Package 'cols'

December 20, 2024

Type Package
Title Constrained Ordinary Least Squares
Version 1.5
Date 2024-12-20
Author Michail Tsagris [aut, cre]
Maintainer Michail Tsagris <mtsagris@uoc.gr></mtsagris@uoc.gr>
Depends R (>= 4.0)
Imports quadprog, Rfast, Rfast2
Description Constrained ordinary least squares is performed. One constraint is that all beta coefficients (including the constant) cannot be negative. They can be either 0 or strictly positive. Another constraint is that the sum of the beta coefficients equals a constant. References: Hansen, B. E. (2022). Econometrics, Princeton University Press. <isbn:9780691235899></isbn:9780691235899>
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2024-12-20 16:10:02 UTC
Contents
cols-package2Constrained least squares2Lower and upper bound constrained least squares4Positive and unit sum constrained least squares5Positively constrained least squares6Positively constrained least squares with a multivariate response7
Index

cols-package

Constrained Ordinary Least Squares

Description

Constrained ordinary least squares is performed. One constraint is that all beta coefficients (including the constant) cannot be negative. They can be either 0 or strictly positive. Another constraint is that the sum of the beta coefficients equals a constant. References: Hansen, B.E. (2022). Econometrics, Princeton University Press.

Details

Package: cols Type: Package Version: 1.5

Date: 2024-12-20

Maintainers

Michail Tsagris <mtsagris@uoc.gr>.

Author(s)

Michail Tsagris <mtsagris@uoc.gr>

References

Hansen, B. E. (2022). Econometrics, Princeton University Press.

Constrained least squares

Constrained least squares

Description

Constrained least squares.

Usage

```
cls(y, x, R, ca)
mvcls(y, x, R, ca)
```

Arguments

У	The response variable. For the cls() a numerical vector with observations, but for the mvcls() a numerical matrix .
Х	A matrix with independent variables, the design matrix.
R	The R vector that contains the values that will multiply the beta coefficients. See details and examples.
ca	The value of the constraint, $R^T \beta = c$. See details and examples.

Details

This is described in Chapter 8.2 of Hansen (2019). The idea is to inimise the sum of squares of the residuals under the constraint $R^{\top}\beta = c$. As mentioned above, be careful with the input you give in the x matrix and the R vector. The cls() function performs a single regression model, whereas the mcls() function performs a regression for each column of y. Each regression is independent of the others.

Value

A list including:

be A numerical matrix with the constrained beta coefficients.

mse A numerical vector with the mean squared error.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Hansen, B. E. (2022). Econometrics, Princeton University Press.

See Also

```
pls, int.cls
```

```
x <- as.matrix( iris[1:50, 1:4] )
y <- rnorm(50)
R <- c(1, 1, 1, 1)
cls(y, x, R, 1)</pre>
```

Lower and upper bound constrained least squares

Constrained least squares

Description

Lower and upper bound constrained least squares

Usage

```
int.cls(y, x, lb, ub)
int.mcls(y, x, lb, ub)
```

Arguments

у	The response variable. For the int.cls() a numerical vector with observations, but for the int.mcls() a numerical matrix .
X	A matrix with independent variables, the design matrix.
1b	A vector or a single value with the lower bound(s) in the coefficients.
ub	A vector or a single value with the upper bound(s) in the coefficients.

Details

This function performs least squares under the constraint that the beta coefficients lie within interval(s), i.e. $min \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$ such that $lb_j \leq \beta_j \leq ub_j$.

Value

A list including:

be A numerical matrix with the constrained beta coefficients.

mse A numerical vector with the mean squared error.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

pls

```
x <- as.matrix( iris[1:50, 1:4] )
y <- rnorm(50)
int.cls(y, x, -0.2, 0.2)</pre>
```

Positive and unit sum constrained least squares

Positive and unit sum constrained least squares

Description

Positive and unit sum constrained least squares.

Usage

```
pcls(y, x)
mpcls(y, x)
```

Arguments

y The response variable. For the pcls() a numerical vector with observations, but

for the mpcls() a numerical matrix.

x A matrix with independent variables, the design matrix.

Details

The constraint is that all beta coefficients are positive and sum to 1. that is $min \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i \top \boldsymbol{\beta})^2$ such that $0 \le \beta_j \le 1$ and $\sum_{j=1}^{d} \beta_j = 1$. The pcls() function performs a single regression model, whereas the mpcls() function performs a regression for each column of y. Each regression is independent of the others.

Value

A list including:

be A numerical matrix with the positively constrained beta coefficients.

mse A numerical vector with the mean squared error.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

```
pls, cls, mvpls
```

```
x <- as.matrix( iris[1:50, 1:4] )
y <- rnorm(50)
pcls(y, x)</pre>
```

Positively constrained least squares

Positively constrained least squares

Description

Positively constrained least squares.

Usage

```
pls(y, x)
mpls(y, x)
```

Arguments

y The response variable. For the pls() a numerical vector with observations, but

for the mpls() a numerical matrix.

x A matrix with independent variables, the design matrix.

Details

The constraint is that all beta coefficients (including the constant) are non negative, i.e. $min \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2$ such that $\beta_j \geq 0$. The pls() function performs a single regression model, whereas the mpls() function performs a regression for each column of y. Each regression is independent of the others.

Value

A list including:

be A numerical matrix with the positively constrained beta coefficients.

mse A numerical vector with the mean squared error(s).

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

```
cls, pcls, mvpls
```

```
x <- as.matrix( iris[1:50, 1:4] )
y <- rnorm(50)
pls(y, x)</pre>
```

Positively constrained least squares with a multivariate response

Positively constrained least squares with a multivariate response

Description

Positively constrained least squares with a multivariate response.

Usage

```
mvpls(y, x)
```

Arguments

y The response variables, a numerical matrix with observations.

x A matrix with independent variables, the design matrix.

Details

The constraint is that all beta coefficients (including the constant) are positive, i.e. $min \sum_{i=1}^{n} (y_i - x_i \beta)^{\top} (y_i - x_i \beta)$ such that $\beta_{jk} \geq 0$.

Value

A list including:

be The positively constrained beta coefficients.

mse The mean squared error.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

cls

```
y <- as.matrix( iris[, 1:2] )
x <- as.matrix( iris[, 3:4] )
mvpls(y, x)</pre>
```

Index

```
cls, 5-7
cls (Constrained least squares), 2
cols-package, 2
Constrained least squares, 2
int.cls, 3
int.cls(Lower and upper bound
        constrained least squares), 4
int.mcls(Lower and upper bound
        constrained least squares), 4
Lower and upper bound constrained
        least squares, 4
mpcls(Positive and unit sum
        constrained least squares), 5
mpls (Positively constrained least
        squares), 6
mvcls (Constrained least squares), 2
mvpls, 5, 6
mvpls(Positively constrained least
        squares with a multivariate
        response), 7
pcls, 6
pcls (Positive and unit sum
        constrained least squares), 5
pls, 3-5
pls(Positively constrained least
        squares), 6
Positive and unit sum constrained
        least squares, 5
Positively constrained least squares, 6
Positively constrained least squares
        with a multivariate response, 7
```