--- title: "Introduction to cosCorr Package" author: "Mehmet Niyazi Cankaya" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to cosCorr} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # Introduction to cosCorr Package ## Overview The **cosCorr** package implements the cosine-correlation coefficient for measuring the degree of linear dependence among variables in multidimensional contexts. ## The Cosine-Correlation Theorem The cosine-correlation coefficient rho is defined as: rho = [(p-1) * prod(|t_i|)] / sum(|t_i|^(p-1)) where t_1 = 0 and t_2, ..., t_p are the variables in the system. ## Basic Usage ```{r example} library(cosCorr) # Simple example with 4 variables (p=4) x <- c(0, 2, 3, 4) rho <- cosCorr(x) print(rho) ``` ## More Examples ```{r examples} # Example with 5 variables x2 <- c(0, 1, 2, 3, 4) rho2 <- cosCorr(x2) print(rho2) # Example with NA values removed x3 <- c(0, 2, NA, 4, 5) rho3 <- cosCorr(x3, na.rm = TRUE) print(rho3) ``` ## Properties of the Coefficient - **Range**: The coefficient always lies in [0, 1] - **Interpretation**: Higher values indicate stronger linear dependence - **Generalization**: Extends naturally to p-dimensional spaces - **Applications**: Useful in experimental design, time series analysis, and geometric analysis ## Mathematical Background The coefficient is derived from dimensional exploration principles in time scale calculus. It quantifies angular relationships between variables in a p-dimensional space. ## References Cankaya, M. N. (2025). Derivatives through Probes in Regular Geometric Objects: A Dimensional Exploration for qqq-Sets in Time Scale Calculus. *Fractals*, in printing progress.