Package 'TrialEmulation'

November 29, 2024

Title Causal Analysis of Observational Time-to-Event Data **Version** 0.0.4.0

Description Implements target trial emulation methods to apply randomized clinical trial design and analysis in an observational setting. Using marginal structural models, it can estimate intention-to-treat and per-protocol effects in emulated trials using electronic health records. A description and application of the method can be found in Danaei et al (2013) <doi:10.1177/0962280211403603>.

License Apache License (>= 2)

URL https://causal-lda.github.io/TrialEmulation/,
 https://github.com/Causal-LDA/TrialEmulation

BugReports https://github.com/Causal-LDA/TrialEmulation/issues

Depends R (>= 4.0.0)

Imports broom (>= 0.7.10), checkmate, data.table (>= 1.9.8), DBI, duckdb, formula.tools, lifecycle, lmtest, methods, mvtnorm, parglm, Rcpp, sandwich

Suggests knitr, parsnip, rmarkdown, rpart, testthat (>= 3.0.0), withr

LinkingTo Rcpp

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

LazyData true

LazyDataCompression xz

RoxygenNote 7.3.2.9000

Collate 'RcppExports.R' 'calculate_weights.R' 'data.R'
'data_extension.R' 'data_manipulation.R' 'data_preparation.R'
'data_simulation.R' 'data_utils.R' 'expand_trials.R'
'generics.R' 'initiators.R' 'lr_utils.R' 'te_model_fitter.R'
'te_outcome_model.R' 'te_datastore.R' 'te_weights.R'

2 Contents

te_data.R' te_expansion.R' trial_sequence.R' modelling.R'
'package.R' 'predict.R' 'robust.R' 'sampling.R'
'te_datastore_csv.R' 'te_datastore_duckdb.R' 'te_parsnip.R'
'te_stats_glm_logit.R' 'utils.R' 'weighting.R'

NeedsCompilation yes

Author Isaac Gravestock [aut, cre] (https://orcid.org/0000-0003-0283-2065>), Li Su [aut], Page of Page of Cartilla Ca

Roonak Rezvani [aut] (https://orcid.org/0000-0001-5580-5058>, Original package author),

Julia Moesch [aut],

Medical Research Council (MRC) [fnd],

F. Hoffmann-La Roche AG [cph, fnd]

Maintainer Isaac Gravestock <isaac.gravestock@roche.com>

Repository CRAN

Date/Publication 2024-11-29 17:10:02 UTC

Contents

calculate_weights	3
case_control_sampling_trials	4
lata_censored	5
lata_preparation	6
expand_trials	9
ît_msm	10
ît_weights_model	11
nitiators	12
pw_data	16
oad_expanded_data	17
outcome_data	18
parsnip_model	
predict_marginal	
print.TE_weight_summary	23
read_expanded_data	23
sample_expanded_data	
save_expanded_data	
save_to_csv	
save_to_datatable	
save_to_duckdb	
set_censor_weight_model	
set_data	
set_expansion_options	
set_outcome_model	
set_switch_weight_model	35
show_weight_models	36
stats_glm_logit	
summary.TE_data_prep	37

calculate_weights 3

	te_data-class	38
	te_datastore-class	
	te_data_ex	
	te_model_ex	39
	te_model_fitter-class	40
	te_outcome_data-class	1 0
	te_outcome_fitted-class	41
	te_outcome_model-class	41
	trial_example	1 2
	trial_msm	12
	trial_sequence	45
	trial_sequence-class	46
	vignette_switch_data	46
	weight_model_data_indices	17
Index		49

calculate_weights

Calculate Inverse Probability of Censoring Weights

Description

[Experimental]

Usage

```
calculate_weights(object, ...)
## S4 method for signature 'trial_sequence_ITT'
calculate_weights(object, quiet = FALSE)
## S4 method for signature 'trial_sequence_AT'
calculate_weights(object, quiet = FALSE)
## S4 method for signature 'trial_sequence_PP'
calculate_weights(object, quiet = FALSE)
```

Arguments

object A trial_sequence object
... Other arguments used by methods.
quiet Prints model summaries is TRUE.

Value

A trial_sequence object with updated censor_weights and/or switch_weights slots

Examples

```
save_dir <- file.path(tempdir(), "switch_models")</pre>
ts <- trial_sequence("PP") |>
 set_data(
   data = data_censored,
   id = "id",
   period = "period",
    treatment = "treatment",
    outcome = "outcome",
   eligible = "eligible"
 ) |>
 set_switch_weight_model(
   numerator = \sim age + x1 + x3,
   denominator = ~age,
   model_fitter = stats_glm_logit(save_path = save_dir)
 ) |>
 calculate_weights()
```

case_control_sampling_trials

Case-control sampling of expanded data for the sequence of emulated trials

Description

[Stable]

Usage

```
case_control_sampling_trials(
  data_prep,
  p_control = NULL,
  subset_condition,
  sort = FALSE
)
```

Arguments

data_prep Result from data_preparation().

p_control Control sampling probability for selecting potential controls at each follow-up

time of each trial.

subset_condition

Expression used to subset() the trial data before case-control sampling.

Sort data before applying case-control sampling to make sure that the resulting data are identical when sampling from the expanded data created with separate_files

= TRUE or separate_files = FALSE.

data_censored 5

Details

Perform case-control sampling of expanded data to create a data set of reduced size and calculate sampling weights to be used in trial_msm().

Value

A data.frame or a split() data.frame if length(p_control) > 1. An additional column sample_weight containing the sample weights will be added to the result. These can be included in the models fit with trial_msm().

Examples

Description

This data contains data from 89 patients followed for up to 19 periods.

censoring

Usage

data_censored

Format

A data frame with 725 rows and 12 variables:

id patient identifier

period time period

treatment indicator for receiving treatment in this period, 1=treatment, 0=non-treatment

- **x1** A time-varying categorical variable relating to treatment and the outcome
- x2 A time-varying numeric variable relating to treatment and the outcome
- x3 A fixed categorical variable relating to treatment and the outcome
- x4 A fixed categorical variable relating to treatment and the outcome

age patient age in years

age_s patient age

outcome indicator for outcome in this period, 1=event occurred, 0=no event

censored indicator for patient being censored in this period, 1=censored, 0=not censored

eligible indicator for eligibility for trial start in this period, 1=yes, 0=no

data_preparation

data_preparation

Prepare data for the sequence of emulated target trials

Description

[Stable]

Usage

```
data_preparation(
  data,
  id = "id",
 period = "period",
  treatment = "treatment",
 outcome = "outcome",
 eligible = "eligible",
 model_var = NULL,
 outcome_cov = \sim 1,
  estimand_type = c("ITT", "PP", "As-Treated"),
  switch_n_cov = ~1,
  switch_d_cov = ~1,
  first_period = NA,
  last_period = NA,
  use_censor_weights = FALSE,
  cense = NA,
  pool_cense = c("none", "both", "numerator"),
  cense_d_cov = ~1,
  cense_n_cov = \sim1,
  eligible_wts_0 = NA,
  eligible_wts_1 = NA,
 where_var = NULL,
  data_dir,
  save_weight_models = FALSE,
 glm_function = "glm",
  chunk_size = 500,
  separate_files = FALSE,
  quiet = FALSE,
)
```

Arguments

A data. frame containing all the required variables in the person-time format, i.e., the 'long' format.

Id Name of the variable for identifiers of the individuals. Default is 'id'.

period Name of the variable for the visit/period. Default is 'period'.

data_preparation 7

Default is 'outcome'.

Name of the variable for the treatment indicator at that visit/period. Default is 'treatment'.

Name of the variable for the indicator of the outcome event at that visit/period.

Name of the variable for the indicator of eligibility for the target trial at that

visit/period. Default is 'eligible'.

Treatment variables to be included in the marginal structural model for the emulated trials. model_var = "assigned_treatment" will create a variable assigned_treatment that is the assigned treatment at the trial baseline, typically used for ITT and per-protocol analyses. model_var = "dose" will create a variable dose that is the cumulative number of treatments received since the trial baseline, typically used in as-treated analyses.

A RHS formula with baseline covariates to be adjusted for in the marginal structural model for the emulated trials. Note that if a time-varying covariate is specified in outcome_cov, only its value at each of the trial baselines will be included in the expanded data.

Specify the estimand for the causal analyses in the sequence of emulated trials. estimand_type = "ITT" will perform intention-to-treat analyses, where treatment switching after trial baselines are ignored. estimand_type = "PP" will perform per-protocol analyses, where individuals' follow-ups are artificially censored and inverse probability of treatment weighting is applied. estimand_type = "As-Treated" will fit a standard marginal structural model for all possible treatment sequences, where individuals' follow-ups are not artificially censored but treatment switching after trial baselines are accounted for by applying inverse probability of treatment weighting.

A RHS formula to specify the logistic models for estimating the numerator terms of the inverse probability of treatment weights. A derived variable named time_on_regime containing the duration of time that the individual has been on the current treatment/non-treatment is available for use in these models.

A RHS formula to specify the logistic models for estimating the denominator terms of the inverse probability of treatment weights.

First time period to be set as trial baseline to start expanding the data.

Last time period to be set as trial baseline to start expanding the data.

use_censor_weights

Require the inverse probability of cen

Require the inverse probability of censoring weights. If use_censor_weights = TRUE, then the variable name of the censoring indicator needs to be provided in the argument cense.

Variable name for the censoring indicator. Required if use_censor_weights = TRUE.

Fit pooled or separate censoring models for those treated and those untreated at the immediately previous visit. Pooling can be specified for the models for the numerator and denominator terms of the inverse probability of censoring weights. One of "none", "numerator", or "both" (default is "none" except when estimand_type = "ITT" then default is "numerator").

outcome_cov

outcome

eligible

model_var

estimand_type

switch_n_cov

switch_d_cov

first_period
last_period

cense

pool_cense

8 data_preparation

cense_d_cov A RHS formula to specify the logistic models for estimating the denominator terms of the inverse probability of censoring weights.

cense_n_cov A RHS formula to specify the logistic models for estimating the numerator terms of the inverse probability of censoring weights.

eligible_wts_0 See definition for eligible_wts_1

visit.

eligible_wts_1 Exclude some observations when fitting the models for the inverse probability of treatment weights. For example, if it is assumed that an individual will stay on treatment for at least 2 visits, the first 2 visits after treatment initiation by definition have a probability of staying on the treatment of 1.0 and should thus be excluded from the weight models for those who are on treatment at the immediately previous visit. Users can define a variable that indicates that these 2 observations are ineligible for the weight model for those who are on treatment at the immediately previous visit and add the variable name in the argument eligible_wts_1. Similar definitions are applied to eligible_wts_0 for excluding observations when fitting the models for the inverse probability of treatment weights for those who are not on treatment at the immediately previous

Specify the variable names that will be used to define subgroup conditions when fitting the marginal structural model for a subgroup of individuals. Need to specify jointly with the argument where _case.

Directory to save model objects when save_weight_models=TRUE and expanded data as separate CSV files names as trial_i.csvs if separate_files = TRUE. If the specified directory does not exist it will be created. If the directory already contains trial files, an error will occur, other files may be overwritten.

save_weight_models

Save model objects for estimating the weights in data_dir.

Specify which glm function to use for the marginal structural model from the stats or parglm packages. The default function is the glm function in the stats package. Users can also specify glm_function = "parglm" such that the parglm function in the parglm package can be used for fitting generalized linear models in parallel. The default control setting for parglm is nthreads = 4 and method = "FAST", where four cores and Fisher information are used for faster computation. Users can change the default control setting by passing the arguments nthreads and method in the parglm.control function of the parglm package, or alternatively, by passing a control argument with a list produced by parglm.control(nthreads = , method =).

Number of individuals whose data to be processed in one chunk when separate_files = TRUE

separate_files Save expanded data in separate CSV files for each trial.

quiet Suppress the printing of progress messages and summaries of the fitted models.

Additional arguments passed to glm_function. This may be used to specify initial values of parameters or arguments to control. See stats::glm, parglm::parglm and parglm::parglm.control() for more information.

where_var

data_dir

glm_function

chunk_size

uict

• •

expand_trials 9

Details

This function expands observational data in the person-time format (i.e., the 'long' format) to emulate a sequence of target trials and also estimates the inverse probability of treatment and censoring weights as required.

The arguments chunk_size and separate_files allow for processing of large datasets that would not fit in memory once expanded. When separate_files = TRUE, the input data are processed in chunks of individuals and saved into separate files for each emulated trial. These separate files can be sampled by case-control sampling to create a reduced dataset for the modelling.

Value

An object of class TE_data_prep, which can either be sampled from (case_control_sampling_trials) or directly used in a model (trial_msm). It contains the elements

data the expanded dataset for all emulated trials. If separate_files = FALSE, it is a data.table;
 if separate_files = TRUE, it is a character vector with the file path of the expanded data as
 CSV files.

min_period index for the first trial in the expanded data

max_period index for the last trial in the expanded data

N the total number of observations in the expanded data

data_template a zero-row data. frame with the columns and attributes of the expanded data
switch_models a list of summaries of the models fitted for inverse probability of treatment weights,
if estimand_type is "PP" or "As-Treated"

censor_models a list of summaries of the models fitted for inverse probability of censoring weights, if use_censor_weights=TRUE

args a list contain the parameters used to prepare the data and fit the weight models

expand_trials

Expand trials

Description

[Experimental]

Usage

expand_trials(object)

Arguments

object

A trial_sequence object

Value

The trial_sequence object with a data set containing the full sequence of target trials. The data is stored according to the options set with set_expansion_options() and especially the save_to_* function.

10 fit_msm

fit_msm

Fit the marginal structural model for the sequence of emulated trials

Description

[Experimental]

Usage

```
fit_msm(
  object,
 weight_cols = c("weight", "sample_weight"),
 modify_weights = NULL
)
## S4 method for signature 'trial_sequence'
fit_msm(
  object,
 weight_cols = c("weight", "sample_weight"),
 modify_weights = NULL
)
```

Arguments

object A trial_sequence object

weight_cols character vector of column names in expanded outcome dataset, ie outcome_data(object).

If multiple columns are specified, the element wise product will be used. Specify

NULL if no weight columns should be used.

modify_weights a function to transform the weights (or NULL for no transformation). Must take a numeric vector of weights and a vector of positive, finite weights of the same length. See examples for some possible function definitions.

> Before the outcome marginal structural model can be fit, the outcome model must be specified with set_outcome_model() and the data must be expanded into the trial sequence with expand_trials().

> The model is fit based on the model_fitter specified in set_outcome_model using the internal fit_outcome_model method.

Value

A modified trial_sequence object with updated outcome_model slot.

Examples

```
trial_seq_object <- trial_sequence("ITT") |>
 set_data(data_censored) |>
 set_outcome_model(
   adjustment_terms = ~age_s,
```

fit_weights_model 11

```
followup_time_terms = ~ stats::poly(followup_time, degree = 2)
  set_expansion_options(output = save_to_datatable(), chunk_size = 500) |>
  expand_trials() |>
  load_expanded_data()
fit_msm(trial_seq_object)
# Using modify_weights functions ----
# returns a function that truncates weights to limits
limit_weight <- function(lower_limit, upper_limit) {</pre>
  function(w) {
    w[w > upper_limit] <- upper_limit</pre>
    w[w < lower_limit] <- lower_limit</pre>
  }
}
# calculate 1st and 99th percentile limits and truncate
p99_weight <- function(w) {
  p99 <- quantile(w, prob = c(0.01, 0.99), type = 1)
  limit_weight(p99[1], p99[2])(w)
}
# set all weights to 1
all_ones <- function(w) {</pre>
  rep(1, length(w))
}
fit_msm(trial_seq_object, modify_weights = limit_weight(0.01, 4))
fit_msm(trial_seq_object, modify_weights = p99_weight)
```

fit_weights_model

Method for fitting weight models

Description

Method for fitting weight models

Usage

```
fit_weights_model(object, data, formula, label)
```

Arguments

object	The object determining which method should be used, containing any slots containing user defined parameters.
data	data.frame containing outcomes and covariates as defined in formula.
formula	formula describing the model.
label	A short string describing the model.

Value

An object of class te_weights_fitted

Examples

```
fitter <- stats_glm_logit(tempdir())
data(data_censored)
# Not usually called directly by a user
fitted <- fit_weights_model(
   object = fitter,
   data = data_censored,
   formula = 1 - censored ~ x1 + age_s + treatment,
   label = "Example model for censoring"
)
fitted
unlink(fitted@summary$save_path$path)</pre>
```

initiators

A wrapper function to perform data preparation and model fitting in a sequence of emulated target trials

Description

[Stable]

Usage

```
initiators(
 data,
  id = "id",
  period = "period",
  treatment = "treatment",
 outcome = "outcome",
  eligible = "eligible",
  outcome_cov = \sim 1,
  estimand_type = c("ITT", "PP", "As-Treated"),
 model_var = NULL,
  switch_n_cov = ~1,
  switch_d_cov = ~1,
  first_period = NA,
  last_period = NA,
  first_followup = NA,
  last_followup = NA,
  use_censor_weights = FALSE,
  save_weight_models = FALSE,
  analysis_weights = c("asis", "unweighted", "p99", "weight_limits"),
  weight_limits = c(0, Inf),
  cense = NA,
```

```
pool_cense = c("none", "both", "numerator"),
  cense_d_cov = ~1,
  cense_n_cov = ~1,
  include_followup_time = ~followup_time + I(followup_time^2),
  include_trial_period = ~trial_period + I(trial_period^2),
  eligible_wts_0 = NA,
  eligible_wts_1 = NA,
  where_var = NULL,
  where_case = NA,
  data_dir,
  glm_function = "glm",
  quiet = FALSE,
  ...
)
```

Arguments

data A data. frame containing all the required variables in the person-time format,

i.e., the 'long' format.

id Name of the variable for identifiers of the individuals. Default is 'id'.

period Name of the variable for the visit/period. Default is 'period'.

treatment Name of the variable for the treatment indicator at that visit/period. Default is

'treatment'.

outcome Name of the variable for the indicator of the outcome event at that visit/period.

Default is 'outcome'.

eligible Name of the variable for the indicator of eligibility for the target trial at that

visit/period. Default is 'eligible'.

outcome_cov A RHS formula with baseline covariates to be adjusted for in the marginal struc-

tural model for the emulated trials. Note that if a time-varying covariate is specified in outcome_cov, only its value at each of the trial baselines will be included

in the expanded data.

estimand_type Specify the estimand for the causal analyses in the sequence of emulated trials. estimand_type = "ITT" will perform intention-to-treat analyses, where

treatment switching after trial baselines are ignored. estimand_type = "PP" will perform per-protocol analyses, where individuals' follow-ups are artificially censored and inverse probability of treatment weighting is applied. estimand_type = "As-Treated" will fit a standard marginal structural model for all possible treatment sequences, where individuals' follow-ups are not artificially censored but treatment switching after trial baselines are accounted for by applying in-

verse probability of treatment weighting.

model_var Treatment variables to be included in the marginal structural model for the

emulated trials. model_var = "assigned_treatment" will create a variable assigned_treatment that is the assigned treatment at the trial baseline, typically used for ITT and per-protocol analyses. model_var = "dose" will create a variable dose that is the cumulative number of treatments received since the

trial baseline, typically used in as-treated analyses.

switch_n_cov A RHS formula to specify the logistic models for estimating the numerator terms of the inverse probability of treatment weights. A derived variable named time_on_regime containing the duration of time that the individual has been on

the current treatment/non-treatment is available for use in these models.

A RHS formula to specify the logistic models for estimating the denominator switch_d_cov

terms of the inverse probability of treatment weights.

first_period First time period to be set as trial baseline to start expanding the data.

last_period Last time period to be set as trial baseline to start expanding the data.

first_followup First follow-up time/visit in the trials to be included in the marginal structural

model for the outcome event.

last_followup Last follow-up time/visit in the trials to be included in the marginal structural

model for the outcome event.

use_censor_weights

Require the inverse probability of censoring weights. If use_censor_weights = TRUE, then the variable name of the censoring indicator needs to be provided in the argument cense.

save_weight_models

Save model objects for estimating the weights in data_dir.

analysis_weights

Choose which type of weights to be used for fitting the marginal structural model for the outcome event.

- "asis": use the weights as calculated.
- "p99": use weights truncated at the 1st and 99th percentiles (based on the distribution of weights in the entire sample).
- "weight_limits": use weights truncated at the values specified in weight_limits.
- "unweighted": set all analysis weights to 1, even if treatment weights or censoring weights were calculated.

Lower and upper limits to truncate weights, given as c(lower, upper) weight_limits

Variable name for the censoring indicator. Required if use_censor_weights = cense

TRUE.

pool_cense Fit pooled or separate censoring models for those treated and those untreated

at the immediately previous visit. Pooling can be specified for the models for the numerator and denominator terms of the inverse probability of censoring weights. One of "none", "numerator", or "both" (default is "none" except

when estimand_type = "ITT" then default is "numerator").

A RHS formula to specify the logistic models for estimating the denominator cense_d_cov

terms of the inverse probability of censoring weights.

A RHS formula to specify the logistic models for estimating the numerator terms cense_n_cov

of the inverse probability of censoring weights.

include_followup_time

The model to include the follow up time/visit of the trial (followup_time) in the marginal structural model, specified as a RHS formula.

include_trial_period

The model to include the trial period (trial_period) in the marginal structural model, specified as a RHS formula.

eligible_wts_0 See definition for eligible_wts_1

eligible_wts_1 Exclude some observations when fitting the models for the inverse probability

of treatment weights. For example, if it is assumed that an individual will stay on treatment for at least 2 visits, the first 2 visits after treatment initiation by definition have a probability of staying on the treatment of 1.0 and should thus be excluded from the weight models for those who are on treatment at the immediately previous visit. Users can define a variable that indicates that these 2 observations are ineligible for the weight model for those who are on treatment at the immediately previous visit and add the variable name in the argument eligible_wts_1. Similar definitions are applied to eligible_wts_0 for excluding observations when fitting the models for the inverse probability of treatment weights for those who are not on treatment at the immediately previous

visit.

where_var Specify the variable names that will be used to define subgroup conditions when

fitting the marginal structural model for a subgroup of individuals. Need to

specify jointly with the argument where_case.

where_case Define conditions using variables specified in where_var when fitting a marginal

structural model for a subgroup of the individuals. For example, if where_var= "age", where_case = "age >= 30" will only fit the marginal structural model to

the subgroup of individuals. who are 30 years old or above.

data_dir Directory to save model objects in.

glm_function Specify which glm function to use for the marginal structural model from the

stats or parglm packages. The default function is the glm function in the stats package. Users can also specify glm_function = "parglm" such that the parglm function in the parglm package can be used for fitting generalized linear models in parallel. The default control setting for parglm is nthreads = 4 and method = "FAST", where four cores and Fisher information are used for faster computation. Users can change the default control setting by passing the arguments nthreads and method in the parglm.control function of the parglm package, or alternatively, by passing a control argument with a list produced

by parglm.control(nthreads = , method =).

quiet Suppress the printing of progress messages and summaries of the fitted models.

Additional arguments passed to glm_function. This may be used to specify initial values of parameters or arguments to control. See stats::glm, par-

glm::parglm and parglm::parglm.control() for more information.

Details

An all-in-one analysis using a sequence of emulated target trials. This provides a simplified interface to the main functions data_preparation() and trial_msm().

Value

Returns the result of trial_msm() from the expanded data. An object of class TE_msm containing

model a glm object

robust a list containing a summary table of estimated regression coefficients and the robust covariance matrix

ipw_data

ipw_data

IPW Data Accessor and Setter

Description

[Experimental]

Usage

```
ipw_data(object)
ipw_data(object) <- value

## S4 method for signature 'trial_sequence'
ipw_data(object)

## S4 replacement method for signature 'trial_sequence'
ipw_data(object) <- value</pre>
```

Arguments

object trial_sequence object

value data.table to replace and update in @data

Details

Generic function to access and update the data used for inverse probability weighting.

The setter method ipw_data(object) <- value does not perform the same checks and manipulations as set_data(). To completely replace the data please use set_data(). This ipw_data<- method allows small changes such as adding a new column.

Value

The data from the @data slot of object used for inverse probability weighting.

Examples

```
ts <- trial_sequence("ITT")
ts <- set_data(ts, data_censored)
ipw_data(ts)
data.table::set(ipw_data(ts), j = "dummy", value = TRUE)
# or with the setter method:
new_data <- ipw_data(ts)
new_data$x2sq <- new_data$x2^2
ipw_data(ts) <- new_data</pre>
```

load_expanded_data 17

load_expanded_data

Method to read, subset and sample expanded data

Description

[Experimental]

Usage

```
load_expanded_data(
  object,
  p_control = NULL,
  period = NULL,
  subset_condition = NULL,
  seed = NULL
)

## S4 method for signature 'trial_sequence'
load_expanded_data(
  object,
  p_control = NULL,
  period = NULL,
  subset_condition = NULL,
  seed = NULL
)
```

Arguments

object An object of class trial_sequence.

p_control Probability of selecting a control, NULL for no sampling (default).

period An integerish vector of non-zero length to select trial period(s) or NULL (default)

to select all trial periods.

subset_condition

A string or NULL (default). subset_condition will be translated to a call (in case the expanded data is saved as a data.table or in the csv format) or to a SQL-query (in case the expanded data is saved as a duckdb file).

The operators "==", "!=", ">", ">=", "<", "<=", %in%", "&", "|" are supported. Numeric vectors can be written as c(1, 2, 3) or 1:3. Variables are not supported.

Note: Make sure numeric vectors written as 1:3 are surrounded by spaces, e.g. a %in% c(1:4, 6:9), otherwise the code will fail.

seed An integer seed or NULL (default).

Note: The same seed will return a different result depending on the class of the te_datastore object contained in the trial_sequence object.

18 outcome_data

Details

This method is used on trial_sequence objects to read, subset and sample expanded data.

Value

An updated trial_sequence object, the data is stored in slot @outcome_data as a te_outcome_data object.

Examples

```
# create a trial_sequence-class object
trial_itt_dir <- file.path(tempdir(), "trial_itt")</pre>
dir.create(trial_itt_dir)
trial_itt <- trial_sequence(estimand = "ITT") |>
  set_data(data = data_censored) |>
  set_outcome_model(adjustment_terms = ~ x1 + x2)
trial_itt_csv <- set_expansion_options(</pre>
  trial_itt,
  output = save_to_csv(file.path(trial_itt_dir, "trial_csvs")),
  chunk\_size = 500
) |>
  expand_trials()
# load_expanded_data default behaviour returns all trial_periods and doesn't sample
load_expanded_data(trial_itt_csv)
# load_expanded_data can subset the data before sampling
load_expanded_data(
  trial_itt_csv,
  p_{control} = 0.2,
  period = 1:20,
  subset_condition = "followup_time %in% 1:20 & x2 < 1",</pre>
# delete after use
unlink(trial_itt_dir, recursive = TRUE)
```

outcome_data

Outcome Data Accessor and Setter

Description

[Experimental]

parsnip_model 19

Usage

```
outcome_data(object)
outcome_data(object) <- value

## S4 method for signature 'trial_sequence'
outcome_data(object)

## S4 replacement method for signature 'trial_sequence'
outcome_data(object) <- value</pre>
```

Arguments

object trial_sequence object

value data.table to replace and update in @outcome_data

Details

Generic function to outcome data

Value

The object with updated outcome data

Examples

```
ts <- trial_sequence("ITT")
new_data <- data.table::data.table(vignette_switch_data[1:200, ])
new_data$weight <- 1
outcome_data(ts) <- new_data</pre>
```

parsnip_model

Fit outcome models using parsnip models

Description

[Experimental]

Usage

```
parsnip_model(model_spec, save_path)
```

Arguments

model_spec A parsnip model definition with mode = "classification".

save_path Directory to save models. Set to NA if models should not be saved.

20 predict_marginal

Details

Specify that the models should be fit using a classification model specified with the parsnip package.

Warning: This functionality is experimental and not recommended for use in analyses. *sqrtn*-consistency estimation and valid inference of the parameters in marginal structural models for emulated trials generally require that the weights for treatment switching and censoring be estimated at parametric rates, which is generally not possible when using data-adaptive estimation of high-dimensional regressions. Therefore, we only recommend using stats_glm_logit().

Value

An object of class te_parsnip_model inheriting from te_model_fitter which is used for dispatching methods for the fitting models.

See Also

```
Other model_fitter: stats_glm_logit(), te_model_fitter-class
```

Examples

```
## Not run:
if (
  requireNamespace("parsnip", quietly = TRUE) &&
    requireNamespace("rpart", quietly = TRUE)
) {
  # Use a decision tree model fitted with the rpart package
  parsnip_model(
    model_spec = parsnip::decision_tree(tree_depth = 30) |>
        set_mode("classification") |>
        set_engine("rpart"),
        save_path = tempdir()
)
}
## End(Not run)
```

predict_marginal

Predict marginal cumulative incidences with confidence intervals for a target trial population

Description

[Stable] This function predicts the marginal cumulative incidences when a target trial population receives either the treatment or non-treatment at baseline (for an intention-to-treat analysis) or either sustained treatment or sustained non-treatment (for a per-protocol analysis). The difference between these cumulative incidences is the estimated causal effect of treatment. Currently, the predict function only provides marginal intention-to-treat and per-protocol effects, therefore it is only valid when estimand_type = "ITT" or estimand_type = "PP".

predict_marginal 21

Usage

```
predict(object, ...)
## S4 method for signature 'trial_sequence_ITT'
predict(
  object,
  newdata,
  predict_times,
  conf_int = TRUE,
  samples = 100,
  type = c("cum_inc", "survival")
)
## S4 method for signature 'trial_sequence_PP'
predict(
 object,
  newdata,
 predict_times,
  conf_int = TRUE,
  samples = 100,
  type = c("cum_inc", "survival")
)
## S3 method for class 'TE_msm'
predict(
 object,
  newdata,
 predict_times,
 conf_int = TRUE,
  samples = 100,
  type = c("cum_inc", "survival"),
)
```

Arguments

object from trial_msm() or initiators() or trial_sequence.

... Further arguments passed to or from other methods.

newdata Baseline trial data that characterise the target trial population that marginal cu-

mulative incidences or survival probabilities are predicted for. newdata must have the same columns and formats of variables as in the fitted marginal structural model specified in trial_msm() or initiators(). If newdata contains

rows with followup_time > 0 these will be removed.

predict_times Specify the follow-up visits/times where the marginal cumulative incidences or

survival probabilities are predicted.

conf_int Construct the point-wise 95-percent confidence intervals of cumulative inci-

dences for the target trial population under treatment and non-treatment and their

22 predict_marginal

differences by simulating the parameters in the marginal structural model from a multivariate normal distribution with the mean equal to the marginal structural model parameter estimates and the variance equal to the estimated robust covariance matrix.

samples Number of samples used to construct the simulation-based confidence intervals.

type Specify cumulative incidences or survival probabilities to be predicted. Either cumulative incidence ("cum_inc") or survival probability ("survival").

Value

A list of three data frames containing the cumulative incidences for each of the assigned treatment options (treatment and non-treatment) and the difference between them.

Examples

```
# Prediction for initiators() or trial_msm() objects ----
# If necessary set the number of `data.table` threads
data.table::setDTthreads(2)
data("te_model_ex")
predicted_ci <- predict(te_model_ex, predict_times = 0:30, samples = 10)</pre>
# Plot the cumulative incidence curves under treatment and non-treatment
plot(predicted_ci[[1]]$followup_time, predicted_ci[[1]]$cum_inc,
 type = "1",
 xlab = "Follow-up Time", ylab = "Cumulative Incidence",
 ylim = c(0, 0.7)
lines(predicted_ci[[1]]$followup_time, predicted_ci[[1]]$^2.5%^, lty = 2)
lines(predicted_ci[[1]]$followup_time, predicted_ci[[1]]$^97.5%^, lty = 2)
lines(predicted_ci[[2]]$followup_time, predicted_ci[[2]]$cum_inc, type = "1", col = 2)
lines(predicted_ci[[2]]$followup_time, predicted_ci[[2]]$^2.5%^, 1ty = 2, col = 2)
lines(predicted_ci[[2]]$followup_time, predicted_ci[[2]]$^97.5%^, lty = 2, col = 2)
legend("topleft", title = "Assigned Treatment", legend = c("0", "1"), col = 1:2, lty = 1)
# Plot the difference in cumulative incidence over follow up
plot(predicted_ci[[3]]$followup_time, predicted_ci[[3]]$cum_inc_diff,
 type = "1",
 xlab = "Follow-up Time", ylab = "Difference in Cumulative Incidence",
 ylim = c(0.0, 0.5)
lines(predicted_ci[[3]]$followup_time, predicted_ci[[3]]$^2.5%^, lty = 2)
lines(predicted_ci[[3]]$followup_time, predicted_ci[[3]]$^97.5%^, 1ty = 2)
```

```
print.TE_weight_summary
```

Print a weight summary object

Description

[Stable]

Usage

```
## S3 method for class 'TE_weight_summary'
print(x, full = TRUE, ...)
```

Arguments

x print TE_weight_summary object.

full Print full or short summary.

... Arguments passed to print.data.frame.

Value

No return value, only for printing.

read_expanded_data

Method to read expanded data

Description

This method is used on te_datastore objects to read selected data and return one data. table.

Usage

```
read_expanded_data(object, period = NULL, subset_condition = NULL)
## S4 method for signature 'te_datastore_datatable'
read_expanded_data(object, period = NULL, subset_condition = NULL)
```

Arguments

object An object of class te_datastore.

period An integerish vector of non-zero length to select trial period(s) or NULL (default)

to select all files.

subset_condition

A string of length 1 or NULL (default).

Value

A data.frame of class data.table.

Examples

```
# create a te_datastore_csv object and save some data
temp_dir <- tempfile("csv_dir_")
dir.create(temp_dir)
datastore <- save_to_csv(temp_dir)
data(vignette_switch_data)
expanded_csv_data <- save_expanded_data(datastore, vignette_switch_data[1:200, ])
# read expanded data
read_expanded_data(expanded_csv_data)
# delete after use
unlink(temp_dir, recursive = TRUE)</pre>
```

sample_expanded_data
Internal method to sample expanded data

Description

Internal method to sample expanded data

Usage

```
sample_expanded_data(
  object,
  p_control,
  period = NULL,
  subset_condition = NULL,
  seed
)

## S4 method for signature 'te_datastore'
sample_expanded_data(
  object,
  p_control,
  period = NULL,
  subset_condition = NULL,
  seed
)
```

save_expanded_data 25

Arguments

object An object of class te_datastore.
p_control Probability of selecting a control.

period An integerish vector of non-zero length to select trial period(s) or NULL (default)

to select all trial periods.

subset_condition

A string or NULL.

seed An integer seed or NULL (default).

Value

A data.frame of class data.table.

Examples

```
# Data object normally created by [expand_trials]
datastore <- new("te_datastore_datatable", data = te_data_ex$data, N = 50139L)
sample_expanded_data(datastore, period = 260:275, p_control = 0.2, seed = 123)</pre>
```

save_expanded_data

Method to save expanded data

Description

This method is used internally by expand_trials to save the data to the "datastore" defined in set_expansion_options.

Usage

```
save_expanded_data(object, data)
## S4 method for signature 'te_datastore_datatable'
save_expanded_data(object, data)
```

Arguments

object An object of class te_datastore or a child class.

data A data frame containing the expanded trial data. The columns trial_period

and id are present, which may be used in methods to save the data in an optimal

way, such as with indexes, keys or separate files.

Value

An updated object with the data stored. Notably object@N should be increased

26 save_to_csv

Examples

```
temp_dir <- tempfile("csv_dir_")
dir.create(temp_dir)
datastore <- save_to_csv(temp_dir)
data(vignette_switch_data)
save_expanded_data(datastore, vignette_switch_data[1:200, ])
# delete after use
unlink(temp_dir, recursive = TRUE)</pre>
```

save_to_csv

Save expanded data as CSV

Description

[Experimental]

Usage

```
save_to_csv(path)
```

Arguments

path

Directory to save CSV files in. Must be empty.

Value

A te_datastore_csv object.

See Also

```
Other save_to: save_to_datatable(), save_to_duckdb(), set_expansion_options()
```

Examples

```
csv_dir <- file.path(tempdir(), "expanded_trials_csv")
dir.create(csv_dir)
csv_datastore <- save_to_csv(path = csv_dir)

trial_to_expand <- trial_sequence("ITT") |>
    set_data(data = data_censored) |>
    set_expansion_options(output = csv_datastore, chunk_size = 500)

# Delete directory after use
unlink(csv_dir)
```

save_to_datatable 27

save_to_datatable

Save expanded data as a data.table

Description

[Experimental]

Usage

```
save_to_datatable()
```

See Also

```
Other save_to: save_to_csv(), save_to_duckdb(), set_expansion_options()
```

Examples

```
trial_to_expand <- trial_sequence("ITT") |>
  set_data(data = data_censored) |>
  set_expansion_options(output = save_to_datatable(), chunk_size = 500)
```

save_to_duckdb

Save expanded data to DuckDB

Description

[Experimental]

Usage

```
save_to_duckdb(path)
```

Arguments

path

Directory to save DuckDB database file in.

Value

```
A te_datastore_duckdb object.
```

See Also

```
Other save_to: save_to_csv(), save_to_datatable(), set_expansion_options()
```

Examples

```
if (require(duckdb)) {
  duckdb_dir <- file.path(tempdir(), "expanded_trials_duckdb")

trial_to_expand <- trial_sequence("ITT") |>
  set_data(data = data_censored) |>
  set_expansion_options(output = save_to_duckdb(path = duckdb_dir), chunk_size = 500)

# Delete directory after use
unlink(duckdb_dir)
}
```

set_censor_weight_model

Set censoring weight model

Description

[Experimental]

Usage

```
set_censor_weight_model(
 object,
  censor_event,
 numerator,
 denominator,
 pool_models = NULL,
 model_fitter
)
## S4 method for signature 'trial_sequence'
set_censor_weight_model(
 object,
 censor_event,
  numerator,
  denominator,
 pool_models = c("none", "both", "numerator"),
 model_fitter = stats_glm_logit()
)
## S4 method for signature 'trial_sequence_PP'
set_censor_weight_model(
 object,
  censor_event,
 numerator,
```

```
denominator,
  pool_models = "none",
 model_fitter = stats_glm_logit()
)
## S4 method for signature 'trial_sequence_ITT'
set_censor_weight_model(
  object,
  censor_event,
 numerator,
  denominator,
  pool_models = "numerator";
 model_fitter = stats_glm_logit()
)
## S4 method for signature 'trial_sequence_AT'
set_censor_weight_model(
  object,
  censor_event,
  numerator,
 denominator,
 pool_models = "none",
 model_fitter = stats_glm_logit()
)
```

Arguments

object trial sequence.

censor_event string. Name of column containing censoring indicator.

numerator A RHS formula to specify the logistic models for estimating the numerator terms

of the inverse probability of censoring weights.

denominator A RHS formula to specify the logistic models for estimating the denominator

terms of the inverse probability of censoring weights.

pool_models Fit pooled or separate censoring models for those treated and those untreated

at the immediately previous visit. Pooling can be specified for the models for the numerator and denominator terms of the inverse probability of censoring weights. One of "none", "numerator", or "both" (default is "none" except when

estimand = "ITT" then default is "numerator").

model_fitter An object of class te_model_fitter which determines the method used for

fitting the weight models. For logistic regression use stats_glm_logit().

Value

object is returned with @censor_weights set

Examples

```
trial_sequence("ITT") |>
```

set_data

```
set_data(data = data_censored) |>
set_censor_weight_model(
  censor_event = "censored",
  numerator = ~ age_s + x1 + x3,
  denominator = ~ x3 + x4,
  pool_models = "both",
  model_fitter = stats_glm_logit(save_path = tempdir())
)
```

set_data

Set the trial data

Description

[Experimental]

Usage

```
set_data(object, data, ...)
## S4 method for signature 'trial_sequence_ITT,data.frame'
set_data(
  object,
  data,
  id = "id",
  period = "period",
  treatment = "treatment",
  outcome = "outcome",
  eligible = "eligible"
)
## S4 method for signature 'trial_sequence_AT,data.frame'
set_data(
 object,
  data,
  id = "id",
  period = "period",
  treatment = "treatment",
  outcome = "outcome",
  eligible = "eligible"
)
## S4 method for signature 'trial_sequence_PP,data.frame'
set_data(
  object,
  data,
  id = "id",
  period = "period",
```

set_expansion_options 31

```
treatment = "treatment",
outcome = "outcome",
eligible = "eligible"
)
```

Arguments

object	A trial_sequence object
data	A data.frame containing all the required variables in the person-time format, i.e., the <u+2018>long<u+2019> format.</u+2019></u+2018>
	Other arguments used by methods internally.
id	Name of the variable for identifiers of the individuals. Default is $<$ U+2018 $>$ id $<$ U+2019 $>$.
period	Name of the variable for the visit/period. Default is <u+2018>period<u+2019>.</u+2019></u+2018>
treatment	Name of the variable for the treatment indicator at that visit/period. Default is <u+2018>treatment<u+2019>.</u+2019></u+2018>
outcome	Name of the variable for the indicator of the outcome event at that visit/period. Default is <u+2018>outcome<u+2019>.</u+2019></u+2018>
eligible	Name of the variable for the indicator of eligibility for the target trial at that visit/period. Default is <u+2018>eligible<u+2019>.</u+2019></u+2018>

Value

An updated trial_sequence object with data

Examples

```
data(trial_example)
trial_sequence("ITT") |>
  set_data(
    data = trial_example,
    id = "id",
    period = "period",
    eligible = "eligible",
    treatment = "treatment"
)
```

set_expansion_options Set expansion options

Description

[Experimental]

Usage

```
set_expansion_options(object, ...)
## S4 method for signature 'trial_sequence_ITT'
set_expansion_options(
  object,
  output,
  chunk_size,
  first_period = 0,
 last_period = Inf
)
## S4 method for signature 'trial_sequence_PP'
set_expansion_options(
  object,
  output,
  chunk_size,
  first_period = 0,
  last_period = Inf
)
## S4 method for signature 'trial_sequence_ITT'
set_expansion_options(
  object,
 output,
  chunk_size,
  first_period = 0,
  last_period = Inf
)
```

Arguments

object A trial_sequence object
... Arguments used in methods

output A te_datastore object as created by a save_to_* function.

chunk_size An integer specifying the number of patients to include in each expansion itera-

tion

first_period An integer specifying the first period to include in the expansion last_period An integer specifying the last period to include in the expansion

Value

object is returned with @expansion set

See Also

```
Other save_to: save_to_csv(), save_to_datatable(), save_to_duckdb()
```

set_outcome_model 33

Examples

```
output_dir <- file.path(tempdir(check = TRUE), "expanded_data")
ITT_trial <- trial_sequence("ITT") |>
    set_data(data = data_censored) |>
    set_expansion_options(output = save_to_csv(output_dir), chunk_size = 500)
# Delete directory
unlink(output_dir, recursive = TRUE)
```

set_outcome_model

Specify the outcome model

Description

[Experimental]

The time-to-event model for outcome is specified with this method. Any adjustment terms can be specified. For ITT and PP estimands the treatment_var is not specified as it is automatically defined as assigned_treatment. Importantly, the modelling of "time" is specified in this model with arguments for trial start time and follow up time within the trial.

Usage

```
set_outcome_model(object, ...)
## S4 method for signature 'trial_sequence'
set_outcome_model(
  object,
  treatment_var = \sim 0,
  adjustment\_terms = ~1,
  followup_time_terms = ~followup_time + I(followup_time^2),
  trial_period_terms = ~trial_period + I(trial_period^2),
 model_fitter = stats_glm_logit(save_path = NA)
)
## S4 method for signature 'trial_sequence_ITT'
set_outcome_model(
 object,
  adjustment\_terms = \sim 1,
  followup_time_terms = ~followup_time + I(followup_time^2),
  trial_period_terms = ~trial_period + I(trial_period^2),
 model_fitter = stats_glm_logit(save_path = NA)
)
## S4 method for signature 'trial_sequence_PP'
set_outcome_model(
  object,
  adjustment\_terms = ~1,
```

34 set_outcome_model

```
followup_time_terms = ~followup_time + I(followup_time^2),
    trial_period_terms = ~trial_period + I(trial_period^2),
    model_fitter = stats_glm_logit(save_path = NA)
)

## S4 method for signature 'trial_sequence_AT'
set_outcome_model(
    object,
    treatment_var = "dose",
    adjustment_terms = ~1,
    followup_time_terms = ~followup_time + I(followup_time^2),
    trial_period_terms = ~trial_period + I(trial_period^2),
    model_fitter = stats_glm_logit(save_path = NA)
)
```

Arguments

```
object A trial_sequence object

... Parameters used by methods

treatment_var The treatment term, only used for "as treated" estimands. PP and ITT are fixed to use "assigned_treatment".

adjustment_terms
Formula terms for any covariates to adjust the outcome model.

followup_time_terms
Formula terms for followup_time, the time period relative to the start of the trial.

trial_period_terms
Formula terms for trial_period, the time period of the start of the trial.

model_fitter A te_model_fitter object, e.g. from stats_glm_logit().
```

Value

A modified object with the outcome_model slot set

Examples

```
trial_sequence("ITT") |>
  set_data(data_censored) |>
  set_outcome_model(
   adjustment_terms = ~age_s,
   followup_time_terms = ~ stats::poly(followup_time, degree = 2)
)
```

```
set_switch_weight_model
```

Set switching weight model

Description

[Experimental]

Usage

```
set_switch_weight_model(object, numerator, denominator, model_fitter, ...)
## S4 method for signature 'trial_sequence'
set_switch_weight_model(
  object,
  numerator,
  denominator,
 model_fitter,
  eligible_wts_0 = NULL,
  eligible_wts_1 = NULL
)
## S4 method for signature 'trial_sequence_ITT'
set_switch_weight_model(object, numerator, denominator, model_fitter)
```

Arguments

object A trial_sequence object.

Right hand side formula for the numerator model numerator Right hand side formula for the denominator model denominator A te_model_fitter object, such as stats_glm_logit model_fitter

Other arguments used by methods.

eligible_wts_0 Name of column containing indicator (0/1) for observation to be excluded/included

in weight model.

eligible_wts_1 Exclude some observations when fitting the models for the inverse probability of treatment weights. For example, if it is assumed that an individual will stay on treatment for at least 2 visits, the first 2 visits after treatment initiation by definition have a probability of staying on the treatment of 1.0 and should thus be excluded from the weight models for those who are on treatment at the immediately previous visit. Users can define a variable that indicates that these 2 observations are ineligible for the weight model for those who are on treatment at the immediately previous visit and add the variable name in the argument eligible_wts_1. Similar definitions are applied to eligible_wts_0 for excluding observations when fitting the models for the inverse probability of treatment weights for those who are not on treatment at the immediately previous visit.

36 stats_glm_logit

Value

object is returned with @switch_weights set

Examples

```
trial_sequence("PP") |>
  set_data(data = data_censored) |>
  set_switch_weight_model(
    numerator = ~ age_s + x1 + x3,
    denominator = ~ x3 + x4,
    model_fitter = stats_glm_logit(tempdir())
)
```

show_weight_models

Show Weight Model Summaries

Description

[Experimental]

Usage

```
show_weight_models(object)
```

Arguments

object

A trial_sequence object after fitting weight models with calculate_weights()

Value

Prints summaries of the censoring models

 $stats_glm_logit$

Fit outcome models using stats::glm

Description

[Experimental]

Usage

```
stats_glm_logit(save_path)
```

Arguments

save_path

Directory to save models. Set to NA if models should not be saved.

Details

Specify that the pooled logistic regression outcome models should be fit using stats::glm with family = binomial(link = "logit").

Outcome models additional calculate robust variance estimates using sandwich::vcovCL.

Value

An object of class te_stats_glm_logit inheriting from te_model_fitter which is used for dispatching methods for the fitting models.

See Also

```
Other model_fitter: parsnip_model(), te_model_fitter-class
```

Examples

```
stats_glm_logit(save_path = tempdir())
```

```
summary.TE_data_prep Summary methods
```

Description

[Stable] Print summaries of data and model objects produced by TrialEmulation.

Usage

```
## S3 method for class 'TE_data_prep'
summary(object, ...)
## S3 method for class 'TE_data_prep_sep'
summary(object, ...)
## S3 method for class 'TE_data_prep_dt'
summary(object, ...)
## S3 method for class 'TE_msm'
summary(object, ...)
## S3 method for class 'TE_robust'
summary(object, ...)
```

Arguments

```
objectObject to print summaryAdditional arguments passed to print methods.
```

38 te_datastore-class

Value

No value, displays summaries of object.

te_data-class

TrialEmulation Data Class

Description

TrialEmulation Data Class

Slots

data A data.table object with columns "id", "period", "treatment", "outcome", "eligible"

te_datastore-class

te_datastore

Description

This is the parent class for classes which define how the expanded trial data should be stored. To define a new storage type, a new class should be defined which inherits from te_datastore. In addition, methods save_expanded_data and read_expanded_data need to be defined for the new class.

Value

A 'te_datastore' object

Slots

N The number of observations in this data. Initially 0.

te_data_ex 39

te_data_ex

Example of a prepared data object

Description

A small example object from data_preparation used in examples. It is created with the following code:

Usage

```
te_data_ex
```

Format

An object of class TE_data_prep_dt (inherits from TE_data_prep) of length 6.

Details

```
dat <- trial_example[trial_example$id < 200, ]

te_data_ex <- data_preparation(
data = dat,
  outcome_cov = c("nvarA", "catvarA"),
  first_period = 260,
  last_period = 280
)</pre>
```

See Also

```
te_model_ex
```

te_model_ex

Example of a fitted marginal structural model object

Description

A small example object from trial_msm used in examples. It is created with the following code:

Usage

```
te_model_ex
```

Format

An object of class TE_msm of length 3.

40 te_outcome_data-class

Details

```
te_model_ex <- trial_msm(
  data = data_subset,
  outcome_cov = c("catvarA", "nvarA"),
  last_followup = 40,
  model_var = "assigned_treatment",
  include_followup_time = ~followup_time,
  include_trial_period = ~trial_period,
  use_sample_weights = FALSE,
  quiet = TRUE,
  glm_function = "glm"
)</pre>
```

See Also

```
te_data_ex
```

Description

This is a virtual class which other outcome model fitter classes should inherit from. Objects of these class exist to define how the outcome models are fit. They are used for the dispatch of the internal methods fit_outcome_model, fit_weights_model and predict.

See Also

```
Other model_fitter: parsnip_model(), stats_glm_logit()
```

Description

TrialEmulation Outcome Data Class

Slots

```
data A data.table object with columns "id", "period",
n_rows Number of rows
n_ids Number of IDs
periods Vector of periods "treatment", "outcome", "eligible"
```

te_outcome_fitted-class

Fitted Outcome Model Object

Description

Fitted Outcome Model Object

Slots

```
model list containing fitted model objects.

summary list of data.frames. Tidy model summaries a la broom() and glance()
```

te_outcome_model-class

Fitted Outcome Model Object

Description

Fitted Outcome Model Object

Slots

formula formula object for the model fitting

adjustment_vars character. Adjustment variables

treatment_var Variable used for treatment

stabilised_weights_terms formula. Adjustment terms from numerator models of stabilised weights. These must be included in the outcome model.

adjustment_terms formula. User specified terms to include in the outcome model

treatment_terms formula. Estimand defined treatment term

followup_time_terms formula. Terms to model follow up time within an emulated trial

trial_period_terms formula. Terms to model start time ("trial_period") of an emulated trial

model_fitter Model fitter object

fitted list. Saves the model objects

42 trial_msm

trial_example

Example of longitudinal data for sequential trial emulation

Description

A dataset containing the treatment, outcomes and other attributes of 503 patients for sequential trial emulation. See vignette("Getting-Started").

Usage

```
trial_example
```

Format

A data frame with 48400 rows and 11 variables:

id patient identifier

eligible eligible for trial start in this period, 1=yes, 0=no

period time period

outcome indicator for outcome in this period, 1=event occurred, 0=no event

treatment indicator for receiving treatment in this period, 1=treatment, 0=no treatment

catvarA A categorical variable relating to treatment and the outcome

catvarB A categorical variable relating to treatment and the outcome

catvarC A categorical variable relating to treatment and the outcome

nvarA A numerical variable relating to treatment and the outcome

nvarB A numerical variable relating to treatment and the outcome

nvarC A numerical variable relating to treatment and the outcome

trial_msm

Fit the marginal structural model for the sequence of emulated trials

Description

[Stable]

trial_msm 43

Usage

```
trial_msm(
  data,
  outcome\_cov = ~1,
  estimand_type = c("ITT", "PP", "As-Treated"),
 model_var = NULL,
  first_followup = NA,
  last_followup = NA,
  analysis_weights = c("asis", "unweighted", "p99", "weight_limits"),
  weight_limits = c(0, Inf),
  include_followup_time = ~followup_time + I(followup_time^2),
  include_trial_period = ~trial_period + I(trial_period^2),
  where_case = NA,
  glm_function = c("glm", "parglm"),
  use_sample_weights = TRUE,
  quiet = FALSE,
)
```

Arguments

data

A data.frame containing all the required variables in the person-time format, i.e., the 'long' format.

outcome_cov

A RHS formula with baseline covariates to be adjusted for in the marginal structural model for the emulated trials. Note that if a time-varying covariate is specified in outcome_cov, only its value at each of the trial baselines will be included in the expanded data.

estimand_type

Specify the estimand for the causal analyses in the sequence of emulated trials. estimand_type = "ITT" will perform intention-to-treat analyses, where treatment switching after trial baselines are ignored. estimand_type = "PP" will perform per-protocol analyses, where individuals' follow-ups are artificially censored and inverse probability of treatment weighting is applied. estimand_type = "As-Treated" will fit a standard marginal structural model for all possible treatment sequences, where individuals' follow-ups are not artificially censored but treatment switching after trial baselines are accounted for by applying inverse probability of treatment weighting.

model_var

Treatment variables to be included in the marginal structural model for the emulated trials. model_var = "assigned_treatment" will create a variable assigned_treatment that is the assigned treatment at the trial baseline, typically used for ITT and per-protocol analyses. model_var = "dose" will create a variable dose that is the cumulative number of treatments received since the trial baseline, typically used in as-treated analyses.

first_followup

First follow-up time/visit in the trials to be included in the marginal structural model for the outcome event.

last_followup

Last follow-up time/visit in the trials to be included in the marginal structural model for the outcome event.

44 trial_msm

analysis_weights

Choose which type of weights to be used for fitting the marginal structural model for the outcome event.

- "asis": use the weights as calculated.
- "p99": use weights truncated at the 1st and 99th percentiles (based on the distribution of weights in the entire sample).
- "weight_limits": use weights truncated at the values specified in weight_limits.
- "unweighted": set all analysis weights to 1, even if treatment weights or censoring weights were calculated.

weight_limits Lower and upper limits to truncate weights, given as c(lower, upper)
include_followup_time

The model to include the follow up time/visit of the trial (followup_time) in the marginal structural model, specified as a RHS formula.

include_trial_period

The model to include the trial period (trial_period) in the marginal structural model, specified as a RHS formula.

where_case

Define conditions using variables specified in where_var when fitting a marginal structural model for a subgroup of the individuals. For example, if where_var= "age", where_case = "age >= 30" will only fit the marginal structural model to the subgroup of individuals. who are 30 years old or above.

glm_function

Specify which glm function to use for the marginal structural model from the stats or parglm packages. The default function is the glm function in the stats package. Users can also specify glm_function = "parglm" such that the parglm function in the parglm package can be used for fitting generalized linear models in parallel. The default control setting for parglm is nthreads = 4 and method = "FAST", where four cores and Fisher information are used for faster computation. Users can change the default control setting by passing the arguments nthreads and method in the parglm.control function of the parglm package, or alternatively, by passing a control argument with a list produced by parglm.control(nthreads = , method =).

use_sample_weights

Use case-control sampling weights in addition to inverse probability weights for treatment and censoring. data must contain a column sample_weight. The final weights used in the pooled logistic regression are calculated as weight = weight * sample_weight.

quiet

Suppress the printing of progress messages and summaries of the fitted models.

. . .

Additional arguments passed to glm_function. This may be used to specify initial values of parameters or arguments to control. See stats::glm, parglm::parglm and parglm::parglm.control() for more information.

Details

Apply a weighted pooled logistic regression to fit the marginal structural model for the sequence of emulated trials and calculates the robust covariance matrix of parameter using the sandwich estimator.

The model formula is constructed by combining the arguments outcome_cov, model_var, include_followup_time, and include_trial_period.

trial_sequence 45

Value

Object of class TE_msm containing

```
model a glm object
```

robust a list containing a summary table of estimated regression coefficients and the robust covariance matrix

args a list contain the parameters used to prepare and fit the model

trial_sequence

Create a sequence of emulated target trials object

Description

[Experimental]

Usage

```
trial_sequence(estimand, ...)
```

Arguments

estimand The name of the estimand for this analysis, either one of "ITT", "PP", "AT" for intention-to-treat, per-protocol, as-treated estimands respectively, or the name

of a class extending trial_sequence

... Other parameters used when creating object

Value

An estimand specific trial sequence object

Examples

```
trial_sequence("ITT")
```

46 vignette_switch_data

Description

Trial Sequence class

Slots

```
data te_data.

estimand character. Descriptive name of estimand.

expansion te_expansion

outcome_model te_outcome_model.

outcome_data te_outcome_data.

censor_weight te_weight. Object to define weighting to account for informative censoring censor_weight te_weight. Object to define weighting to account for informative censoring due to treatment switching
```

Description

This is the expanded dataset created in the vignette ("Getting-Started") known as switch_data.

Usage

```
vignette_switch_data
```

Format

A data frame with 1939053 rows and 7 variables:

id patient identifier

trial_period trial start time period

followup_time follow up time within trial

outcome indicator for outcome in this period, 1=event occurred, 0=no event

treatment indicator for receiving treatment in this period, 1=treatment, 0=non-treatment

assigned_treatment indicator for assigned treatment at baseline of the trial, 1=treatment, 0=nontreatment

weight weights for use with model fitting

catvarA A categorical variable relating to treatment and the outcome

catvarB A categorical variable relating to treatment and the outcome

catvarC A categorical variable relating to treatment and the outcome

nvarA A numerical variable relating to treatment and the outcome

nvarB A numerical variable relating to treatment and the outcome

nvarC A numerical variable relating to treatment and the outcome

```
weight_model_data_indices
```

Data used in weight model fitting

Description

[Experimental]

Usage

```
weight_model_data_indices(
  object,
  type = c("switch", "censor"),
  model,
  set_col = NULL
)
```

Arguments

object A trial_sequence object

type Select a censoring or switching model

model The model name

set_col A character string to specifying a new column to contain indicators for observa-

tions used in fitting this model.

Value

If set_col is not specified a logical data.table column is returned. Otherwise

Examples

```
trial_pp <- trial_sequence("PP") |>
  set_data(data_censored) |>
  set_switch_weight_model(
    numerator = ~age,
    denominator = ~ age + x1 + x3,
    model_fitter = stats_glm_logit(tempdir())
  ) |>
  calculate_weights()
ipw_data(trial_pp)
```

```
show_weight_models(trial_pp)

# get logical column for own processing
i <- weight_model_data_indices(trial_pp, "switch", "d0")

# set column in data
weight_model_data_indices(trial_pp, "switch", "d0", set_col = "sw_d0")
weight_model_data_indices(trial_pp, "switch", "d1", set_col = "sw_d1")
ipw_data(trial_pp)</pre>
```

Index

* datasets	ipw_data, 16
data_censored, 5	ipw_data,trial_sequence-method
te_data_ex, 39	(ipw_data), 16
te_model_ex, 39	ipw_data<- (ipw_data), 16
trial_example,42	ipw_data<-,trial_sequence-method
vignette_switch_data,46	(ipw_data), 16
* model_fitter	
parsnip_model, 19	load_expanded_data, 17
stats_glm_logit, 36	<pre>load_expanded_data,trial_sequence-method</pre>
te_model_fitter-class,40	(load_expanded_data), 17
* save_to	
save_to_csv, 26	outcome_data, 18
save_to_datatable, 27	outcome_data,trial_sequence-method
save_to_duckdb, 27	(outcome_data), 18
set_expansion_options, 31	outcome_data<- (outcome_data), 18
	outcome_data<-,trial_sequence-method
calculate_weights, 3	(outcome_data), 18
calculate_weights(), 36	
calculate_weights,trial_sequence_AT-method	parglm::parglm, 8, 15, 44
(calculate_weights), 3	parglm::parglm.control(), 8, 15, 44
<pre>calculate_weights,trial_sequence_ITT-method</pre>	parsnip_model, 19, 37, 40
(calculate_weights), 3	predict, 40
calculate_weights,trial_sequence_PP-method	<pre>predict (predict_marginal), 20</pre>
(calculate_weights), 3	<pre>predict,trial_sequence_ITT-method</pre>
<pre>case_control_sampling_trials, 4, 9</pre>	(predict_marginal), 20
data_censored, 5	<pre>predict,trial_sequence_PP-method</pre>
data_preparation, 6, 39	(predict_marginal), 20
data_preparation(), 4 , 15	<pre>predict.TE_msm(predict_marginal), 20</pre>
$data_preparation(j, 4, 13)$	predict_marginal, 20
expand_trials, 9, 25	print.data.frame, 23
expand_trials(), 10	print.TE_weight_summary, 23
$fit_msm, 10$	read_expanded_data, 23
<pre>fit_msm,trial_sequence-method</pre>	read_expanded_data,te_datastore_datatable-method
(fit_msm), 10	<pre>(read_expanded_data), 23</pre>
<pre>fit_outcome_model, 40</pre>	
fit_weights_model, 11, 40	sample_expanded_data, 24
	<pre>sample_expanded_data,te_datastore-method</pre>
initiators, 12	<pre>(sample_expanded_data), 24</pre>
initiators(), 21	save_expanded_data, 25, 38

50 INDEX

```
save_expanded_data,te_datastore_datatable-metsodset(),4
        (save_expanded_data), 25
                                                  summary.TE_data_prep, 37
save_to_csv, 26, 27, 32
                                                  summary.TE_data_prep_dt
save_to_datatable, 26, 27, 27, 32
                                                           (summary.TE_data_prep), 37
save_to_duckdb, 26, 27, 27, 32
                                                  summary.TE_data_prep_sep
                                                           (summary.TE_data_prep), 37
set_censor_weight_model, 28
\verb|set_censor_weight_model,trial_sequence-methods ummary.TE_msm (summary.TE_data_prep)|, \\
        (set_censor_weight_model), 28
\verb|set_censor_weight_model,trial_sequence_AT-met| \verb|Mwammary.TE_robust| \\
                                                           (summary.TE_data_prep), 37
        (set_censor_weight_model), 28
set_censor_weight_model,trial_sequence_ITT-method
                                                  te_data-class, 38
        (set_censor_weight_model), 28
\verb|set_censor_weight_model|, \verb|trial_sequence_PP-method| \\ |data_ex, 39, 40| \\
                                                  te_datastore, 17, 23, 25, 32
        (set_censor_weight_model), 28
                                                  te_datastore-class, 38
set_data, 30
                                                  te_datastore_csv, 26
set_data(), 16
                                                  te_datastore_duckdb, 27
set_data,trial_sequence_AT,data.frame-method
                                                  te_model_ex, 39, 39
        (set_data), 30
\verb|set_data|, \verb|trial_sequence_ITT|, \verb|data.frame-method| \\ \texttt{te_model_fitter}, \verb|20|, 35|, 37| \\
        (set_data), 30
                                                  te_outcome_data, 18
set\_data, trial\_sequence\_PP, data.frame-method
                                                  te_outcome_data-class, 40
        (set_data), 30
                                                  te_outcome_fitted-class, 41
set_expansion_options, 25-27, 31
                                                  te_outcome_model-class, 41
set_expansion_options(), 9
                                                  trial_example, 42
set_expansion_options,trial_sequence_ITT-method trial_msm, 9, 39, 42
        (set_expansion_options), 31
                                                  trial_msm(), 5, 15, 21
set_expansion_options,trial_sequence_PP-method trial_sequence, 3, 9, 17, 18, 21, 31, 32, 35,
        (set_expansion_options), 31
                                                           36, 45, 45, 47
set_outcome_model, 10, 33
                                                  trial_sequence-class, 46
set_outcome_model(), 10
                                                  trial_sequence_AT-class
set_outcome_model,trial_sequence-method
                                                           (trial_sequence-class), 46
        (set_outcome_model), 33
                                                  trial_sequence_ITT-class
set_outcome_model,trial_sequence_AT-method
                                                           (trial_sequence-class), 46
        (set_outcome_model), 33
                                                  trial_sequence_PP-class
set_outcome_model,trial_sequence_ITT-method
                                                           (trial_sequence-class), 46
        (set_outcome_model), 33
set_outcome_model,trial_sequence_PP-method
                                                  vignette_switch_data, 46
        (set_outcome_model), 33
                                                  weight_model_data_indices, 47
set_switch_weight_model, 35
set_switch_weight_model,trial_sequence-method
        (set_switch_weight_model), 35
set_switch_weight_model, trial_sequence_ITT-method
        (set_switch_weight_model), 35
show_weight_models, 36
split(), 5
stats::glm, 8, 15, 37, 44
stats_glm_logit, 20, 35, 36, 40
stats_glm_logit(), 20, 29
```