object Description of a pcanon object

Description

An object of class pcanon that contains information derived from several formulae using designAnatomy.

Value

A list of class pcanon that has four components: (i) Q, (ii) terms, (iii) sources, (iv) marginality,
and (v) aliasing. Each component is a list with as many components as there are formulae in
the formulae list supplied to designAnatomy.

The Q list is made up of the following components:

1. The first component is the joint decomposition of two structures derived from the first two
formulae, being the p2canon.object produced by projs.2canon.

2. Then there is a component for each further formulae; it contains the p2canon.object obtained
by applying projs.2canon to the structure for a formula and the already established joint
decomposition of the structures for the previous formulae in the formulae.

3. The last component contains the the list of the projectors that give the combined canonical
decomposition derived from all of the formulae.

The terms, sources, marginalty and aliasing lists have a component for each formula in the
formulae argument to designAnatomy, Each component of the terms and sources lists has a
character vector containing the terms or sources derived from its formula. For the marginality
component, each component is the marginality matrix for the terms derived from its formula. For
the aliasing component, each component is the aliasing data.frame for the source derived from
its formula. The components of these four lists are produced by pstructure.formula and are
copied from the pstructure.object for the formula. The names of the components of these four
lists will be the names of the components in the formulae list.

The object has the attribute labels, which is set to "terms" or "sources" according to which of
these were used to label the projectors when the object was created.

Author(s)

Chris Brien

See Also

designAnatomy, p2canon.object.

110 porthogonalize.list

porthogonalize.list Takes a list of projectors and constructs a pstructure.object that
includes projectors, each of which has been orthogonalized to all pro-
jectors preceding it in the list.

Description

Constructs a pstructure.object that includes a set of mutually orthogonal projectors, one for each
of the projectors in the list. These specify a structure, or an orthogonal decomposition of the
data space. This function externalizes the process previously performed within pstructure.formula
to orthogonalize projectors. There are three methods available for carrying out orthogonalization:
differencing, eigenmethods or the default hybrid method.

It is possible to use this function to find out what sources are associated with the terms in a model
and to determine the marginality between terms in the model. The marginality matrix can be saved.

Usage

S3 method for class 'list'
porthogonalize(projectors, formula = NULL, keep.order = TRUE,

grandMean = FALSE, orthogonalize = "hybrid", labels = "sources",
marginality = NULL, check.marginality = TRUE,
omit.projectors = FALSE,
which.criteria = c("aefficiency","eefficiency","order"),
aliasing.print = TRUE, ...)

Arguments

projectors A list each of whose components is a projector.

formula An object of class formula from which the projectors have been obtained. If
NULL, then the differencing option of orthogonalize is not available.

keep.order A logical indicating whether the terms should keep their position in the ex-
panded formula projector, or reordered so that main effects precede two-factor
interactions, which precede three-factor interactions and so on.

grandMean A logical indicating whether the projector for the grand mean is to be included
in the set produced.

orthogonalize A character vector indicating the method for orthogonalizing a projector to
those for terms that occurred previously in the formula. Three options are avail-
able: hybrid; differencing; eigenmethods, unless formula is NULL in which
case differencing is not available. The hybrid option is the most general
and uses the relationships between the projection operators for the terms in the
formula to decide which projectors to substract and which to orthogonal-
ize using eigenmethods. The differencing option subtracts, from the current
projector, those previously orthogonalized projectors for terms whose fac-
tors are a subset of the current projector’s factors. The eigenmethods op-
tion recursively orthogonalizes the projectors using an eigenanalysis of each
projector with previously orthogonalized projectors.

porthogonalize.list 111

labels A character nominating the type of labels to be used in labelling the projectors,
and which will be used also in the output tables, such the tables of the aliasing
in the structure. The two alternatives are terms and sources. Terms have all
factors/variables in it separated by colons (:). Sources have factors/variables
in them that represent interactions separated by hashes (#); if some factors are
nested within others, the nesting factors are surrounded by square brackets ([
and]) and separated by colons (:). If some generalized, or combined, factors
have no marginal terms, the constituent factors are separated by colons (:) and
if they interact with other factors in the source they will be parenthesized.

marginality A square matrix that can be used to supply the marginality matrix when it is
desired to overwrite the calculated marginality matrix or when it is not being
calculated. It should consist of zeroes and ones that gives the marginalites of the
terms in the formula. It must have the row and column names set to the terms
from the expanded formula, including being in the same order as these terms.
The entry in the ith row and jth column will be one if the ith term is marginal
to the jth term i.e. the column space of the ith term is a subspace of that for the
jth term and so the source for the jth term is to be made orthogonal to that for
the ith term. Otherwise, the entries are zero. A row and column should not be
included for the grand mean even if grandMean is TRUE.

check.marginality

A logical indicating whether the marginality matrix, when it is supplied, is
to be checked against that computed by porthogonalize.list. It is ignored
when orthogonalize is set to eigenmethods.

omit.projectors

A logical, which, if TRUE, results in the projectors in the Q of the pstructure.object
being replaced by their degrees of freedom. These will be the degrees of free-
dom of the sources. This option is included a device for saving storage when the
projectors are not required for further analysis.

which.criteria A character vector nominating the efficiency criteria to be included in the sum-
mary of aliasing between terms. It can be none, all or some combination
of aefficiency, mefficiency, sefficiency, eefficiency, xefficiency,
order and dforthog – for details see efficiency.criteria. If none, no sum-
mary is printed.

aliasing.print A logical indicating whether the aliasing between sources within the structure
is to be printed.

... further arguments passed to terms.

Details

It is envisaged that the projectors in the list supplied to the projectors argument correspond to
the terms in a linear model. One way to generate them is to obtain the design matrix X for a term and
then calculate its projector as X(X′X)−X′, There are three methods available for orhtogonalizing
the supplied projectors: differencing, eigenmethods or the default hybrid method.

Differencing relies on comparing the factors involved in two terms, one previous to the other,
to identify whether to subtract the orthogonalized projector for the previous term from the pri-
mary projector of the other. It does so if factors/variables for the previous term are a subset of

112 porthogonalize.list

the factors/variablesfor for the other term. This relies on ensuring that all projectors whose fac-
tors/variables are a subset of the current projector occur before it in the expanded formula. It is
checked that the set of matrices are mutually orthogonal. If they are not then a warning is given. It
may happen that differencing does not produce a projector, in which case eigenmethods must be
used.

Eigenmethods forces each projector to be orthogonal to all terms previous to it in the expanded
formula. It uses equation 4.10 of James and Wilkinson (1971), which involves calculating the
canonical efficiency factors for pairs of primary projectors. It produces a table of efficiency criteria
for partially aliased terms. Again, the order of terms is crucial. This method has the disadvantage
that the marginality of terms is not determined and so sources names are set to be the same as the
term names, unless a marginality matrix is supplied.

The hybrid method is the most general and uses the relationships between the projection operators
for the terms in the formula to decide which projectors to subtract and which to orthogonalize using
eigenmethods. If Qi and Qj are two projectors for two different terms, with i < j, then

1. if QjQi ̸= 0 then have to orthogonalize Qj to Qi.

2. if QjQi = Qj then, if Qi = Qj , they are equal and Qj will be removed from the list of
terms; otherwise they are marginal and Qi is subtracted from Qj .

3. if have to orthogonalize and QjQi = Qi then Qj is aliased with previous terms and will be
removed from the list of terms; otherwise Qi is partially aliased with Qj and Qj is orthogo-
nalized to Qi using eigenmethods.

The order of projections matrices in the list is crucial in this process.

Of the three methods, eigenmethods is least likely to fail, but it does not establish the marginality
between the terms. It is often needed when there is nonorthogonality between terms, such as when
there are several linear covariates. It can also be more efficeint in these circumstances.

The process can be computationally expensive, particularly for a large data set (500 or more obser-
vations) and/or when many terms are to be orthogonalized.

If the error Matrix is not idempotent should occur then, especially if there are many terms, one
might try using set.daeTolerance to reduce the tolerance used in determining if values are either
the same or are zero; it may be necessary to lower the tolerance to as low as 0.001. Also, setting
orthogonalize to eigenmethods is worth a try.

Value

A pstructure.object.

Author(s)

Chris Brien

References

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279-294.

power.exp 113

See Also

pstructure.formula, proj2.efficiency, proj2.combine, proj2.eigen,
projs.2canon in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

manually obtain projectors for units
Q.G <- projector(matrix(1, nrow=24, ncol=24)/24)
Q.B <- projector(fac.meanop(PBIBD2.lay$Block))
Q.BU <- projector(diag(1, nrow=24))

manually obtain projector for trt
Q.T <- projector(fac.meanop(PBIBD2.lay$trt) - Q.G)

##Orthogonalize the projectors using porthogonalize.list
Qs <- list(Mean = Q.G, Block = Q.B, "Block:Unit" = Q.BU)
struct <- porthogonalize(Qs, grandMean = TRUE)
Qs <- struct$Q
(lapply(Qs, degfree))

#Add a linear covariate
PBIBD2.lay <- within(PBIBD2.lay,

{
cBlock <- as.numfac(Block)
cBlock <- cBlock - mean(unique(cBlock))

})
X <- model.matrix(~ cBlock, data = PBIBD2.lay)
Q.cB <- projector(X %*% mat.ginv(t(X) %*% X) %*% t(X))
Qs <- list(cBlock = Q.cB, Block = Q.B, "Block:Unit" = Q.BU)
struct <- porthogonalize(Qs, grandMean = FALSE)
Qs <- struct$Q
(lapply(Qs, degfree))

power.exp Computes the power for an experiment

Description

Computes the power for an experiment.

114 print.aliasing

Usage

power.exp(rm=5., df.num=1., df.denom=10., delta=1., sigma=1.,
alpha=0.05, print=FALSE)

Arguments

rm The number of observations used in computing a mean.

df.num The degrees of freedom of the numerator of the F for testing the term involving
the means.

df.denom The degrees of freedom of the denominator of the F for testing the term involv-
ing the means.

delta The true difference between a pair of means.

sigma The population standard deviation.

alpha The significance level to be used.

print TRUE or FALSE to have or not have a table of power calculation details printed
out.

Value

A single numeric value containing the computed power.

Author(s)

Chris Brien

See Also

no.reps, detect.diff in package dae.

Examples

Compute power for a randomized complete block design with four treatments
and five blocks.
rm <- 5
power.exp(rm = rm, df.num = 3, df.denom = 3 * (rm - 1), delta = 5,

sigma = sqrt(20),print = TRUE)

print.aliasing Print an aliasing data.frame

Description

Prints an aliasing data.frame.

print.projector 115

Usage

S3 method for class 'aliasing'
print(x, which.criteria = c("aefficiency","eefficiency","order"), ...)

Arguments

x The data.frame that is also of class aliasing and is to be printed.
which.criteria A character vector nominating the efficiency criteria to be included in the sum-

mary of aliasing between terms. It can be none, all or some combination
of aefficiency, mefficiency, sefficiency, eefficiency, xefficiency,
order and dforthog – for details see efficiency.criteria. If none, no cri-
teria are printed.

... Further arguments passed to the print method for data.frame.

Author(s)

Chris Brien

See Also

print, print.default, show.

Examples

Generate a data.frame with 3 factors length 12
pseudo.lay <- data.frame(pl = factor(1:12),

ab = factor(rep(1:4, times=3)),
a = factor(rep(1:2, times=6)))

create a pstructure object
trt.struct <- pstructure(~ ab+a, data = pseudo.lay)

print the object either using the Method function, the generic function or show
print.aliasing(trt.struct$aliasing)
print(trt.struct$aliasing, which.criteria = "none")
trt.struct$aliasing

print.projector Print projectors

Description

Print an object of class "projector", displaying the matrix and its degrees of freedom (rank).

Usage

S3 method for class 'projector'
print(x, ...)

116 print.pstructure

Arguments

x The object of class "projector" to be printed.

... Further arguments passed to or from other methods.

Author(s)

Chris Brien

See Also

print, print.default, show.

projector for further information about this class.

Examples

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

create an object of class projector
proj.m <- projector(m)

print the object either using the Method function, the generic function or show
print.projector(proj.m)
print(proj.m)
proj.m

print.pstructure Prints a pstructure.object

Description

Prints a pstructure.object, which is of class pstructure. The df, terms and sources are coerced
into a data.frame and printed; the marginality matrix is printed separately.

Usage

S3 method for class 'pstructure'
print(x, which = "all", ...)

Arguments

x The pstructure.object, which is of class pstructure and is to be printed.

which A character vector nominating the components of the pstructure.object to
print. Must be all or some combination of projectors, marginality, and
aliasing.

... Further arguments passed to print.aliasing.

print.summary.p2canon 117

Author(s)

Chris Brien

See Also

print, print.default, show.

Examples

Generate a data.frame with 4 factors, each with three levels, in standard order
ABCD.lay <- fac.gen(list(A = 3, B = 3, C = 3, D = 3))

create a pstructure object based on the formula ((A*B)/C)*D
ABCD.struct <- pstructure.formula(~ ((A*B)/C)*D, data =ABCD.lay)

print the object either using the Method function, the generic function or show
print.pstructure(ABCD.struct)
print(ABCD.struct)
ABCD.struct

print.summary.p2canon Prints the values in an summary.p2canon object

Description

Prints a summary.p2canon object, which is also a data.frame, in a pretty format.

Usage

S3 method for class 'summary.p2canon'
print(x, ...)

Arguments

x A summary.p2canon object.

... further arguments passed to print.

Value

No value is returned.

Author(s)

Chris Brien

See Also

summary.p2canon

118 print.summary.pcanon

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

##obtain projectors using pstructure
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
trt.struct <- pstructure(~ trt, data = PBIBD2.lay)

##obtain combined decomposition and print summary
unit.trt.p2canon <- projs.2canon(unit.struct$Q, trt.struct$Q)
summ <- summary(unit.trt.p2canon)
print(summ)

print.summary.pcanon Prints the values in an summary.pcanon object

Description

Prints a summary.pcanon object, which is also a data.frame, in a pretty format.

Usage

S3 method for class 'summary.pcanon'
print(x, aliasing.print = TRUE, ...)

Arguments

x A summary.pcanon object.

aliasing.print A logical indicating whether the aliasing between sources is to be printed.
Ignored for legacy summary.pcanon objects resulting from versions prior to 3.0-
0 and so using projs.canon

... further arguments passed to print.

Value

No value is returned.

Author(s)

Chris Brien

proj2.combine 119

See Also

summary.pcanon

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

##obtain combined decomposition and summarize
unit.trt.canon <- designAnatomy(list(unit=~ Block/Unit, trt=~ trt),

data = PBIBD2.lay)
summ <- summary(unit.trt.canon, which = c("aeff","eeff","order"))
print(summ)

proj2.combine Compute the projection and Residual operators for two, possibly
nonorthogonal, projectors

Description

The canonical relationship between a pair of projectors is established by decomposing the range
of Q1 into a part that pertains to Q2 and a part that is orthogonal to Q2. It also produces the
nonzero canonical efficiency factors for the joint decomposition of Q1 and Q and the corresponding
eigenvectors of Q1 (James and Wilkinson, 1971). Q1 and Q2 may be nonorthogonal.

Usage

proj2.combine(Q1, Q2)

Arguments

Q1 A symmetric projector whose range is to be decomposed.

Q2 A symmetric projector whose range in Q1 is required.

Details

The nonzero canonical efficiency factors are the nonzero eigenvalues of Q1 %*% Q2 %*% Q1 (James
and Wilkinson, 1971). An eigenvalue is regarded as zero if it is less than daeTolerance, which
is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The function set.daeTolerance
can be used to change daeTolerance.

The eigenvectors are the eigenvectors of Q1 corresponding to the nonzero canonical efficiency
factors. The eigenvectors for Q2 can be obtained by premultiplying those for Q1 by Q2.

120 proj2.combine

Qres is computed using equation 4.10 from James and Wilkinson (1971), if the number of distinct
canonical efficiency factors is less than 10. If this fails to produce a projector or the number of
distinct canonical efficiency factors is 10 or more, equation 5.3 of Payne and Tobias (1992) is used
to obtain Qres. In this latter case, Qres = Q1 - Q1 %*% ginv(Q2 %*% Q1 %*% Q2) %*% Q1. Qconf is
obtained by subtracting Qres from Q1.

Value

A list with the following components:

1. efficiencies: a vector containing the nonzero canonical efficiency factors;

2. eigenvectors: an n x r matrix, where n is the order of the projectors and r is the number of
nonzero canonical efficiency factors; it contains the eigenvectors of Q1 corresponding to the
nonzero canonical efficiency factors.

3. Qconf: a projector onto the part of the range of Q1 with which Q2 is confounded;

4. Qres: a projector onto the part of the range of Q1 that is orthogonal to the range of Q2.

Author(s)

Chris Brien

References

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279–294.

Payne, R. W. and R. D. Tobias (1992). General balance, combination of information and the analysis
of covariance. Scandinavian Journal of Statistics, 19, 3–23.

See Also

proj2.eigen, proj2.efficiency, decomp.relate in package dae.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

obtain sets of projectors
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
trt.struct <- pstructure(~ trt, data = PBIBD2.lay)

obtain the projection operators for the interblock analysis
PBIBD2.Bops <- proj2.combine(unit.struct$Q[["Unit[Block]"]], trt.struct$Q[["trt"]])

proj2.efficiency 121

Q.B.T <- PBIBD2.Bops$Qconf
Q.B.res <- PBIBD2.Bops$Qres

demonstrate their orthogonality
is.allzero(Q.B.T %*% Q.B.res)

proj2.efficiency Computes the canonical efficiency factors for the joint decomposition
of two projectors

Description

Computes the canonical efficiency factors for the joint decomposition of two projectors (James and
Wilkinson, 1971).

Usage

proj2.efficiency(Q1, Q2)

Arguments

Q1 An object of class "projector".

Q2 An object of class "projector".

Details

The nonzero canonical efficiency factors are the nonzero eigenvalues of Q1 %*% Q2 %*% Q1
(James and Wilkinson, 1971). An eigenvalue is regarded as zero if it is less than daeTolerance,
which is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The function set.daeTolerance
can be used to change daeTolerance.

Value

A vector containing the nonzero canonical efficiency factors.

Author(s)

Chris Brien

References

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279-294.

See Also

efficiency.criteria, proj2.eigen, proj2.combine in package dae, eigen.

projector for further information about this class.

122 proj2.eigen

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

obtain sets of projectors
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
trt.struct <- pstructure(~ trt, data = PBIBD2.lay)

save intrablock efficiencies
eff.intra <- proj2.efficiency(unit.struct$Q[["Block"]], trt.struct$Q[["trt"]])

proj2.eigen Canonical efficiency factors and eigenvectors in joint decomposition
of two projectors

Description

Computes the canonical efficiency factors for the joint decomposition of two projectors and the
eigenvectors corresponding to the first projector (James and Wilkinson, 1971).

Usage

proj2.eigen(Q1, Q2)

Arguments

Q1 An object of class "projector".

Q2 An object of class "projector".

Details

The component efficiencies is a vector containing the nonzero canonical efficiency factors for the
joint decomposition of the two projectors. The nonzero canonical efficiency factors are the nonzero
eigenvalues of Q1 %*% Q2 %*% Q1 (James and Wilkinson, 1971). An eigenvalue is regarded as
zero if it is less than daeTolerance, which is initially set to .Machine$double.eps ^ 0.5 (about
1.5E-08). The function set.daeTolerance can be used to change daeTolerance.

The component eigenvectors is an n x r matrix, where n is the order of the projectors and r is the
number of nonzero canonical efficiency factors; it contains the eigenvectors of Q1 corresponding to
the nonzero canonical efficiency factors. The eigenvectors for Q2 can be obtained by premultiplying
those for Q1 by Q2.

projector 123

Value

A list with components efficiencies and eigenvectors.

Author(s)

Chris Brien

References

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279-294.

See Also

proj2.efficiency, proj2.combine in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

obtain sets of projectors
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
trt.struct <- pstructure(~ trt, data = PBIBD2.lay)

obtain intra- and inter-block decompositions
decomp.inter <- proj2.eigen(unit.struct$Q[["Block"]], trt.struct$Q[["trt"]])
decomp.intra <- proj2.eigen(unit.struct$Q[["Unit[Block]"]], trt.struct$Q[["trt"]])

#extract intrablock efficiencies
decomp.intra$efficiencies

projector Create projectors

Description

The class "projector" is the subclass of the class "matrix" in which matrices are square, symmet-
ric and idempotent.

The function projector tests whether a matrix satisfies these criteria and if it does creates a
"projector" object, computing the projector’s degrees of freedom and adding them to the object.

124 projector-class

Usage

projector(Q)

Arguments

Q The matrix to be made into a projector.

Details

In checking that the matrix is square, symmetric and idempotent, the equality of the matrix with
either its transpose or square is tested. In this, a difference in elements is considered to be zero if it
is less than daeTolerance, which is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08).
The function set.daeTolerance can be used to change daeTolerance.

Value

An object of Class "projector" that consists of a square, summetric, idempotent matrix and de-
grees of freedom (rank) of the matrix.

Author(s)

Chris Brien

See Also

degfree, correct.degfree in package dae.

projector for further information about this class.

Examples

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

create an object of class projector
proj.m <- projector(m)

check that it is a valid projector
is.projector(proj.m)

projector-class Class projector

Description

The class "projector" is the subclass of matrices that are square, symmetric and idempotent.

is.projector is the membership function for this class.

degfree is the extractor function for the degrees of freedom and degfree<- is the replacement
function.

correct.degfree checks whether the stored degrees of freedom are correct.

projector-class 125

Objects from the Class

An object of class "projector" consists of a square, symmetric, idempotent matrix along with its
degrees of freedom (rank).
Objects can be created by calls of the form new("projector", data, nrow, ncol, byrow, dimnames,
...). However, this does not add the degrees of freedom to the object. These can be added using
the replacement function degfree<-. Alternatively, the function projector creates the new object
from a matrix, adding its degrees of freedom at the same time.

Slots

.Data: Object of class "matrix"
degfree: Object of class "integer"

Extends

Class "matrix", from data part. Class "array", by class "matrix", distance 2. Class "structure",
by class "matrix", distance 3. Class "vector", by class "matrix", distance 4, with explicit coerce.

Methods

coerce signature(from = "projector", to = "matrix")

print signature(x = "projector")

show signature(object = "projector")

Author(s)

Chris Brien

See Also

projector, degfree, correct.degfree in package dae.

Examples

showClass("projector")

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

create an object of class projector
proj.m <- projector(m)

check that it is a valid projector
is.projector(proj.m)

create a projector based on the matrix m
proj.m <- new("projector", data=m)

add its degrees of freedom and print the projector
degfree(proj.m) <- proj.m

126 projs.2canon

projs.2canon A canonical analysis of the relationships between two sets of projec-
tors

Description

Computes the canonical efficiency factors for the joint decomposition of two structures or sets of
mutually orthogonally projectors (Brien and Bailey, 2009), orthogonalizing projectors in the Q2
list to those earlier in the list of projectors with which they are partially aliased. The results can
be summarized in the form of a skeleton ANOVA table.

Usage

projs.2canon(Q1, Q2)

Arguments

Q1 A list whose components are objects of class "projector".

Q2 A list whose components are objectsof class "projector".

Details

Two loops, one nested within the other, are performed. The first cycles over the components of Q1
and the nested loop cycles over the components of Q2. The joint decomposition of the two pro-
jectors in each cycle, one from Q1 (say Q1[[i]]) and the other from Q2 (say Q2[[j]]) is obtained
using proj2.combine. In particular, the nonzero canonical efficiency factors for the joint decom-
position of the two projectors is obtained. The nonzero canonical efficiency factors are the nonzero
eigenvalues of Q1[[i]] %*% Q2[[j]] %*% Q1[[i]] (James and Wilkinson, 1971). An eigenvalue is
regarded as zero if it is less than daeTolerance, which is initially set to .Machine$double.eps ^
0.5 (about 1.5E-08). The function set.daeTolerance can be used to change daeTolerance.

However, a warning occurs if any pair of Q2 projectors (say Q2[[j]] and Q2[[k]]) do not have
adjusted orthgonality with respect to any Q1 projector (say Q1[[i]]), because they are partially
aliased. That is, if Q2[[j]] %*% Q1[[i]] %*% Q2[[k]] is nonzero for any pair of different Q2
projectors and any Q1 projector. When it is nonzero, the projector for the later term in the list
of projectors is orthogonalized to the projector that is earlier in the list. A list of such projectors
is returned in the aliasing component of the p2canon.object. The entries in the aliasing
component gives the amount of information that is aliased with previous terms.

Value

A p2canon.object.

Author(s)

Chris Brien

projs.combine.p2canon 127

References

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279-294.

See Also

summary.p2canon, efficiencies.p2canon, projs.combine.p2canon, pstructure ,
proj2.efficiency, proj2.combine, proj2.eigen, efficiency.criteria in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

##obtain projectors using pstructure
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
trt.struct <- pstructure(~ trt, data = PBIBD2.lay)

##obtain combined decomposition and summarize
unit.trt.p2canon <- projs.2canon(unit.struct$Q, trt.struct$Q)
summary(unit.trt.p2canon)

projs.combine.p2canon Extract, from a p2canon object, the projectors that give the combined
canonical decomposition

Description

Extracts, from a p2canon object obtained using projs.2canon, the projectors that give the com-
bined canonical decomposition of two sets of projectors (Brien and Bailey, 2009).

Usage

projs.combine.p2canon(object)

Arguments

object A list of class p2canon produced by projs.2canon.

128 pstructure.formula

Value

A list, each of whose components is a projector in the decomposition.

Author(s)

Chris Brien

References

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

See Also

projs.2canon, proj2.eigen, proj2.combine in package dae.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

obtain sets of projectors
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
trt.struct <- pstructure(~ trt, data = PBIBD2.lay)

##obtain combined decomposition
unit.trt.p2canon <- projs.2canon(unit.struct$Q, trt.struct$Q)
UcombineT <- projs.combine.p2canon(unit.trt.p2canon)

pstructure.formula Takes a formula and constructs a pstructure.object that includes
the orthogonalized projectors for the terms in a formula

Description

Constructs a pstructure.object that includes a set of mutually orthogonal projectors, one for
each term in the formula. These are used to specify a structure, or an orthogonal decomposition of
the data space. There are three methods available for orthogonalizing the projectors corresponding
to the terms in the formula: differencing, eigenmethods or the default hybrid method.

It is possible to use this function to find out what sources are associated with the terms in a model
and to determine the marginality between terms in the model. The marginality matrix can be saved.

pstructure.formula 129

Usage

S3 method for class 'formula'
pstructure(formula, keep.order = TRUE, grandMean = FALSE,

orthogonalize = "hybrid", labels = "sources",
marginality = NULL, check.marginality = TRUE,
omit.projectors = FALSE,
which.criteria = c("aefficiency","eefficiency","order"),
aliasing.print = TRUE, data = NULL, ...)

Arguments

formula An object of class formula from which the terms will be obtained.

keep.order A logical indicating whether the terms should keep their position in the ex-
panded formula projector, or reordered so that main effects precede two-factor
interactions, which precede three-factor interactions and so on.

grandMean A logical indicating whether the projector for the grand mean is to be included
in the set produced.

orthogonalize A character vector indicating the method for orthogonalizing a projector to
those for terms that occurred previously in the formula. Three options are avail-
able: hybrid; differencing; eigenmethods. The hybrid option is the most
general and uses the relationships between the projection operators for the terms
in the formula to decide which projectors to substract and which to orthogo-
nalize using eigenmethods. The differencing option subtracts, from the cur-
rent projector, those previously orthogonalized projectors for terms whose
factors are a subset of the current projector’s factors. The eigenmethods op-
tion recursively orthogonalizes the projectors using an eigenanalysis of each
projector with previously orthogonalized projectors.

labels A character nominating the type of labels to be used in labelling the projectors,
and which will be used also in the output tables, such the tables of the aliasing
in the structure. The two alternatives are terms and sources. Terms have all
factors/variables in it separated by colons (:). Sources have factors/variables
in them that represent interactions separated by hashes (#); if some factors are
nested within others, the nesting factors are surrounded by square brackets ([
and]) and separated by colons (:). If some generalized, or combined, factors
have no marginal terms, the constituent factors are separated by colons (:) and
if they interact with other factors in the source they will be parenthesized.

marginality A square matrix that can be used to supply the marginality matrix when it is
desired to overwrite the calculated marginality matrix or when it is not being
calculated. It should consist of zeroes and ones that gives the marginalites of the
terms in the formula. It must have the row and column names set to the terms
from the expanded formula, including being in the same order as these terms.
The entry in the ith row and jth column will be one if the ith term is marginal
to the jth term i.e. the column space of the ith term is a subspace of that for the
jth term and so the source for the jth term is to be made orthogonal to that for
the ith term. Otherwise, the entries are zero. A row and column should not be
included for the grand mean even if grandMean is TRUE.

130 pstructure.formula

check.marginality

A logical indicating whether the marginality matrix, when it is supplied, is to
be checked against that computed by pstructure.formula. It is ignored when
orthogonalize is set to eigenmethods.

omit.projectors

A logical, which, if TRUE, results in the projectors in the Q of the pstructure.object
being replaced by their degrees of freedom. These will be the degrees of free-
dom of the sources. This option is included a device for saving storage when the
projectors are not required for further analysis.

which.criteria A character vector nominating the efficiency criteria to be included in the sum-
mary of aliasing between terms. It can be none, all or some combination
of aefficiency, mefficiency, sefficiency, eefficiency, xefficiency,
order and dforthog – for details see efficiency.criteria. If none, no sum-
mary is printed.

aliasing.print A logical indicating whether the aliasing between sources within the structure
is to be printed.

data A data frame contains the values of the factors and variables that occur in
formula.

... further arguments passed to terms.

Details

Firstly, the primary projector X(X′X)−X′, where X is the design matrix for the term, is cal-
culated for each term. Then each projector is made orthogonal to terms aliased with it using
porthogonalize.list, either by differencing, eigenmethods or the default hybrid method.

Differencing relies on comparing the factors involved in two terms, one previous to the other,
to identify whether to subtract the orthogonalized projector for the previous term from the pri-
mary projector of the other. It does so if factors/variables for the previous term are a subset of
the factors/variablesfor for the other term. This relies on ensuring that all projectors whose fac-
tors/variables are a subset of the current projector occur before it in the expanded formula. It is
checked that the set of matrices are mutually orthogonal. If they are not then a warning is given. It
may happen that differencing does not produce a projector, in which case eigenmethods must be
used.

Eigenmethods forces each projector to be orthogonal to all terms previous to it in the expanded
formula. It uses equation 4.10 of James and Wilkinson (1971), which involves calculating the
canonical efficiency factors for pairs of primary projectors. It produces a table of efficiency criteria
for partially aliased terms. Again, the order of terms is crucial. This method has the disadvantage
that the marginality of terms is not determined and so sources names are set to be the same as the
term names, unless a marginality matrix is supplied.

The hybrid method is the most general and uses the relationships between the projection operators
for the terms in the formula to decide which projectors to subtract and which to orthogonalize using
eigenmethods. If Qi and Qj are two projectors for two different terms, with i < j, then

1. if QjQi ̸= 0 then have to orthogonalize Qj to Qi.

2. if QjQi = Qj then, if Qi = Qj , they are equal and Qj will be removed from the list of
terms; otherwise they are marginal and Qi is subtracted from Qj .

pstructure.formula 131

3. if have to orthogonalize and QjQi = Qi then Qj is aliased with previous terms and will be
removed from the list of terms; otherwise Qi is partially aliased with Qj and Qj is orthogo-
nalized to Qi using eigenmethods.

The order of terms is crucial in this process.

Of the three methods, eigenmethods is least likely to fail, but it does not establish the marginality
between the terms. It is often needed when there is nonorthogonality between terms, such as when
there are several linear covariates. It can also be more efficeint in these circumstances.

The process can be computationally expensive, particularly for a large data set (500 or more obser-
vations) and/or when many terms are to be orthogonalized.

If the error Matrix is not idempotent should occur then, especially if there are many terms, one
might try using set.daeTolerance to reduce the tolerance used in determining if values are either
the same or are zero; it may be necessary to lower the tolerance to as low as 0.001. Also, setting
orthogonalize to eigenmethods is worth a try.

Value

A pstructure.object.

Author(s)

Chris Brien

References

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279-294.

See Also

porthogonalize.list, proj2.efficiency, proj2.combine, proj2.eigen,
projs.2canon in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

manually obtain projectors for units
Q.G <- projector(matrix(1, nrow=24, ncol=24)/24)
Q.B <- projector(fac.meanop(PBIBD2.lay$Block) - Q.G)
Q.BP <- projector(diag(1, nrow=24) - Q.B - Q.G)

manually obtain projector for trt

132 pstructure.object

Q.T <- projector(fac.meanop(PBIBD2.lay$trt) - Q.G)

##compute intrablock efficiency criteria
effic <- proj2.efficiency(Q.BP, Q.T)
effic
efficiency.criteria(effic)

##obtain projectors using pstructure.formula
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
trt.struct <- pstructure(~ trt, data = PBIBD2.lay)

##obtain combined decomposition and summarize
unit.trt.p2canon <- projs.2canon(unit.struct$Q, trt.struct$Q)
summary(unit.trt.p2canon, which = c("aeff","eeff","order"))

pstructure.object Description of a pstructure object

Description

An object of class pstructure that contains information derived from a formula using pstructure.formula.
It also inherits from class list.

Value

A list of class pstructure with the following components:

1. Q: a list with a component of class projector, being the orthogonalized projectors for each
non-aliased term/source in the formula; if grandMean is TRUE in the call to pstructure.formula
then it also includes the projector for it;

2. terms: a character vector with the non-aliased term names; if grandMean is TRUE in the call
to pstructure.formula then the first term will be "Mean";

3. sources: a character vector with the non-aliased source names;

4. marginality: a matrix of zeroes and ones with the same number of rows and columns as
number of non-aliased terms, excluding the term for the grand mean even when grandMean is
TRUE; the row names and column names are the elements terms, excluding "Mean";
the entry in the ith row and jth column will be one if the ith term is marginal to the jth term
i.e. the column space of the ith term is a subspace of that for the jth term and so the source for
the jth term will have been made orthogonal to that for the ith term; otherwise, the entries are
zero.

5. aliasing: a data.frame containing the information about the (partial) aliasing between the
sources in the formula. The columns are:

• Source: the source names, or associated term name, for those that are (partially) aliased
with previous sources;

• df: the remaining degrees of freedom for the source;
• Alias: the source with which the current entry is (partially) aliased;

qqyeffects 133

• efficiency criteria: a set of columns for the complete set of criteria calculated by efficiency.criteria;
the criteria reflect the amount of information that is aliased with previous sources and a
line is included in the component that reports the informaton remaining after adjustment
for previous sources.

The information provided depends on the setting of orthogonalize. All the information is
provided for the "hybrid" option. For the option "differencing", no efficiency criteria are
included and either the terms/sources of the Alias are set to "unknown" and the df are set
to NA when these are unknown. For the option "eigenmethods", the previous terms/sources
cannot be identified and so all values of Alias are set to NA. If there is no (partial) aliasing
then the component is set to NULL.

The object has the attribute labels, which is set to "terms" or "sources" according to which of
these label the projectors.

Author(s)

Chris Brien

See Also

pstructure.formula and, for further information about the projector classs, projector.

qqyeffects Half or full normal plot of Yates effects

Description

Produces a half or full normal plot of the Yates effects from a 2k factorial experiment.

Usage

qqyeffects(aov.obj, error.term="Within", data=NULL, pch=16,
full=FALSE, ...)

Arguments

aov.obj An aov object or aovlistobject created from a call to aov.

error.term The term from the Error function from which the Yates effects are estimated.
Only required when Error used in call to aov.

data A data.frame in which the variables specified in the aov.obj will be found. If
missing, the variables are searched for in the standard way.

pch The number of a plotting symbol to be drawn when plotting points (use help(points)
for details).

full whether a full or half normal plot is to be produced. The default is for a half-
normal plot; full=TRUE produces a full normal plot.

... Further graphical parameters may be specified (use help(par) for possibilities.

134 rep.data.frame

Details

A half or full normal plot of the Yates effects is produced. You will be able to interactively select
effects to be labelled (click reasonably close to the point and on the side where you want the label
placed). Right click on the graph and select Stop when you have finished labelling effects. A
regression line fitted to the unselected effects and constrained to go through the origin is plotted.
Also, a list of the labelled effects, if any, are printed to standard ouptut.

Value

Returns, invisibly, a list with components x and y, giving coordinates of the plotted points.

Author(s)

Chris Brien

See Also

yates.effects in package dae, qqnorm.

Examples

analysis of 2^4 factorial experiment from Table 10.6 of Box, Hunter and
Hunter (1978) Statistics for Experimenters. New York, Wiley.
use ?Fac4Proc.dat for data set details
data(Fac4Proc.dat)
Fac4Proc.aov <- aov(Conv ~ Catal * Temp * Press * Conc + Error(Runs),

Fac4Proc.dat)
qqyeffects(Fac4Proc.aov, error.term="Runs", data=Fac4Proc.dat)

rep.data.frame Replicate the rows of a data.frame by repeating each row consecu-
tively and/or repeating all rows as a group

Description

Replicate the rows of a data.frame by repeating each row consecutively and/or repeating all rows
as a group.

Usage

S3 method for class 'data.frame'
rep(x, times=1, each=1, ...)

resid.errors 135

Arguments

x A data.frame whose rows are to be repeated.

times The number of times to repeat the whole set of rows, after the rows have been
replicated consecutively each times.

each The number of times to replicate consecutively each row in the data.frame.

... Further arguments passed to or from other methods. Unused at present.

Value

A data.frame with replicated rows.

Author(s)

Chris Brien

See Also

fac.gen in package dae and rep

Examples

rep(fac.gen(list(a = 2, b = 2)), times=2, each=2)

resid.errors Extract the residuals for a fitted model

Description

An alias for the generic function residuals. When it is available, the method residuals.aovlist
extracts residuals, which is provided in the package dae to cover aovlist objects.

Usage

resid.errors(...)

Arguments

... Arguments passed to residuals.aovlist.

Value

A numeric vector containing the residuals.

Note

See residuals.aovlist for specific information about the residuals when an Error function is
used in the call to the aov function.

136 residuals.aovlist

Author(s)

Chris Brien

See Also

fitted.errors, residuals.aovlist, tukey.1df in package dae.

Examples

set up data frame for randomized complete block design in Table 4.4 from
Box, Hunter and Hunter (2005) Statistics for Experimenters. 2nd edn
New York, Wiley.
RCBDPen.dat <- fac.gen(list(Blend=5, Flask=4))
RCBDPen.dat$Treat <- factor(rep(c("A","B","C","D"), times=5))
RCBDPen.dat$Yield <- c(89,88,97,94,84,77,92,79,81,87,87,

85,87,92,89,84,79,81,80,88)

perform the analysis of variance
RCBDPen.aov <- aov(Yield ~ Blend + Treat + Error(Blend/Flask), RCBDPen.dat)
summary(RCBDPen.aov)

two equivalent ways of extracting the residuals
res <- residuals.aovlist(RCBDPen.aov)
res <- residuals(RCBDPen.aov, error.term = "Blend:Flask")
res <- resid.errors(RCBDPen.aov)

residuals.aovlist Extract the residuals from an aovlist object

Description

Extracts the residuals from error.term or, if error.term is not specified, the last error.term in
the analysis. It is a method for the generic function residuals.

Usage

S3 method for class 'aovlist'
residuals(object, error.term=NULL, ...)

Arguments

object An aovlist object created from a call to aov.

error.term The term from the Error function for which the residuals are to be extracted. If
error.term is NULL the residuals are extracted from the last Error term.

... Further arguments passed to or from other methods.

Value

A numeric vector containing the residuals.

rmvnorm 137

Author(s)

Chris Brien

See Also

fitted.errors, resid.errors, tukey.1df in package dae.

Examples

set up data frame for randomized complete block design in Table 4.4 from
Box, Hunter and Hunter (2005) Statistics for Experimenters. 2nd edn
New York, Wiley.
RCBDPen.dat <- fac.gen(list(Blend=5, Flask=4))
RCBDPen.dat$Treat <- factor(rep(c("A","B","C","D"), times=5))
RCBDPen.dat$Yield <- c(89,88,97,94,84,77,92,79,81,87,87,

85,87,92,89,84,79,81,80,88)

perform the analysis of variance
RCBDPen.aov <- aov(Yield ~ Blend + Treat + Error(Blend/Flask), RCBDPen.dat)
summary(RCBDPen.aov)

two equivalent ways of extracting the residuals
res <- residuals.aovlist(RCBDPen.aov)
res <- residuals(RCBDPen.aov, error.term = "Blend:Flask")

rmvnorm generates a vector of random values from a multivariate normal dis-
tribution

Description

Generates a vector of random values from an n-dimensional multivariate normal distribution whose
mean is given by the n-vector mean and variance by the n x n symmetric matrix V. It uses the method
described by Ripley (1987, p.98)

Usage

rmvnorm(mean, V, method = 'eigenanalysis')

Arguments

mean The mean vector of the multivariate normal distribution from which the random
values are to be generated.

V The variance matrix of the multivariate normal distribution from which the ran-
dom values are to be generated.

method The method used to decompose the variance matrix in producing a a matrix
to transform the iid standard normal values. The two methods available are
'eigenanalysis' and 'choleski', where only the first letter of each option is
obligatory. The default method is eigenanalysis, which is slower but is likely to
be more stable than Choleski decomposition.

138 Sensory3Phase.dat

Details

The method is: a) uses either the eigenvalue or Choleski decomposition of the variance matrix, V,
to form the matrix that transforms an iid vector of values to a vector with variance V; b) generate
a vector of length equal to mean of standard normal values; c) premultiply the vector of standard
normal values by the transpose of the upper triangular factor and, to the result, add mean.

Value

A vector of length n, equal to the length of mean.

Author(s)

Chris Brien

References

Ripley, B. D. (1987) Stochastic simulation. Wiley, New York.

See Also

fac.ar1mat, fac.vcmat, in package dae, rnorm, and chol.

Examples

set up a two-level factor and a three-level factor, both of length 12
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

generate random values from a multivariate normal for which
#the mean is 20 for all variables and
#the variance matrix has random effects for factor A, ar1 pattern for B and
#residual random variation
mean <- rep(20, 12)
V <- fac.vcmat(A, 5) + fac.ar1mat(B, 0.6) + 2*mat.I(12)
y <- rmvnorm(mean, V)

Sensory3Phase.dat Data for the three-phase sensory evaluation experiment in Brien, C.J.
and Payne, R.W. (1999)

Description

The data is from an experiment involved two phases. In the field phase a viticultural experiment
was conducted to investigate the differences between 4 types of trellising and 2 methods of pruning.
The design was a split-plot design in which the trellis types were assigned to the main plots using
two adjacent Youden squares of 3 rows and 4 columns. Each main plot was split into two subplots
(or halfplots) and the methods of pruning assigned at random independently to the two halfplots in

set.daeRNGkind 139

each main plot. The produce of each halfplot was made into a wine so that there were 24 wines
altogether.

The second phase was an evaluation phase in which the produce from the halplots was evaluated by
6 judges all of whom took part in 24 sittings. In the first 12 sittings the judges evaluated the wines
made from the halfplots of one square; the final 12 sittings were to evaluate the wines from the other
square. At each sitting, each judge assessed two glasses of wine from each of the halplots of one of
the main plots. The main plots allocated to the judges at each sitting were determined as follows.
For the allocation of rows, each occasion was subdivided into 3 intervals of 4 consecutive sittings.
During each interval, each judge examined plots from one particular row, these being determined
using two 3x3 Latin squares for each occasion, one for judges 1-3 and the other for judges 4-6.
At each sitting judges 1-3 examined wines from one particular column and judges 4-6 examined
wines from another column. The columns were randomized to the 2 sets of judges x 3 intervals x 4
sittings using duplicates of a balanced incomplete block design for v=4 and k=2 that were latinized.
This balanced incomplete block design consists of three sets of 2 blocks, each set containing the 4
"treatments". For each interval, a different set of 2 blocks was taken and each block assigned to two
sittings, but with the columns within the block placed in reverse order in one sitting compared to
the other sitting. Thus, in each interval, a judge would evaluate a wine from each of the 4 columns.

The data.frame contains the following factors, in the order give: Occasion, Judges, Interval, Sit-
tings, Position, Squares, Rows, Columns, Halfplot, Trellis, Method. They are followed by the
simulated response variable Score.

The scores are ordered so that the factors Occasion, Judges, Interval, Sittings and Position are in
standard order; the remaining factors are in randomized order.

See also the vignette accessed via vignette("DesignNotes", package="dae").

Usage

data(Sensory3Phase.dat)
data(Sensory3PhaseShort.dat)

Format

A data.frame containing 576 observations of 12 variables. There are two versions, one with shorter
factor names than the other.

References

Brien, C.J. and Payne, R.W. (1999) Tiers, structure formulae and the analysis of complicated exper-
iments. The Statistician, 48, 41-52.

set.daeRNGkind Sets the values of daeRNGkind for the package dae in the daeEnv en-
vironment

140 set.daeTolerance

Description

A function that sets the character value daeRNGkind that specifies the kind of Random Number
generator to use in dae. The value is stored in a character named daeRNGkind in the daeEnv
environment. It is initially set to "Mersenne-Twister" and can be changed using get.daeRNGkind.
For details of the different Random Number Generators available in R, see the R help for RNGkind.

Usage

set.daeRNGkind(kind = "Mersenne-Twister")

Arguments

kind A character to which daeRNGkind is to be set.

Value

The value of daeRNGkind is returned invisibly.

Author(s)

Chris Brien

See Also

get.daeRNGkind.

Examples

set daeRNGkind to L'Ecuyer-CMRG.
set.daeRNGkind("L'Ecuyer-CMRG")

set.daeTolerance Sets the values of daeTolerance for the package dae

Description

A function that sets the values such that, in dae functions, values less than it are considered to be
zero. The values are stored in a vector named daeTolerance in the daeEnv environment. The
vector is of length two and, initially, both values are set to .Machine$double.eps ^ 0.5 (about
1.5E-08). One value is named element.tol and is used for elements of matrices; the second is
named element.eigen and is used for eigenvalues and quantities based on them, such as efficiency
factors.

Usage

set.daeTolerance(element.tol=NULL, eigen.tol=NULL)

show-methods 141

Arguments

element.tol The value to to which the first element of the daeTolerance vector is to be set.
If more than one value is supplied, only the first value is used.

eigen.tol The value to to which the second element of the daeTolerance vector is to be
set. If more than one value is supplied, only the first value is used.

Value

The vector daeTolerance is returned invisibly.

Author(s)

Chris Brien

See Also

get.daeTolerance.

Examples

set daeTolerance.
set.daeTolerance(1E-04, 1E-08)

show-methods Methods for Function show in Package dae

Description

Methods for function show in Package dae

Methods

signature(object = "projector") Prints the matrix and its degrees of freedom.

See Also

projector for further information about this class.

142 strength

SPLGrass.dat Data for an experiment to investigate the effects of grazing patterns on
pasture composition

Description

The response variable is the percentage area covered by the principal grass (Main.Grass). The
design for the experiment is a split-unit design. The main units are arranged in 3 Rows x 3 Columns.
Each main unit is split into 2 SubRows x 2 SubColumns.

The factor Period, with levels 3, 9 and 18 days, is assigned to the main units using a 3 x 3 Latin
square. The two-level factors Spring and Summer are assigned to split-units using a criss-cross
design within each main unit. The levels of each of Spring and Summer are two different grazing
patterns in its season.

Usage

data(SPLGrass.dat)

Format

A data.frame containing 36 observations of 8 variables.

Source

Example 14.1 from Mead, R. (1990). The Design of Experiments: Statistical Principles for Practi-
cal Application. Cambridge, Cambridge University Press.

strength Generate paper strength values

Description

Generates paper strength values for an experiment with different temperatures.

Usage

strength(nodays, noruns, temperature, ident)

strength 143

Arguments

nodays The number of days over which the experiment is to be run.

noruns The number of runs to be performed on each day of the experiment.

temperature A factor that encapsulates the layout by giving the temperature to be investi-
gated for each run on each day. These must be ordered so that the temperatures
for the first day are given in the order in which they are to be investigated on that
day. These must be followed by the noruns temperatures for the second day and
so on. Consequently, the factor temperature will have nodays*noruns values.

ident The digits of your student identity number. That is, leave out any letters.

Value

A data.frame object containing the factors day, run and temperature and a vector of the gener-
ated strengths.

Author(s)

Chris Brien

Examples

Here temperature is a factor with 4*3 = 12 values whose
first 3 values specify the temperatures to be applied in
the 3 runs on the first day, values 4 to 6 specify the
temperatures for the 3 runs on day 2, and so on.
temperature <- factor(rep(c(80,85,90), 4))
exp.strength <- strength(nodays = 4, noruns = 3,

temperature = temperature, ident = 0123456)

In this second example, a completely randomized design is generated
for the same 3 temperatures replicated 4 times. The layout is stored
in the data.frame called Design.
Design <- designRandomize(allocated = temperature,

recipient = list(runs = 12),
seed = 5847123)

eradicate the unrandomized version of temperature
remove("temperature")

The 12 temperatures in Design are to be regarded as being assigned to
days and runs in the same manner as for the first example.
exp.strength <- strength(nodays = 4, noruns = 3,

temperature = Design$temperature, ident = 0123456)

144 summary.p2canon

summary.p2canon Summarize a canonical analysis of the relationships between two sets
of projectors

Description

Produces a summary of the efficiency criteria computed from the canonical efficiency factors for the
joint decomposition of two sets of projectors (Brien and Bailey, 2009) obtained using projs.2canon.
It takes the form of a decomposition or skeleton ANOVA table.

Usage

S3 method for class 'p2canon'
summary(object, which.criteria = c("aefficiency", "eefficiency", "order"), ...)

Arguments

object A list of class p2canon produced by projs.2canon.

which.criteria A character vector nominating the efficiency criteria to be included in the sum-
mary. It can be none, all or some combination of aefficiency, mefficiency,
sefficiency, eefficiency, xefficiency, order and dforthog – for details
see efficiency.criteria.

... further arguments affecting the summary produced.

Value

An object of classes summary.p2canon and data.frame, whose rows correspond to the pairs of
projectors, one from the Q1 argument and the other from the Q2 argument from projs.2canon;
only pairs with non-zero efficiency factors are included. In addition, a line is included for each
nonzero Residual Q1 projector.

Author(s)

Chris Brien

References

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

See Also

projs.2canon, proj2.efficiency, efficiency.criteria, proj2.combine, proj2.eigen, pstructure,
print.summary.p2canonin package dae, eigen.

projector for further information about this class.

summary.pcanon 145

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- designRandomize(allocated = trt,

recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

##obtain projectors using pstructure
unit.struct <- pstructure(~ Block/Unit, data = PBIBD2.lay)
trt.struct <- pstructure(~ trt, data = PBIBD2.lay)

##obtain combined decomposition and summarize
unit.trt.p2canon <- projs.2canon(unit.struct$Q, trt.struct$Q)
summary(unit.trt.p2canon)

summary.pcanon Summarizes the anatomy of a design, being the decomposition of the
sample space based on its canonical analysis, as produced by desig-
nAnatomy

Description

Gives the anatomy of a design in a table; it summarizes the joint decomposition of two or more sets
of projectors (Brien and Bailey, 2009) obtained using designAnatomy. It includes the efficiency
criteria computed from the canonical efficiency factors for the joint decomposition. The labels in
the table may be Terms or Sources. The terms are those that would be included in a mixed model
for an experiment based on the design. The sources are the orthogonal subspaces, derived from the
terms, that make up the decomposition and the degrees of freedom and efficiency factors relate to
these subspaces. The table displays how the information for the different sources allowed for in
the design are related. For more information about the notation used for sources see the labels
argument of designAnatomy.

It is possible to supply an object that is a pcanon.object produced in versions prior to 3.0-0 using
projs.canon.

Usage

S3 method for class 'pcanon'
summary(object, labels.swap = FALSE,

which.criteria = c("aefficiency", "eefficiency", "order"), ...)

Arguments

object A pcanon.object.

146 summary.pcanon

labels.swap A logical indicating whether to swap between "sources" and ‘terms’ in the
output. The default is established by the labels argument of designAnatomy
and projs.canon.

which.criteria A character vector nominating the efficiency criteria to be included in the
summary. It can be none, all or some combination of aefficiency, mefficiency,
sefficiency, eefficiency, xefficiency, order and dforthog – for details
see efficiency.criteria. If there is only one formula, this argument is ig-
nored.

... further arguments affecting the summary produced.

Value

An object of class summary.pcanon that is a list with the two components decomp and aliasing.

The component decomp is a data.frame whose rows correspond to subspaces in the decomposition
for a design. It has the following attributes: (i) title that is the title for printing with the
decomposition table; (ii) ntiers that is equal to the number of tiers; (iii) orthogonal that is TRUE
if the design is orthogonal; (iv) labels that is either "terms" or "sources" depending on the labels
that have resulted from the setting of label.swap.

The component aliasing is a data.frame that is also of class aliasing. It contains information
about the aliasing between terms that are derived from the same formula and has the attribute title
that is the title to be printed with the aliasing table.

However, if the object supplied is a pcanon.object produced with versions prior to 3.0-0 using
projs.canon, the value is a data.frame, instead of a list, that has the same attributes as the
decomp component of the summary.pcanon object now produced, except that labels is always set
to "terms".

Author(s)

Chris Brien

References

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

See Also

designAnatomy, designAnatomy, , pstructure, efficiency.criteria, proj2.combine,
proj2.efficiency, proj2.eigen, print.summary.pcanonin package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))

tukey.1df 147

PBIBD2.lay <- designRandomize(allocated = trt,
recipient = PBIBD2.unit,
nested.recipients = PBIBD2.nest)

##obtain combined decomposition and summarize
unit.trt.canon <- designAnatomy(list(unit=~ Block/Unit, trt=~ trt),

data = PBIBD2.lay)
summary(unit.trt.canon, which = c("aeff","eeff","order"))
summary(unit.trt.canon, which = c("aeff","eeff","order"), labels.swap = TRUE)

tukey.1df Performs Tukey’s one-degree-of-freedom-test-for-nonadditivity

Description

Performs Tukey’s one-degree-of-freedom-test-for-nonadditivity on a set of residuals from an anal-
ysis of variance.

Usage

tukey.1df(aov.obj, data, error.term="Within")

Arguments

aov.obj An aov object or aovlist object created from a call to aov.

error.term The term from the Error function whose residuals are to be tested for nonad-
ditivity. Only required when the Error function used in call to aov, so that an
aovlist object is created.

data A data.frame containing the original response variable and factors used in the
call to aov.

Value

A list containing Tukey.SS, Tukey.F, Tukey.p, Devn.SSq being the SSq for the 1df test, F value
for test and the p-value for the test.

Note

In computing the test quantities fitted values must be obtained. If error.term is specified, fitted
values will be the sum of effects extracted from terms from the Error function, but only down to
that specified by error.term.The order of terms is as given in the ANOVA table. If error.term is
unspecified, all effects for terms external to any Error terms are extracted and summed.

Extracted effects will only be for terms external to any Error function. If you want effects for terms
in the Error function to be included, put them both inside and outside the Error function so they
are occur twice.

148 yates.effects

Author(s)

Chris Brien

See Also

fitted.errors, resid.errors in package dae.

Examples

set up data frame for randomized complete block design in Table 4.4 from
Box, Hunter and Hunter (2005) Statistics for Experimenters. 2nd edn
New York, Wiley.
RCBDPen.dat <- fac.gen(list(Blend=5, Flask=4))
RCBDPen.dat$Treat <- factor(rep(c("A","B","C","D"), times=5))
RCBDPen.dat$Yield <- c(89,88,97,94,84,77,92,79,81,87,87,

85,87,92,89,84,79,81,80,88)

perform the analysis of variance
RCBDPen.aov <- aov(Yield ~ Blend + Treat + Error(Blend/Flask), RCBDPen.dat)
summary(RCBDPen.aov)

Obtain the quantities for Tukey's test
tukey.1df(RCBDPen.aov, RCBDPen.dat, error.term = "Blend:Flask")

yates.effects Extract Yates effects

Description

Extracts Yates effects from an aov object or aovlist object.

Usage

yates.effects(aov.obj, error.term="Within", data=NULL)

Arguments

aov.obj An aov object or aovlist object created from a call to aov.
error.term The term from the Error function from which the Yates effects are estimated.

Only required when Error used in call to aov.
data A data.frame in which the variables specified in the aov.obj will be found. If

missing, the variables are searched for in the standard way.

Details

Yates effects are specific to 2k experiments, where Yates effects are conventionally defined as the
difference between the upper and lower levels of a factor. We follow the convention used in Box,
Hunter and Hunter (1978) for scaling of higher order interactions: all the Yates effects are on the
same scale, and represent the average difference due to the interaction between two different levels.
Effects are estimated only from the error term supplied to the error.term argument.

Zncsspline 149

Value

A vector of the Yates effects.

Author(s)

Chris Brien

See Also

qqyeffects in package dae, aov.

Examples

analysis of 2^4 factorial experiment from Table 10.6 of Box, Hunter and
Hunter (1978) Statistics for Experimenters. New York, Wiley.
use ?Fac4Proc.dat for data set details
data(Fac4Proc.dat)
Fac4Proc.aov <- aov(Conv ~ Catal * Temp * Press * Conc + Error(Runs),

Fac4Proc.dat)
round(yates.effects(Fac4Proc.aov, error.term="Runs", data=Fac4Proc.dat), 2)

Zncsspline Calculates the design matrix for fitting the random component of a
natural cubic smoothing spline

Description

Calculates the design matrix, Z, of the random effects for a natural cubic smoothing spline as
described by Verbyla et al., (1999). An initial design matrix, ∆∆−1∆, based on the knot points
is computed. It can then be post multiplied by the power of the tri-diagonal matrix Gs that is
proportional to the variance matrix of the random spline effects. If the power is set to 0.5 then the
random spline effects based on the resulting Z matrix will be independent with variance σ2

s .

Usage

Zncsspline(knot.points, Gpower = 0, print = FALSE)

Arguments

knot.points A numeric giving the values of the knot points to be used in fitting the spline.
These must be orderd in increasing order.

Gpower A numeric giving the power of the tri-diagonal matrix Gs from which the vari-
ance matrix of the random spline effects is caluclated. that the initial design ma-
trix is to be the value of the variance component for the random spline effects.
The smoothing parameter is then the inverse of the ratio of this component to
the residual variance.

print A logical indicating whether to print the ∆ and Gs matrices.

150 Zncsspline

Value

A matrix containing the design matrix.

Author(s)

Chris Brien

References

Verbyla, A. P., Cullis, B. R., Kenward, M. G., and Welham, S. J. (1999). The analysis of designed
experiments and longitudinal data by using smoothing splines (with discussion). Journal of the
Royal Statistical Society, Series C (Applied Statistics), 48, 269-311.

See Also

mat.ncssvar.

Examples

Z <- Zncsspline(knot.points = 1:10, Gpower = 0.5)

Index

∗ aplot
designGGPlot, 30
designPlotlabels, 37
interaction.ABC.plot, 75

∗ array
as.data.frame.pstructure, 11
correct.degfree, 17
decomp.relate, 19
degfree, 20
designAnatomy, 23
designLatinSqrSys, 33
designTwophaseAnatomies, 41
efficiencies, 46
efficiency.criteria, 47
elements, 48
fac.ar1mat, 51
fac.meanop, 58
fac.sumop, 66
fac.vcmat, 69
is.projector, 78
marginality, 79
mat.ar1, 81
mat.ar2, 81
mat.ar3, 82
mat.arma, 84
mat.banded, 85
mat.cor, 86
mat.corg, 86
mat.dirprod, 87
mat.dirsum, 88
mat.exp, 89
mat.gau, 90
mat.I, 91
mat.J, 92
mat.ma1, 93
mat.ma2, 94
mat.ncssvar, 95
mat.random, 96
mat.sar, 97

mat.sar2, 98
mat.Vpred, 100
mat.Vpredicts, 101
p2canon.object, 108
pcanon.object, 109
porthogonalize.list, 110
print.aliasing, 114
print.projector, 115
print.pstructure, 116
proj2.combine, 119
proj2.efficiency, 121
proj2.eigen, 122
projector, 123
projector-class, 124
projs.2canon, 126
projs.combine.p2canon, 127
pstructure.formula, 128
pstructure.object, 132
show-methods, 141
summary.p2canon, 144
summary.pcanon, 145
Zncsspline, 149

∗ asreml
daeTips, 18

∗ classes
projector-class, 124

∗ datagen
designRandomize, 38
fac.gen, 54
fac.genfactors, 56
rep.data.frame, 134
rmvnorm, 137
strength, 142

∗ datasets
ABC.Interact.dat, 10
BIBDWheat.dat, 13
Cabinet1.des, 16
Casuarina.dat, 16
Exp249.munit.des, 49

151

152 INDEX

Fac4Proc.dat, 70
LatticeSquare_t49.des, 79
McIntyreTMV.dat, 104
Oats.dat, 107
Sensory3Phase.dat, 138
SPLGrass.dat, 142

∗ design
blockboundaryPlot, 14
decomp.relate, 19
designAmeasures, 21
designAnatomy, 23
designBlocksGGPlot, 27
designGGPlot, 30
designLatinSqrSys, 33
designPlot, 34
designPlotlabels, 37
designRandomize, 38
designTwophaseAnatomies, 41
detect.diff, 45
efficiencies, 46
efficiency.criteria, 47
fac.gen, 54
fac.genfactors, 56
fac.match, 57
interaction.ABC.plot, 75
marginality, 79
mat.ncssvar, 95
mat.random, 96
mat.Vpred, 100
mat.Vpredicts, 101
no.reps, 106
p2canon.object, 108
pcanon.object, 109
porthogonalize.list, 110
power.exp, 113
print.summary.p2canon, 117
print.summary.pcanon, 118
proj2.combine, 119
proj2.efficiency, 121
proj2.eigen, 122
projs.2canon, 126
projs.combine.p2canon, 127
pstructure.formula, 128
pstructure.object, 132
qqyeffects, 133
strength, 142
summary.p2canon, 144
summary.pcanon, 145

yates.effects, 148
Zncsspline, 149

∗ factor
as.numfac, 12
designRandomize, 38
fac.combine, 52
fac.divide, 53
fac.gen, 54
fac.genfactors, 56
fac.match, 57
fac.multinested, 59
fac.nested, 61
fac.recast, 62
fac.recode, 64
fac.split, 65
fac.uncombine, 67
fac.uselogical, 68
mpone, 105

∗ hplot
designGGPlot, 30
designPlotlabels, 37
interaction.ABC.plot, 75
qqyeffects, 133

∗ htest
fitted.aovlist, 70
fitted.errors, 72
qqyeffects, 133
resid.errors, 135
residuals.aovlist, 136
tukey.1df, 147
yates.effects, 148

∗ iplot
qqyeffects, 133

∗ manip
as.numfac, 12
elements, 48
extab, 50
fac.combine, 52
fac.divide, 53
fac.multinested, 59
fac.nested, 61
fac.recast, 62
fac.recode, 64
fac.split, 65
fac.uncombine, 67
fac.uselogical, 68
get.daeRNGkind, 73
get.daeTolerance, 74

INDEX 153

harmonic.mean, 74
is.allzero, 77
mpone, 105
set.daeRNGkind, 139
set.daeTolerance, 140

∗ matrix
mat.ginv, 90

∗ methods
fitted.aovlist, 70
residuals.aovlist, 136
show-methods, 141

∗ models
fitted.aovlist, 70
fitted.errors, 72
resid.errors, 135
residuals.aovlist, 136
tukey.1df, 147

∗ plot
blockboundaryPlot, 14
designBlocksGGPlot, 27
designPlot, 34

∗ projector
as.data.frame.pstructure, 11
correct.degfree, 17
decomp.relate, 19
degfree, 20
designAnatomy, 23
designTwophaseAnatomies, 41
efficiencies, 46
efficiency.criteria, 47
fac.meanop, 58
fac.sumop, 66
get.daeTolerance, 74
is.projector, 78
marginality, 79
p2canon.object, 108
pcanon.object, 109
porthogonalize.list, 110
print.aliasing, 114
print.projector, 115
print.pstructure, 116
print.summary.p2canon, 117
print.summary.pcanon, 118
proj2.combine, 119
proj2.efficiency, 121
proj2.eigen, 122
projector, 123
projector-class, 124

projs.2canon, 126
projs.combine.p2canon, 127
pstructure.formula, 128
pstructure.object, 132
set.daeTolerance, 140
show-methods, 141
summary.p2canon, 144
summary.pcanon, 145

ABC.Interact.dat, 4, 10
Ameasures (dae-deprecated), 18
aov, 71, 72, 133, 135, 136, 147–149
array, 125
as.data.frame, 11
as.data.frame.pstructure, 9, 11
as.logical, 68
as.numeric, 12, 13
as.numfac, 5, 12, 63, 64, 68

BIBDWheat.dat, 4, 13
blockboundary.plot (dae-deprecated), 18
blockboundaryPlot, 6, 14, 36

Cabinet1.des, 16
Casuarina.dat, 4, 16
character, 11, 14, 24, 25, 28, 32, 35, 36, 39,

42, 43, 65, 67, 99, 103, 109–111,
129, 132, 146

chol, 138
coerce,projector,matrix-method

(projector-class), 124
coerce<-,projector,matrix-method

(projector-class), 124
correct.degfree, 8, 17, 20, 21, 59, 78, 124,

125

dae (dae-package), 4
dae-deprecated, 18
dae-package, 4
daeTips, 18
data.frame, 11, 24, 30, 37–40, 42, 53–56, 60,

65, 67, 75, 96, 102, 109, 114, 115,
132, 135

decomp.relate, 9, 19, 120
degfree, 8, 17, 20, 59, 124, 125
degfree<- (degfree), 20
design.plot (dae-deprecated), 18
designAmeasures, 6, 21, 101, 103
designAnatomy, 6, 8, 22, 23, 34, 36, 40, 41,

43, 44, 46, 79, 80, 108, 109, 145, 146

154 INDEX

designBlocksGGPlot, 6, 27, 31, 33
designGGPlot, 6, 27, 29, 30
designLatinSqrSys, 6, 26, 33, 36, 40
designPlot, 6, 14, 15, 26, 33, 34, 34, 38, 40
designPlotlabels, 6, 36, 37
designRandomize, 6, 26, 34, 36, 38
designTwophaseAnatomies, 6, 41
detect.diff, 6, 45, 107, 114

efficiencies, 46
efficiencies.p2canon, 9, 127
efficiencies.pcanon, 9, 26, 44
efficiency.criteria, 9, 25, 26, 43, 44, 47,

108, 111, 115, 121, 127, 130, 133,
144, 146

eigen, 19, 26, 44, 46, 48, 80, 113, 121, 123,
127, 131, 144, 146

elements, 7, 48
Exp249.munit.des, 4, 49
extab, 9, 50

fac.ar1mat, 7, 51, 70, 138
fac.combine, 5, 33, 38, 52, 54, 55, 58, 59,

65–67, 75, 76
fac.divide, 5, 53, 53, 65, 67
fac.gen, 5, 39, 40, 54, 56, 60, 62, 135
fac.genfactors, 5, 55, 56
fac.match, 6, 57
fac.meanop, 9, 51, 58, 66, 70, 105
fac.multinested, 5, 59, 62
fac.nested, 5, 60, 61
fac.recast, 5, 12, 13, 62, 64, 68
fac.recode, 5, 64
fac.split, 5, 53, 54, 65, 67
fac.sumop, 7, 51, 59, 66, 70
fac.uncombine, 5, 53, 54, 65, 67
fac.uselogical, 5, 63, 64, 68
fac.vcmat, 7, 51, 69, 138
Fac4Proc.dat, 4, 70
factor, 12, 13, 31, 38–40, 50–56, 58–69, 75,

105, 106, 143
fitted, 70, 72
fitted (fitted.aovlist), 70
fitted.aovlist, 7, 70, 72
fitted.errors, 7, 71, 72, 136, 137, 148
formula, 24, 42, 96, 100, 102, 109, 110, 129,

132

geom_text, 32, 38

get.daeRNGkind, 9, 73, 140
get.daeTolerance, 10, 74, 141

harmonic.mean, 10, 74

integer, 35
interaction.ABC.plot, 7, 75
interaction.plot, 76
is.allzero, 10, 77
is.numeric, 12
is.projector, 8, 78, 124

labellers, 32
LatticeSquare_t49.des, 5, 79
levels, 62, 63
list, 19, 22, 24, 25, 32, 38, 39, 42, 43, 52–54,

56, 65, 67, 76, 96, 102, 109–112, 146
logical, 11, 12, 14, 24, 25, 28, 32, 35, 36, 38,

42, 68, 87, 95, 96, 103, 110, 111,
118, 129, 130, 146, 149

marginality, 79
marginality.pstructure, 6
mat.ar1, 8, 81, 82–87, 89, 90, 92, 94, 98, 99
mat.ar2, 8, 81, 81, 83, 85–87, 89, 90, 93, 98,

99
mat.ar3, 8, 81, 82, 82, 84, 85, 89, 90, 93, 94,

98, 99
mat.arma, 8, 81–83, 84, 85–87, 89, 90, 93, 94,

98, 99
mat.banded, 8, 81–84, 85, 86, 87, 89, 90, 93,

94, 98, 99
mat.cor, 8, 81–85, 86, 87, 89, 90, 93, 94, 98,

99
mat.corg, 8, 81–86, 86, 89, 90, 93, 94, 98, 99
mat.dirprod, 7, 87, 88
mat.dirsum, 7, 88
mat.exp, 8, 81–87, 89, 90, 93, 94, 98, 99
mat.gau, 8, 81–87, 89, 90, 93, 94, 98, 99
mat.ginv, 7, 90
mat.I, 8, 81–87, 89, 90, 91, 92–94, 98, 99
mat.J, 8, 81–87, 89, 90, 92, 92, 93, 94, 98, 99
mat.ma1, 8, 81–87, 89, 90, 93, 94, 98, 99
mat.ma2, 8, 81–87, 89, 90, 93, 94, 98, 99
mat.ncssvar, 8, 95, 150
mat.random, 7, 96, 103
mat.sar, 8, 97, 99
mat.sar2, 8, 81–87, 89, 90, 93, 94, 98, 98
mat.Vpred, 7, 22, 100, 102, 103

INDEX 155

mat.Vpredicts, 7, 22, 97, 100, 101, 101
match, 57
matrices, 102
matrix, 14, 19, 22, 25, 28, 32, 35, 36, 43, 51,

69, 78, 79, 81–100, 102, 103, 109,
111, 120, 122–125, 129, 132, 141,
150

McIntyreTMV.dat, 5, 104
meanop, 105
mpone, 6, 63, 64, 68, 105, 106

no.reps, 6, 45, 106, 114
numeric, 12, 14, 22, 28, 31, 32, 34–36, 39, 65,

82–87, 91, 94, 95, 98, 99, 149

Oats.dat, 5, 107

p2canon.object, 26, 44, 46, 108, 109, 126
par, 14, 15, 28, 29, 32, 35, 36
pcanon.object, 6, 24, 26, 42–44, 46, 79, 80,

108, 109, 145, 146
polygon, 36
porthogonalize (porthogonalize.list),

110
porthogonalize.list, 9, 110, 111, 130, 131
power.exp, 6, 45, 107, 113
print, 115–117
print,projector-method

(print.projector), 115
print.aliasing, 6, 114, 116
print.default, 115–117
print.projector, 8, 115
print.pstructure, 9, 116
print.summary.p2canon, 9, 117, 144
print.summary.pcanon, 9, 118, 146
proj2.combine, 9, 19, 26, 44, 46, 48, 80, 113,

119, 121, 123, 126–128, 131, 144,
146

proj2.decomp (dae-deprecated), 18
proj2.efficiency, 9, 26, 44, 46, 48, 80, 113,

120, 121, 123, 127, 131, 144, 146
proj2.eigen, 9, 19, 26, 44, 46, 48, 80, 108,

113, 120, 121, 122, 127, 128, 131,
144, 146

proj2.ops (dae-deprecated), 18
projector, 8, 9, 17, 20, 21, 26, 44, 46, 48, 58,

59, 78, 80, 100, 102, 110, 111, 113,
115, 116, 120–123, 123, 124–131,
133, 141, 144, 146

projector-class, 8, 124
projs.2canon, 9, 25, 26, 44, 46, 108, 109,

113, 126, 127, 128, 131, 144
projs.canon, 146
projs.canon (dae-deprecated), 18
projs.combine.p2canon, 9, 127, 127
projs.structure (dae-deprecated), 18
pstructure, 25, 26, 44, 46, 80, 127, 144, 146
pstructure (pstructure.formula), 128
pstructure.formula, 9, 25, 79, 80, 109, 110,

113, 128, 130, 132, 133
pstructure.object, 6, 9, 11, 79, 80, 109,

110, 112, 116, 128, 131, 132

qqnorm, 134
qqyeffects, 7, 133, 149

relevel, 63, 64, 68, 106
rep.data.frame, 10, 134
resid.errors, 7, 71, 72, 135, 137, 148
residuals, 135, 136
residuals (residuals.aovlist), 136
residuals.aovlist, 7, 135, 136, 136
rmvnorm, 10, 137
rnorm, 138

scale, 13
Sensory3Phase.dat, 5, 138
Sensory3PhaseShort.dat, 5
Sensory3PhaseShort.dat

(Sensory3Phase.dat), 138
set.daeRNGkind, 10, 73, 139
set.daeTolerance, 10, 17, 19, 20, 26, 74, 75,

77, 78, 103, 112, 119, 121, 122, 124,
126, 131, 140

show, 115–117
show,ANY-method (show-methods), 141
show,classRepresentation-method

(show-methods), 141
show,genericFunction-method

(show-methods), 141
show,MethodDefinition-method

(show-methods), 141
show,MethodSelectionReport-method

(show-methods), 141
show,MethodWithNext-method

(show-methods), 141
show,ObjectsWithPackage-method

(show-methods), 141

156 INDEX

show,oldClass-method (show-methods), 141
show,projector-method (show-methods),

141
show,signature-method (show-methods),

141
show,traceable-method (show-methods),

141
show-methods, 9, 141
SPLGrass.dat, 5, 142
strength, 7, 142
strsplit, 65, 67
structure, 125
summary,p2canon-method

(summary.p2canon), 144
summary,pcanon-method (summary.pcanon),

145
summary.p2canon, 9, 117, 127, 144
summary.pcanon, 6, 8, 24, 26, 42, 44, 46, 80,

118, 119, 145
svd, 91

text, 35
tukey.1df, 7, 71, 72, 136, 137, 147

vector, 57, 63, 125, 138

yates.effects, 7, 134, 148

Zncsspline, 7, 95, 149

	dae-package
	ABC.Interact.dat
	as.data.frame.pstructure
	as.numfac
	BIBDWheat.dat
	blockboundaryPlot
	Cabinet1.des
	Casuarina.dat
	correct.degfree
	dae-deprecated
	daeTips
	decomp.relate
	degfree
	designAmeasures
	designAnatomy
	designBlocksGGPlot
	designGGPlot
	designLatinSqrSys
	designPlot
	designPlotlabels
	designRandomize
	designTwophaseAnatomies
	detect.diff
	efficiencies
	efficiency.criteria
	elements
	Exp249.munit.des
	extab
	fac.ar1mat
	fac.combine
	fac.divide
	fac.gen
	fac.genfactors
	fac.match
	fac.meanop
	fac.multinested
	fac.nested
	fac.recast
	fac.recode
	fac.split
	fac.sumop
	fac.uncombine
	fac.uselogical
	fac.vcmat
	Fac4Proc.dat
	fitted.aovlist
	fitted.errors
	get.daeRNGkind
	get.daeTolerance
	harmonic.mean
	interaction.ABC.plot
	is.allzero
	is.projector
	LatticeSquare_t49.des
	marginality
	mat.ar1
	mat.ar2
	mat.ar3
	mat.arma
	mat.banded
	mat.cor
	mat.corg
	mat.dirprod
	mat.dirsum
	mat.exp
	mat.gau
	mat.ginv
	mat.I
	mat.J
	mat.ma1
	mat.ma2
	mat.ncssvar
	mat.random
	mat.sar
	mat.sar2
	mat.Vpred
	mat.Vpredicts
	McIntyreTMV.dat
	meanop
	mpone
	no.reps
	Oats.dat
	p2canon.object
	pcanon.object
	porthogonalize.list
	power.exp
	print.aliasing
	print.projector
	print.pstructure
	print.summary.p2canon
	print.summary.pcanon
	proj2.combine
	proj2.efficiency
	proj2.eigen
	projector
	projector-class
	projs.2canon
	projs.combine.p2canon
	pstructure.formula
	pstructure.object
	qqyeffects
	rep.data.frame
	resid.errors
	residuals.aovlist
	rmvnorm
	Sensory3Phase.dat
	set.daeRNGkind
	set.daeTolerance
	show-methods
	SPLGrass.dat
	strength
	summary.p2canon
	summary.pcanon
	tukey.1df
	yates.effects
	Zncsspline
	Index

