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Abstract

Herein is a hodgepodge of facts about the Sharpe ratio, and the Sharpe
ratio of the Markowitz portfolio. Connections between the Sharpe ratio
and the t-test, and between the Markowitz portfolio and the Hotelling
T 2 statistic are explored. Many classical results for testing means can be
easily translated into tests on assets and portfolios. A ‘unified’ framework
is described which combines the mean and covariance parameters of a
multivariate distribution into the uncentered second moment of a related
random variable. This trick streamlines some multivariate computations,
and gives the asymptotic distribution of the sample Markowitz portfolio.
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1 The Sharpe ratio

In 1966 William Sharpe suggested that the performance of mutual funds be
analyzed by the ratio of returns to standard deviation. [63] His eponymous

ratio1, ζ̂, is defined as 1. Sharpe
guaranteed this
ratio would
be renamed
by giving it
the unweildy
moniker of
’reward-to-
variability,’
yet another
example of my
Law of Implied
Eponymy.

ζ̂ =
µ̂

σ̂
,

where µ̂ is the historical, or sample, mean return of the mutual fund, and
σ̂ is the sample standard deviation. Sharpe admits that one would ideally use
predictions of return and volatility, but that “the predictions cannot be obtained
in any satisfactory manner . . . Instead, ex post values must be used.” [63]

A most remarkable fact about the Sharpe ratio, of which most practicioners
seem entirely unaware, is that it is, up to a scaling, merely the Student t-statistic
for testing whether the mean of a random variable is zero.2 In fact, the t-test

2. Sharpe
himself seems
to not make
the connection,
even though
he quotes
t-statistics for
a regression fit
in his original
paper![63]

we now use, defined as

t =df
µ̂

σ̂/
√
n
=
√
nζ̂, (1)
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is not the form first considered by Gosset (writing as “Student”).[23] Gosset
originally analyzed the distribution of

z =
µ̂

sN
=

µ̂

σ̂
√

(n− 1)/n
= ζ̂

√
n

n− 1
,

where sN is the “standard deviation of the sample,” a biased estimate of the
population standard deviation that uses n in the denominator instead of n− 1.
The connection to the t-distribution appears in Miller and Gehr’s note on the
bias of the Sharpe ratio, but has not been well developed. [47]

1.1 Distribution of the Sharpe ratio

Let x1, x2, . . . , xn be i.i.d. draws from a normal distribution N (µ, σ). Let
µ̂ =df

∑
i xi/n and σ̂2 =df

∑
i(xi − µ̂)2/(n − 1) be the unbiased sample mean

and variance, and let

t0 =df

√
n
µ̂− µ0

σ̂
. (2)

Then t0 follows a non-central t-distribution with n − 1 degrees of freedom and
non-centrality parameter

δ =df

√
n
µ− µ0

σ
.

Note the non-centrality parameter, δ, looks like the sample statistic t0, but
defined with population quantities. If µ = µ0, then δ = 0, and t0 follows a
central t-distribution. [27, 60]

Recalling that the modern t statistic is related to the Sharpe ratio by only a
scaling of

√
n, the distribution of Sharpe ratio assuming normal returns follows a

rescaled non-central t-distribution, where the non-centrality parameter depends
only on the signal-to-noise ratio (hereafter ‘SNR’), ζ =df µ/σ, which is the
population analogue of the Sharpe ratio, and the sample size.

Knowing the distribution of the Sharpe ratio is empowering, as interesting
facts about the t-distribution or the t-test can be translated into interesting
facts about the Sharpe ratio: one can construct hypothesis tests for the SNR,
find the power and sample size of those tests, compute confidence intervals of
the SNR, correct for deviations from assumptions, etc.

1.2 Tests involving the Sharpe ratio

There are a number of statistical tests involving the Sharpe ratio or variants
thereupon.

1. The classical one-sample test for mean involves a t-statistic which is like a
Sharpe ratio with constant benchmark. Thus to test the null hypothesis:

H0 : µ = µ0 versus H1 : µ > µ0,

we reject if the statistic

t0 =
√
n
µ̂− µ0

σ̂

is greater than t1−α (n− 1), the 1−α quantile of the (central) t-distribution
with n− 1 degrees of freedom.
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If µ = µ1 > µ0, then the power of this test is

1− Ft (t1−α (n− 1) ;n− 1, δ1) ,

where δ1 =
√
n (µ1 − µ0) /σ and Ft (x;n− 1, δ) is the cumulative distri-

bution function of the non-central t-distribution with non-centrality pa-
rameter δ and n− 1 degrees of freedom. [60]

2. A one-sample test for signal-to-noise ratio (SNR) involves the t-statistic.
To test:

H0 : ζ = ζ0 versus H1 : ζ > ζ0,

we reject if the statistic t =
√
nζ̂ is greater than t1−α (n− 1, δ0), the 1−α

quantile of the non-central t-distribution with n − 1 degrees of freedom
and non-centrality parameter δ0 =

√
nζ0.

If ζ = ζ1 > ζ0, then the power of this test is

1− Ft (t1−α (n− 1, δ0) ;n− 1, δ1) ,

where δ1 =
√
nζ1 and Ft (x;n− 1, δ) is the cumulative distribution func-

tion of the non-central t-distribution with non-centrality parameter δ and
n− 1 degrees of freedom. [60]

1.3 Moments of the Sharpe ratio

Based on the moments of the non-central t-distribution, the expected value
of the Sharpe ratio is not the signal-to-noise ratio (SNR), rather there is a
systematic geometric bias. [69, 71] The t-statistic, which follows a non-central
t-distribution with parameter δ and n− 1 degrees of freedom has the following
moments:

E [t] = δ

√
n− 1

2

Γ ((n− 2)/2)

Γ ((n− 1)/2)
= δdn,

Var (t) =
(1 + δ2)(n− 1)

n− 3
− E [t]

2
.

(3)

Here dn =
√

n−1
2 Γ ((n− 2)/2) /Γ ((n− 1)/2), is the ’bias term’. The geometric

bias term is related to the constant c4 from the statistical control literature via
dn = n−1

n−2c4 (n) . These can be trivially translated into equivalent facts regarding
the Sharpe ratio:

E
[
ζ̂
]
= ζdn,

Var
(
ζ̂
)
=

(1 + nζ2)(n− 1)

n(n− 3)
− E

[
ζ̂
]2

.
(4)

The geometric bias term dn does not equal one, thus the sample t statistic
is a biased estimator of the non-centrality parameter, δ when δ ̸= 0, and the
Sharpe ratio is a biased estimator of the signal-to-noise ratio when it is nonzero.
[47] The bias term is a function of sample size only, and approaches one fairly
quickly. However, there are situations in which it might be unacceptably large.
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For example, if one was looking at one year’s worth of data with monthly
marks, one would have a fairly large bias: dn = 1.08, i.e., almost eight per-
cent. The bias is multiplicative and larger than one, so the Sharpe ratio will
overestimate the SNR when the latter is positive, and underestimate it when it
is negative. The existence of this bias was first described by Miller and Gehr.
[47, 26, 3]

A decent asymptotic approximation [1] to dn is given by

dn+1 = 1 +
3

4n
+

25

32n2
+O

(
n−3

)
.

1.4 Asymptotics and confidence intervals

Lo showed that the Sharpe ratio is asymptotically normal in n with standard
deviation [38]

se ≈

√
1 + ζ2

2

n
. (5)

The equivalent result concerning the non-central t-distribution (which, again, is
the Sharpe ratio up to scaling by

√
n) was published 60 years prior by Johnson

and Welch. [27] Since the SNR, ζ̂, is unknown, Lo suggests approximating it
with the Sharpe ratio, giving the following approximate 1−α confidence interval
on the SNR:

ζ̂ ± zα/2

√
1 + ζ̂2

2

n
,

where zα/2 is the α/2 quantile of the normal distribution. In practice, the
asymptotically equivalent form

ζ̂ ± zα/2

√
1 + ζ̂2

2

n− 1
(6)

has better small sample coverage for normal returns.
According to Walck,

t(1− 1
4(n−1) )− δ√

1 + t2

2(n−1)

is asymptotically (in n) a standard normal random variable, where t is the
t-statistic, which is the Sharpe ratio up to scaling. [69]

This suggests the following approximate 1 − α confidence interval on the
SNR:

ζ̂

(
1− 1

4(n− 1)

)
± zα/2

√
1

n
+

ζ̂2

2(n− 1)
. (7)

The normality results generally hold for large n, small ζ, and assume nor-
mality of x. [27] We can find confidence intervals on ζ assuming only normality
of x (or large n and an appeal to the Central Limit Theorem), by inversion of
the cumulative distribution of the non-central t-distribution. A 1−α symmetric
confidence interval on ζ has endpoints [ζl, ζu] defined implicitly by

1− α/2 = Ft

(
ζ̂;n− 1,

√
nζl

)
, α/2 = Ft

(
ζ̂;n− 1,

√
nζu

)
, (8)
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where Ft (x;n− 1, δ) is the CDF of the non-central t-distribution with non-
centrality parameter δ and n − 1 degrees of freedom. Computationally, this
method requires one to invert the CDF (e.g., by Brent’s method [10]), which is
slower than approximations based on asymptotic normality.

Mertens gives the form of standard error

se ≈

√
1 + 2+γ4

4 ζ2 − γ3ζ

n
, (9)

where γ3 is the skew, and γ4 is the excess kurtosis of the returns distribution.
[46, 51, 2] These are both zero for normally distributed returns, and so Mertens’
form reduces to Lo’s form. These are unknown in practice, and have to be
estimated from the data, which results in some mis-estimation of the standard
error when skew is extreme. Bao gives a higher order formula for the standard
error, which is perhaps more susceptible to problems with estimation of higher
order moments. [3] It is not clear if this method gives better standard error
estimates than Mertens’ estimate.

1.5 Asymptotic Distribution of Sharpe ratio

Here I derive the asymptotic distribution of Sharpe ratio, following Jobson and
Korkie inter alia. [26, 38, 46, 34, 36, 73] Consider the case of p possibly cor-
related returns streams, with each observation denoted by x. Let µ be the
p-vector of population means, and let κ2 be the p-vector of the uncentered sec-
ond moments. Let ζ be the vector of SNR of the assets. Let r0 be the ‘risk free
rate’. We have

ζi =
µi − r0√
κ2,i − µ2

i

.

Consider the 2p vector of x, ‘stacked’ with x (elementwise) squared,
[
x⊤,x2⊤

]⊤
.

The expected value of this vector is
[
µ⊤,κ2

⊤]⊤; let Ω be the variance of this
vector, assuming it exists.

Given n observations of x, consider the simple sample estimate[
µ̂⊤, κ̂2

⊤
]⊤

=df
1

n

n∑
i

[
x⊤,x2⊤

]⊤
.

Under the multivariate central limit theorem [70]

√
n

([
µ̂⊤, κ̂2

⊤
]⊤
−
[
µ⊤,κ2

⊤]⊤)⇝ N (0,Ω) . (10)

Let ζ̂ be the sample Sharpe ratio computed from the estimates µ̂ and κ̂2:

ζ̂i = (µ̂i − r0) /
√
κ̂2,i − µ̂2

i . By the multivariate delta method,

√
n
(
ζ̂ − ζ

)
⇝ N

0,

(
dζ

d[µ⊤,κ2
⊤]

⊤

)
Ω

(
dζ

d[µ⊤,κ2
⊤]

⊤

)⊤
 . (11)
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Here the derivative takes the form of two p×p diagonal matrices pasted together
side by side:

dζ

d[µ⊤,κ2
⊤]

⊤ =
[
diag

(
κ2−µr0

(κ2−µ2)3/2

)
diag

(
r0−µ

2(κ2−µ2)3/2

) ]
,

=
[
diag

(
σ+µζ
σ2

)
diag

(
−ζ
2σ2

) ]
.

(12)

where diag (z) is the matrix with vector z on its diagonal, and where the vector
operations above are all performed elementwise.

In practice, the population values, µ, κ2, Ω are all unknown, and so the
asymptotic variance has to be estimated, using the sample. Letting Ω̂ be some
sample estimate of Ω, we have the approximation

ζ̂ ≈ N

ζ,
1

n

 dζ̂

d
[
µ̂⊤, κ̂2

⊤
]⊤
 Ω̂

 dζ̂

d
[
µ̂⊤, κ̂2

⊤
]⊤


⊤
 , (13)

where the derivatives are formed by plugging in the sample estimates into Equa-
tion 12. [38, 46]

1.5.1 Scalar case

For the p = 1 case, Ω takes the form

Ω =

[
κ2 − µ2 κ3 − µκ2

κ3 − µκ2 κ4 − κ2
2

]
,

=

[
σ2 σ2 (σγ3 + 2µ)

σ2 (σγ3 + 2µ) σ4 (γ4 + 2) + 4σ3µγ3 + 4σ2µ2

]
,

= σ2

[
1 σγ3 + 2µ

σγ3 + 2µ σ2 (γ4 + 2) + 4σµγ3 + 4µ2

]
.

(14)

where κi is the uncentered ith moment of x, γ3 is the skew, and γ4 is the excess
kurtosis. After much algebraic simplification, the asymptotic variance of Sharpe
ratio is given by Mertens’ formula, Equation 9:

ζ̂ ≈ N
(
ζ,

1

n

(
1− ζ̂γ3 +

γ4 + 2

4
ζ̂
2
))

. (15)

Note that Mertens’ equation applies even though our definition of Sharpe ratio
includes a risk-free rate, r0.

1.5.2 Tests of equality of multiple Sharpe ratio

Now let g be some vector valued function of the vector ζ. Applying the delta
method,

√
n
(
g
(
ζ̂
)
− g (ζ)

)
⇝ N

0,

(
dg

dζ

dζ

d[µ⊤,κ2
⊤]

⊤

)
Ω

(
dg

dζ

dζ

d[µ⊤,κ2
⊤]

⊤

)⊤

(16)
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To compare whether the Sharpe ratio of p assets are equal, given n contem-
poraneous observations of their returns, let g be the function which constructs
the p− 1 contrasts:

g (ζ) =
[
ζ1 − ζ2, . . . , ζp−1 − ζp

]⊤
.

One is then testing the null hypothesis H0 : g (ζ) = 0. Asymptotically, under
the null,

ng
(
ζ̂
)⊤(dg

dζ

dζ

d[µ⊤,κ2
⊤]

⊤

)
Ω

(
dg

dζ

dζ

d[µ⊤,κ2
⊤]

⊤

)⊤
−1

g
(
ζ̂
)
∼ χ2 (p− 1) .

For the more general case, where g need not be the vanilla contrasts, the chi-
square degrees of freedom is the rank of dg

dζ .
There are a number of modifications of this basic method: Leung and Wong

described the basic method. [36] Wright et al. suggest that the test statistic be
transformed to an approximate F -statistic. [73] Ledoit and Wolf propose using
HAC estimators or bootstrapping to construct Ω̂. [34]

For the case of scalar-valued g (e.g., for comparing p = 2 strategies), one
can construct a two-sided test via an asymptotic t-approximation:

√
ng
(
ζ̂
)(dg

dζ

dζ

d[µ⊤,κ2
⊤]

⊤

)
Ω

(
dg

dζ

dζ

d[µ⊤,κ2
⊤]

⊤

)⊤
− 1

2

∼ t (n− 1) .

In all the above, one can construct asymptotic approximations of the test
statistics under the alternative, allowing power analysis or computation of con-
fidence regions on g (ζ).

1.6 Power and sample size

Consider the t-test for the null hypothesis H0 : µ = 0. This is equivalent to
testing H0 : ζ = 0. A power rule ties together the (unknown) true effect size
(ζ), sample size (n), type I and type II rates. Some example use cases:

1. Suppose you wanted to estimate the mean return of a pairs trade, but the
stocks have only existed for two years. Is this enough data assuming the
SNR is 2.0 yr−1/2?

2. Suppose investors in a fund you manage want to ‘see some returns’ within
a year otherwise they will withdraw their investment. What SNR should
you be hunting for so that, with probability one half, the actual returns
will ‘look good’ over the next year?

3. Suppose you observe three months of a fund’s returns, and you fail to
reject the null under the one sample t-test. Assuming the SNR of the
process is 1.5 yr−1/2, what is the probability of a type II error?

For sufficiently large sample size (say n ≥ 30), the power law for the t-test
is well approximated by

n ≈ c

ζ2
, (17)

where the constant c depends on the type I rate and the type II rates, and
whether one is performing a one- or two-sided test. This relationship was first
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noted by Johnson and Welch. [27] Unlike the type I rate, which is traditionally
set at 0.05, there is no widely accepted traditional value of power.

Values of the coefficient c are given for one and two-sided t-tests at different
power levels in Table 1. The case of α = 0.05, 1− β = 0.80 is known as “Lehr’s
rule”. [68, 35]

one.sided two.sided
power = 0.25 0.96 1.68
power = 0.50 2.72 3.86
power = 0.80 6.20 7.87

Table 1: Scaling of sample size with respect to ζ2 required to achieve a fixed
power in the t-test, at a fixed α = 0.05 rate.

Consider now the scaling in the rule n ≈ cζ−2. If the SNR ζ is given in daily
units, the sample size will be in days. One annualizes ζ by multiplying by the
square root of the number of days per year, which downscales n appropriately.
That is, if ζ is quoted in annualized terms, this rule of thumb gives the number
of years of observations required. This is very convenient since we usually think
of ζ and ζ̂ in annualized terms.

The following rule of thumb may prove useful:

The number of years required to reject non-zero mean with power
of one half is around 2.7/ζ2.

The mnemonic form of this is “e = nz2”. Note that Euler’s number appears

here coincidentally, as it is nearly equal to
[
Φ−1 (0.95)

]2
. The relative error in

this approximation for determining the sample size is shown in Figure 1, as a
function of ζ; the error is smaller than one percent in the tested range.

The power rules are sobering indeed. Suppose you were a hedge fund man-
ager whose investors threatened to perform a one-sided t-test after one year. If
your strategy’s signal-to-noise ratio is less than 1.65yr−1/2 (a value which should
be considered “very good”), your chances of ‘passing’ the t-test are less than
fifty percent.

1.7 Deviations from assumptions

Van Belle suggests one consider, in priority order, assumptions of independence,
heteroskedasticity, and normality in statistical tests. [68]

1.7.1 Sharpe ratio and Autocorrelation

The simplest relaxation of the i.i.d. assumption of the returns xi is to assume
the time-series of returns has a fixed autocorrelation. Let ν be the autocorrela-
tion of the series of returns, i.e., the population correlation of xi−1 with xi. [12]
In this case the standard error of the mean tends to be an underestimate when
ν > 0 and an overestimate when ν < 0. Van Belle [68] notes that, under this
formulation, the t statistic (under the null µ = 0) has standard error of approx-
imately

√
(1 + ν)/(1− ν). A Monte Carlo study confirms this approximation.

In Figure 2 the empirical standard deviation of t-statistics computed on AR(1)
series at given values of ν along with the fit value of

√
(1 + ν)/(1− ν).
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Figure 1: The percent error of the power mnemonic e ≈ nζ2 is plotted versus ζ.
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Figure 2: The empirical standard deviation for the t-statistic is shown at dif-
ferent values of the autocorrelation, ν. Each point represents 8000 series of
approximately 3 years of daily data, with each series generated by an AR(1)
process with normal innovations. Each series has actual SNR of zero. The
fit line is that suggested by Van Belle’s correction for autocorrelation, namely√

(1 + ν)/(1− ν).

The ’small angle’ approximation for this correction is 1+ ν, which is reason-
ably accurate for |ν| < 0.1. An alternative expression of this approximation is
“a positive autocorrelation of ν inflates the Sharpe ratio by about ν percent.”

The corrected t-statistic has the form:

t0
′ =

√
1− ν̂

1 + ν̂

√
n
µ̂− µ0

σ̂
= d
√
nζ̂0, (18)

where d is the correction factor for autocorrelation [68]. The equivalent correc-

tion for Sharpe ratio is ζ̂ ′0 = dζ̂0.

1.7.2 Sharpe ratio and Heteroskedasticity

The term ‘heteroskedasticity’ typically applies to situations where one is per-
forming inference on the mean effect, and the magnitude of error varies in the
sample. This idea does not naturally translate to performing inference on the
SNR, since SNR incorporates volatility, and would vary under the traditional
definition. Depending on the asset, the SNR might increase or decrease with
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volatility, an effect further complicated by the risk-free rate, which is assumed
to be constant.

Here I will consider the case of asset returns with constant SNR, and fluc-
tuating volatility. That is, both the volatility and expected return are changing
over time, with their ratio constant. One can imagine this as some ‘latent’ re-
turn stream which one observes polluted with a varying ‘leverage’. So suppose
that li and xi are independent random variables with li > 0. One observes
period returns of lixi on period i. We have assumed that the SNR of x is a
constant which we are trying to estimate. We have

E [lx] = E [l] E [x] ,

Var (lx) = E
[
l2
]
E
[
x2
]
− E [l]

2
E [x]

2
= E

[
x2
]
Var (l) + Var (x) E [l]

2
,

(19)

And thus, with some rearrangement,

ζlx =
ζx√

1 + E[x2]
Var(x)

Var(l)

E[l]2

.

Thus measuring Sharpe ratio without adjusting for heteroskedasticity tends to
give underestimates of the ‘true’ Sharpe ratio of the returns series, x. However,
the deflation is typically modest, on the order of 10%. The shrinkage of Sharpe
ratio will also typically lead to slight deflation of the estimated standard error,
but for large n and daily returns, this will not lead to inflated type I rate.

Note that when looking at e.g., daily returns, the (non-annualized) Sharpe
ratio on the given mark frequency is usually on the order of 0.1 or less, thus
E [x]

2 ≈ 0.01Var (x), and so E
[
x2
]
≈ 1.01Var (x). Thus it suffices to estimate

the ratio Var (l) /E [l]
2
, the squared coefficient of variation of l, to compute the

correction factor.
Consider, for example, the case where l is the VIX index. Empirically the

VIX has a coefficient of variation around 0.4. Assuming the daily Sharpe ratio
is 0.1, we have √

1 +
E [x2]

Var (x)

Var (l)

E [l]
2 ≈ 1.08.

In this case the correction factor for leverage is fairly small.

1.7.3 Sharpe ratio and Non-normality

The distribution of the Sharpe ratio given in Section 1.1 is only valid when
the returns of the fund are normally distributed. If not, the Central Limit
Theorem guarantees that the sample mean is asymptotically normal (assuming
the variance exists!), but the convergence to a normal can require a large sample
size. In practice, the tests described in Section 1.2 work fairly well for returns
from kurtotic distributions, but can be easily fooled by skewed returns.

There should be no real surprise in this statement. Suppose one is analyzing
the returns of a hedge fund which is secretly writing insurance policies, and has
had no claims in the past 5 years. The true expected mean return of the fund
might be zero or negative, but the historical data does not contain a ‘Black
Swan’ type event. [67] We need not make any fabulous conjectures about the
‘non-stationarity’ of our return series, or the failure of models or our ability
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to predict: skew is a property of the distribution, and we do not have enough
evidence to detect the skew.

To demonstrate this fact, I look at the empirical type I rate for the hypothesis
test: H0 : ζ = 1.0 versus the alternativeH1 : ζ > 1.0 for different distributions of
returns: I sample from a Gaussian (as the benchmark); a t-distribution with 10
degrees of freedom; a Tukey h-distribution, with different values of h; a ‘lottery’
process which is a shifted, rescaled Bernoulli random variable; and a ‘Lambert W
x Gaussian’ distribution, with different values of the skew parameter. [21, 20, 22]
I also draw samples from the daily log returns of the S & P 500 over the period
from 1970-01-05 to 2012-12-31, affinely transformed to have ζ = 1.0yr−1/2. I
also draw from a symmetrized S & P 500 returns series.

The t- and Tukey distributions are fairly kurtotic, but have zero skew, while
the lottery and Lambert W x Gaussian distributions are skewed and (therefore)
kurtotic. All distributions have been rescaled to have ζ = 1.0yr−1/2; that is, I
am estimating the empirical type I rate under the null. At the nominal α = 0.05
level, we expect to get a reject rate around five percent.

I test the empirical type I rate of the test implied by the confidence intervals
in Equation 8. I also employ Mertens’ standard errors, Equation 9, estimating
the skew and kurtosis empirically, then comparing to quantiles of the normal
distribution. The tests are one-sided tests, against the alternative Ha : ζ <
1.0yr−1/2.

distribution param skew kurtosis typeI cor.typeI

Gaussian 0 0 0.048 0.048
Student’s t df = 10 0 1 0.048 0.049
SP500 -1 26 0.057 0.058
symmetric SP500 0 25 0.057 0.06
Tukey h h = 0.1 0 5.5 0.052 0.054
Tukey h h = 0.2 0 1.3e+03 0.052 0.058
Tukey h h = 0.4 Inf 0.14 0.17
Lottery p = 0.020 6.9 45 0.0071 0.054
Lottery p = 0.010 9.8 95 0.002 0.046
Lottery p = 0.005 14 2e+02 0.00024 0.04
Lambert x Gaussian delta = 0.4 2.7 18 0.028 0.053
Lambert x Gaussian delta = 0.2 1.2 5.7 0.039 0.053
Lambert x Gaussian delta = -0.2 -1.2 5.7 0.063 0.051
Lambert x Gaussian delta = -0.4 -2.7 18 0.072 0.046
Lambert x Gaussian delta = -0.8 -8.5 2.1e+02 0.14 0.073

Table 2: Empirical type I rates of the test for ζ = 1.0yr−1/2 via distribution
of the Sharpe ratio are given for various distributions of returns. The empiri-
cal rates are based on 8192 simulations of three years of daily returns, with a
nominal rate of α = 0.05. The ’corrected’ type I rates refer to a normal approx-
imation using Mertens’ correction. Skew appears to have a much more adverse
effect than kurtosis alone.

The results are given in Table 2, and indicate that skew is a more serious
problem than kurtosis. The results from the S & P 500 data are fairly encour-
aging: broad market returns are perhaps not as skewed as the Lambert W x
Gaussian distributions that we investigate, and the type I rate is near nominal
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when using three years of data. Lumley et al. found similar results for the t-test
when looking at sample sizes greater than 500. [39] Since the t-test statistic is
equivalent to Sharpe ratio (up to scaling), this result carries over to the test for
SNR.

The Mertens’ correction appears to be less liberal for the highly skewed
Lambert distributions, but perhaps more liberal for the Tukey and S & P 500
distributions.

However, skew is a serious problem when using the Sharpe ratio. A practi-
cioner must be reasonably satisfied that the return stream under examination is
not seriously skewed to use the Sharpe ratio. Moreover, one can not use histor-
ical data to detect skew, for the same reason that skew causes the distribution
of Sharpe ratio to degrade.

1.8 Linear attribution models

The Sharpe ratio and t-test as described previously can be more generally de-
scribed in terms of linear regression. Namely one models the returns of interest
as xt = β01 + ϵt, where ϵt are modeled as i.i.d. zero-mean innovations with
standard deviation σ. Performing a linear regression, one gets the estimates β̂0

and σ̂, and can test the null hypothesis H0 : β0/σ = 0 via a t-test. To see that
this is the case, one only need recognize that the sample mean is indeed the
least-squares estimator, i.e., µ̂ = argmina

∑
t (a− xt)

2
.

More generally, we might want to model returns as the linear combination
of l factor returns:

xt = β01 +

l−1∑
i

βifi,t + ϵt, (20)

where fi,t are the returns of some ith ‘factor‘ at time t. There are numerous
candidates for the factors, and their choice should depend on the return series
being modeled. For example, one would choose different factors when modeling
the returns of a single company versus those of a broad-market mutual fund
versus those of a market-neutral hedge fund, etc.. Moreover, the choice of
factors might depend on the type of analysis being performed. For example,
one might be trying to ‘explain away’ the returns of one investment as the
returns of another investment (presumably one with smaller fees) plus noise.
Alternatively, one might be trying to establish that a given investment has
idiosyncratic ‘alpha’ (i.e., β0) without significant exposure to other factors.

1.8.1 Examples of linear attribution models

• As noted above, the Sharpe ratio implies a trivial factor model, namely
xt = β01 + ϵt. This simple model is generally a poor one for describing
stock returns; one is more likely to see it applied to the returns of mutual
funds, hedge funds, etc.

• The simple model does not take into account the influence of ‘the market’
on the returns of stocks. This suggests a factor model equivalent to the
Capital Asset Pricing Model (CAPM), namely xt = β01 + βMfM,t + ϵt,
where fM,t is the return of ‘the market‘ at time t. [7] (Note that the term
‘CAPM’ usually encompasses a number of assumptions used to justify the
validity of this model for stock returns.)
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This is clearly a superior model for stocks and portfolios with a long bias
(e.g., typical mutual funds), but might seem inappropriate for a long-short
balanced hedge fund, say. In this case, however, the loss of power in includ-
ing a market term is typically very small, while the possibility of reducing
type I errors is quite valuable. For example, one might discover that a
seemingly long-short balanced fund actually has some market exposure,
but no significant idiosyncratic returns (one cannot reject H0 : β0 = 0,
say); this is valuable information, since a hedge-fund investor might balk
at paying high fees for a return stream that replicates a (much less expen-
sive) ETF plus noise.

• Generalizations of the CAPM factor model abound. For example, the
Fama-French 3-factor model (I drop the risk-free rate for simplicity):

xt = β01 + βMfM,t + βSMBfSMB,t + βHMLfHML,t + ϵt,

where fM,t is the return of ‘the market‘, fSMB,t is the return of ‘small
minus big cap‘ stocks (the difference in returns of these two groups), and
fHML,t is the return of ‘high minus low book value‘ stocks. [17] Carhart
adds a momentum factor:

xt = β01 + βMfM,t + βSMBfSMB,t + βHMLfHML,t + βUMDfUMD,t + ϵt,

where fUMD,t is the return of ‘ups minus downs‘, i.e., the returns of the
previous period winners minus the returns of previous period losers. [13]

• Henriksson and Merton describe a technique for detecting market-timing
ability in a portfolio. One can cast this model as

xt = β01 + βMfM,t + βHM(−fM,t)
+
+ ϵt,

where fM,t are the returns of ‘the market’ the portfolio is putatively timing,
and x+ is the positive part of x. [24] Actually, one or several factor
timing terms can be added to any factor model. Note that unlike the
factor returns in models discussed above, one expects (−fM)

+
to have

significantly non-zero mean. This will cause some decrease in power when
testing β0 for significance. Also note that while Henriksson and Merton
intend this model as a positive test for βHM, one could treat the timing
component as a factor which one seeks to ignore entirely, or downweight
its importance.

• Often the linear factor model is used with a ‘benchmark’ (mutual fund,
index, ETF, etc.) used as the factor returns. In this case, the process
generating xt may or may not be posited to have zero exposure to the
benchmark, but usually one is testing for significant idiosyncratic term.

• Any of the above models can be augmented by splitting the idiosyncratic
term into a constant term and some time-based term. For example, it
is often argued that a certain strategy ‘worked in the past’ but does no
longer. This implies a splitting of the constant term as

xt = β01 + β0
′f0,t +

∑
i

βifi,t + ϵt,

where f0,t = (n− t)/n, given n observations. In this case the idiosyncratic
part is an affine function of time, and one can test for β0 independently
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of the time-based trend (one can also test whether β0
′ > 0 to see if the

‘alpha’ is truly decaying). One can also imagine time-based factors which
attempt to address seasonality or ‘regimes’.

1.8.2 Tests involving the linear attribution model

Given n observations of the returns and the factors, let x be the vector of
returns and let F be the n × l matrix consisting of the returns of the l factors
and a column of all ones. The ordinary least squares estimator for the regression
coefficients is expressed by the ’normal equations’:

β̂ =
(
F⊤F

)−1
F⊤x.

The estimated variance of the error term is σ̂2 =
(
x− Fβ̂

)⊤ (
x− Fβ̂

)
/(n− l).

1. The classical t-test for regression coefficients tests the null hypothesis:

H0 : β⊤v = c versus H1 : β⊤v > c,

for some conformable vector v and constant c. To perform this test, we
construct the regression t-statistic

t =
β̂⊤v − c

σ̂

√
v⊤(F⊤F)

−1
v
. (21)

This statistic should be distributed as a non-central t-distribution with
non-centrality parameter

δ =
β⊤v − c

σ

√
v⊤(F⊤F)

−1
v
,

and n− l degrees of freedom. Thus we reject the null if t is greater than
t1−α (n− l), the 1 − α quantile of the (central) t-distribution with n − l
degrees of freedom.

2. To test the null hypothesis:

H0 : β⊤v = σc versus H1 : β⊤v > σc,

for given v and c, one constructs the t-statistic

t =
β̂⊤v

σ̂

√
v⊤(F⊤F)

−1
v
. (22)

This statistic should be distributed as a non-central t-distribution with
non-centrality parameter

δ =
c√

v⊤(F⊤F)
−1

v
,

and n− l degrees of freedom. Thus we reject the null if t is greater than
t1−α (n− l, δ), the 1 − α quantile of the non-central t-distribution with
n− l degrees of freedom and non-centrality parameter δ.
Note that the statistic β̂0/σ̂ is the equivalent to the Sharpe ratio in the
general factor model (and β0/σ is the population analogue).
2FIX: 2 sample test for SNR of independent groups?
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1.8.3 Deviations from the model

The advantage of viewing Sharpe ratio as a least squares regression problem (or
of using the more general factor model for attribution), is that regression is a
well-studied problem. Indeed, numerous books and articles have been written
about the topic and how to test for, and deal with, deviations from the model:
autocorrelation, heteroskedasticity, non-normality, outliers, etc. [58, 32, 6, 29]

2 Sharpe ratio and portfolio optimization

Let x1,x2, . . . ,xn be independent draws from a k-variate normal with popula-
tion mean µ and population covariance Σ. Let µ̂ be the usual sample estimate
of the mean, µ̂ =

∑
i xi/n, and let Σ̂ be the usual sample estimate of the

covariance,

Σ̂ =df
1

n− 1

∑
i

(xi − µ̂) (xi − µ̂)
⊤
.

Consider the unconstrained optimization problem

max
ν̂:ν̂⊤Σ̂ν̂≤R2

ν̂⊤µ̂− r0√
ν̂⊤Σ̂ν̂

, (23)

where r0 is the risk-free rate, and R > 0 is a risk ‘budget’.
This problem has solution

ν̂∗ =df c Σ̂
−1µ̂, (24)

where the constant c is chosen to maximize return under the given risk budget:

c =
R√

µ̂⊤Σ̂−1µ̂

.

The Sharpe ratio of this portfolio is

ζ̂∗ =df
ν̂∗

⊤µ̂− r0√
ν̂∗

⊤Σ̂ν̂∗
=

√
µ̂⊤Σ̂−1µ̂− r0

R
. (25)

The term r0
R is deterministic; we can treat it as an annoying additive constant

that has to be minded. Define the population analogue of this quantity as

ζ∗ =df

√
µ⊤Σ−1µ− r0

R
. (26)

The random term, n
(
µ̂⊤Σ̂−1µ̂

)2
, is a Hotelling T 2, which follows a non-

central F distribution, up to scaling:

n

n− 1

n− k

k

(
ζ̂∗ +

r0
R

)2
∼ F

(
k, n− k, n

(
ζ∗ +

r0
R

)2)
,

where F (v1, v2, δ) is the non-central F -distribution with v1, v2 degrees of free-
dom and non-centrality parameter δ. This allows us to make inference about
ζ∗.
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By using the ’biased’ covariance estimate, defined as

Σ̃ =df
n− 1

n
Σ̂ =

1

n

∑
i

(xi − µ̂) (xi − µ̂)
⊤
,

the above expression can be simplified slightly as

n− k

k
µ̂⊤Σ̃−1µ̂ ∼ F

(
k, n− k, n

(
ζ∗ +

r0
R

)2)
.

2.1 Tests involving Hotelling’s Statistic

Here I list the classical multivariate analogues to the tests described in Sec-
tion 1.2:

1. The classical one-sample test for mean of a multivariate random variable
uses Hotelling’s statistic, just as the univariate test uses the t-statistic.
Unlike the univariate case, we cannot perform a one-sided test (because
p > 1 makes one-sidedness an odd concept), and thus we have the two-
sided test:

H0 : µ = µ0 versus H1 : µ ̸= µ0,

we reject at the α level if

T 2
0 = n(µ̂− µ0)

⊤Σ̂−1 (µ̂− µ0) ≥
p(n− 1)

n− p
f1−α (p, n− p) ,

where f1−α (p, n− p) is the 1− α quantile of the (central) F -distribution
with p and n− p degrees of freedom.
If µ = µ1 ̸= µ0, then the power of this test is

1− β = 1− Ff (f1−α (p, n− p) ; p, n− p, δ1) ,

where
δ1 = n(µ1 − µ0)

⊤Σ−1 (µ1 − µ0)

is the noncentrality parameter, and Ff (x; p, n− p, δ) is the cumulative
distribution function of the non-central F -distribution with non-centrality
parameter δ and p, n− p degrees of freedom. [5]
Note that the non-centrality parameter is equal to the population analogue
of the Hotelling statistic itself. One should take care that some references
(and perhaps statistical packages) have different ideas about how the non-
centrality parameter should be communicated. The above formulation
matches the convention used in the R statistical package and in Matlab’s
statistics toolbox. It is, however, off by a factor of two with respect to the
convention used by Bilodeau and Brenner. [5]

2. A one-sample test for optimal signal-to-noise ratio (SNR) involves the
Hotelling statistic as follows. To test

H0 : ζ∗ = ζ0 versus H1 : ζ∗ > ζ0,

we reject if

T 2
0 >

p(n− 1)

n− p
f1−α (p, n− p, δ0) ,
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where T 2
0 and δ0 are defined as above, and where f1−α (p, n− p, δ0) is

the 1 − α quantile of the non-central F -distribution with non-centrality
parameter δ0 and p and n− p degrees of freedom.
If ζ∗ > ζ0, then the power of this test is

1− β = 1− Ff (f1−α (p, n− p, δ0) ; p, n− p, δ∗) ,

where δ∗ = nζ2∗ , is the noncentrality parameter, and Ff (x; p, n− p, δ) is
the the cumulative distribution function of the non-central F -distribution
with non-centrality parameter δ and p, n− p degrees of freedom.

2.1.1 Power and Sample Size

In Section 1.6 I outlined the relationship of sample size and effect size for the
one-sample t-test, or equivalently, the one-sample test for SNR. Here I extend
those results to the Hotelling test for zero optimal population SNR, i.e., the
null ζ0 = 0. As noted in Section 2.1, the power of this test is 1 − β = 1 −
Ff (f1−α (p, n− p, 0) ; p, n− p, δ∗) .

This equation implicitly defines a sample size, n given α, β, p and δ∗. As it
happens, for fixed values of α, β and p, the sample size relationship is similar
to that found for the t-test:

n ≈ c

ζ2∗
,

where the constant c depends on α, β and p. For α = 0.05, an approximate
value of the numerator c is given in Table 3 for a few different values of the
power. Note that for p = 1, we should recover the same sample-size relationship
as shown in Table 1 for the two-sided test. This is simply because Hotelling’s
statistic for p = 1 is Student’s t-statistic squared (and thus side information is
lost).

numerator
power = 0.25 1.66p0.438+0.006 log p

power = 0.50 3.86p0.351+0.012 log p

power = 0.80 7.87p0.277+0.017 log p

Table 3: The numerator in the sample size relationship required to achieve a
fixed power in Hotelling’s test is shown. The type I rate is 0.05.

2.2 Asymptotics and Confidence Intervals

As noted in Section C.1, if F is distributed as a non-central F -distribution with
v1 and v2 degrees of freedom and non-centrality parameter δ, then the mean of√
F is approximated by:

E
[√

F
]
≈
√
E [F ]−

v2
2 (δ2+(v1+2) (2 δ+v1))
v12 (v2−4) (v2−2) − (E [F ])

2

8 (E [F ])
3
2

, (27)

where E [F ] = v2
v1

v1+δ
v2−2 .
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Now let T 2 = nζ̂2∗ be Hotelling’s statistic with n observations of a p-variate
vector returns series, and let ζ∗ be the maximal SNR of a linear combination of
the p populations. We know that

n− p

p(n− 1)
T 2 ∼ F (δ, p, n− p) ,

where the distribution has p and n− p degrees of freedom, and δ = nζ2∗ .
Substituting in the p and n − p for v1 and v2, letting p = can, and taking

the limit as n→∞, we have

E
[
ζ̂∗

]
=

√
(n− 1)p

n(n− p)
E
[√

F
]
→

√
ζ2∗ + ca
1− ca

,

which is approximately, but not exactly, equal to ζ∗. Note that if ca becomes
arbitrarily small (p is fixed while n grows without bound), then ζ̂∗ is asymptot-
ically unbiased.

The asymptotic variance appears to be

Var
(
ζ̂∗

)
→ ζ4∗ + 2ζ2∗ + ca

2n(1− ca)2(ζ2∗ + ca)
≈ 1 + 2ca

2n

(
1 +

1

1 + ca/ζ2∗

)
.

Consider as an example, the case where p = 30, n = 1000 days, and ζ∗ =
1.5 yr−1/2. Assuming 253 days per year, the expected value of ζ̂∗ is approx-
imately 3.19 yr−1/2, with standard error around 0.41. This is a very serious
bias. The problem is that the ‘aspect ratio,’ ca = p/n, is quite a bit larger than
ζ2∗ , and so it dominates the expectation. For real-world portfolios one expects
ζ2∗ to be no bigger than around 0.02 days−1, and thus one should aim to have
n ≫ 150p, as a bare minimum (to achieve ζ2∗ > 3ca, say). A more reasonable
rule of thumb would be n ≥ 253p, i.e., at least one year of data per degree of
freedom.

Using the asymptotic first moments of the Sharpe ratio gives only very rough
approximate confidence intervals on ζ∗. The following are passable when ζ2∗ ≫
ca:

ζ̂∗
√
1− ca−

ca

2ζ̂∗
±zα

√
2ζ̂2∗ + ca

2n(1− ca)(ζ̂2∗ + ca)
≈ ζ̂∗
√
1− ca−

ca

2ζ̂∗
±zα

√
1

2n(1− ca)

A better way to find confidence intervals is implicitly, by solving

1− α/2 = Ff

((
n(n− p)

p(n− 1)

)
ζ̂2∗ ; p, n− p, nζ2l

)
,

α/2 = Ff

((
n(n− p)

p(n− 1)

)
ζ̂2∗ ; p, n− p, nζ2u

)
,

(28)

where Ff (x; p, n− p, δ) is the CDF of the non-central F -distribution with non-
centrality parameter δ and p and n−p degrees of freedom. This method requires
computational inversion of the CDF function. Also, there may not be ζl or ζu
such that the above hold with equality, so one is forced to use the limiting forms:
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ζl = min

{
z

∣∣∣∣ z ≥ 0, 1− α/2 ≥ Ff

((
n(n− p)

p(n− 1)

)
ζ̂2∗ ; p, n− p, nz2

)}
,

ζu = min

{
z

∣∣∣∣ z ≥ 0, α/2 ≥ Ff

((
n(n− p)

p(n− 1)

)
ζ̂2∗ ; p, n− p, nz2

)}
.

(29)

Since Ff

(
·; p, n− p, nz2

)
is a decreasing function of z2, and approaches zero in

the limit, the above confidence intervals are well defined.

2.3 Inference on SNR

Spruill gives a sufficient condition for the MLE of the non-centrality parameter
to be zero, given a number of observations of random variables taking a non-
central F distribution. [66] For the case of a single observation, the condition
is particularly simple: if the random variable is no greater than one, the MLE
of the non-centrality parameter is equal to zero. The equivalent fact about the
optimal Sharpe ratio is that if ζ̂2∗ ≤ ca

1−ca
, then the MLE of ζ∗ is zero, where,

again, ca = p/n is the ‘aspect ratio.’
Using the expectation of the non-central F distribution, we can find an

unbiased estimator of ζ2∗ . [69] It is given by

E
[
(1− ca) ζ̂

2
∗ − ca

]
= ζ2∗ . (30)

While this is unbiased for ζ2∗ , there is no guarantee that it is positive! Thus
in practice, one should probably use the MLE of ζ2∗ , which is guaranteed to be
non-negative, then take its square root to estimate ζ∗.

Kubokawa, Robert and Saleh give an improved method (‘KRS’ !) for esti-
mating the non-centrality parameter given an observation of a non-central F
statistic. [31]

2.4 The ‘haircut’

Care must be taken interpreting the confidence intervals and the estimated
optimal SNR of a portfolio. This is because ζ∗ is the maximal population SNR
achieved by any portfolio; it is at least equal to, and potentially much larger
than, the SNR achieved by the portfolio based on sample statistics, ν̂∗. There
is a gap or ‘haircut’ due to mis-estimation of the optimal portfolio. One would
suspect that this gap is worse when the true effect size (i.e., ζ∗) is smaller, when
there are fewer observations (n), and when there are more assets (p).

Assuming µ is not all zeros, the achieved SNR is defined as

ζs,∗ =df
µ⊤ν̂∗√
ν̂∗

⊤Σν̂∗
. (31)

The haircut is then the quantity,

h =df 1−
ζs,∗
ζ∗

= 1−

(
ν̂∗

⊤µ

ν∗⊤µ

)(√
ν∗⊤Σν∗√
ν̂∗

⊤Σν̂∗

)
, (32)
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where ν∗ is the population optimal portfolio, positively proportional to Σ−1µ.
Thus the haircut is one minus the ratio of population SNR achieved by the
sample Markowitz portfolio to the optimal population SNR (which is achieved
by the population Markowitz portfolio). A smaller value means that the sample
portfolio achieves a larger proportion of possible SNR, or, equivalently, a larger
value of the haircut means greater mis-estimation of the optimal portfolio. The
haircut takes values in [0, 2]. When the haircut is larger than 1, the portfolio
ν̂∗ has negative expected returns.

Modeling the haircut is not straightforward because it is a random quantity
which is not observed. That is, it mixes the unknown population parameters Σ
and µ with the sample quantity ν̂∗, which is random.

To analyze the haircut, first consider the effects of a rotation of the returns
vector. Let P be some invertible square matrix, and let y = P⊤x. The popula-
tion mean and covariance of y are P⊤µ and P⊤ΣP, thus the Markowitz portfolio
is P−1Σ−1µ = P−1ν̂∗. These hold for the sample analogues as well. Rota-

tion does not change the maximum SNR, since
(
P⊤µ

)⊤(
P⊤ΣP

)−1 (
P⊤µ

)
=

µ⊤Σ−1µ = ζ∗. Rotation does not change the achieved SNR of the sample
Markowitz portfolio, since this is(

P⊤µ
)⊤

P−1ν̂∗√
(P−1ν̂∗)

⊤
(P⊤ΣP) (P−1ν̂∗)

=
µ⊤ν̂∗√
ν̂∗

⊤Σν̂∗
= ζs,∗.

Thus the haircut is not changed under a rotation. Now choose P to be a
square root of Σ−1 that rotates µ onto the first coordinate.3 That is, pick 3. That is, let

P be the or-
thogonal rota-
tion of a lower
Cholesky factor
of Σ−1.

P such that Σ−1 = PP⊤ and P⊤µ =
∥∥P⊤µ

∥∥
2
e1. Note that

∥∥P⊤µ
∥∥
2

=√
(P⊤µ)

⊤
(P⊤µ) =

√
µ⊤Σ−1µ = ζ∗. Thus the mean and covariance of y are

ζ∗e1 and P⊤ΣP = P⊤(PP⊤)−1
P = I.

So without loss of generality, it suffices to study the case where one observes
y, forms the Markowitz portfolio and experiences some haircut. But the popu-
lation parameters associated with y are simpler to deal with, a fact abused in
the section.

2.4.1 Approximate haircut under Gaussian returns

A simple approximation to the haircut can be had by supposing that ν̂y,∗ ≈
µ̂y. That is, since the population covariance of y is the identity, ignore the
contribution of the sample covariance to the Markowitz portfolio. Thus we are
treating the elements of ν̂y,∗ as independent Gaussians, each zero mean except
the first element which has mean ζ∗, and each with variance 1

n . We can then
untangle the contribution of the first element of ν̂y,∗ from the denominator by
making some trigonometric transforms:

tan (arcsin (1− h)) ∼ N (ζ∗, 1/n)√
χ2 (p− 1) /n

∼ N (
√
nζ∗, 1)√

χ2 (p− 1)

∼ 1√
p− 1

t
(√

nζ∗, p− 1
)
. (33)

Here t (δ, ν) is a non-central t-distribution with non-centrality parameter δ and
ν degrees of freedom.
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Because mis-estimation of the covariance matrix should contribute some er-
ror, I expect that this approximation is a ‘stochastic lower bound’ on the true
haircut. Numerical simulations, however, suggest it is a fairly tight bound
for large n/p. (I suspect that the true distribution involves a non-central F -
distribution, but the proof is beyond me at the moment.)

Here I look at the haircut via Monte Carlo simulations:

require(MASS)

# simple markowitz.

simple.marko <- function(rets) {
mu.hat <- as.vector(apply(rets, MARGIN = 2, mean,

na.rm = TRUE))

Sig.hat <- cov(rets)

w.opt <- solve(Sig.hat, mu.hat)

retval <- list(mu = mu.hat, sig = Sig.hat, w = w.opt)

return(retval)

}
# make multivariate pop. & sample w/ given

# zeta.star

gen.pop <- function(n, p, zeta.s = 0) {
true.mu <- matrix(rnorm(p), ncol = p)

# generate an SPD population covariance. a

# hack.

xser <- matrix(rnorm(p * (p + 100)), ncol = p)

true.Sig <- t(xser) %*% xser

pre.sr <- sqrt(true.mu %*% solve(true.Sig, t(true.mu)))

# scale down the sample mean to match the

# zeta.s

true.mu <- (zeta.s/pre.sr[1]) * true.mu

X <- mvrnorm(n = n, mu = true.mu, Sigma = true.Sig)

retval = list(X = X, mu = true.mu, sig = true.Sig,

SNR = zeta.s)

return(retval)

}
# a single simulation

sample.haircut <- function(n, p, ...) {
popX <- gen.pop(n, p, ...)

smeas <- simple.marko(popX$X)

# I have got to figure out how to deal with

# vectors...

ssnr <- (t(smeas$w) %*% t(popX$mu))/sqrt(t(smeas$w) %*%

popX$sig %*% smeas$w)

hcut <- 1 - (ssnr/popX$SNR)

# for plugin estimator, estimate zeta.star

asro <- sropt(z.s = sqrt(t(smeas$w) %*% smeas$mu),

df1 = p, df2 = n)

zeta.hat.s <- inference(asro, type = "KRS") # or 'MLE', 'unbiased'

return(c(hcut, zeta.hat.s))

}

# set everything up

set.seed(as.integer(charToRaw("496509a9-dd90-4347-aee2-1de6d3635724")))

23



ope <- 253

n.sim <- 4096

n.stok <- 6

n.yr <- 4

n.obs <- ceiling(ope * n.yr)

zeta.s <- 1.2/sqrt(ope) # optimal SNR, in daily units

# run some experiments

experiments <- replicate(n.sim, sample.haircut(n.obs,

n.stok, zeta.s))

hcuts <- experiments[1, ]

print(summary(hcuts))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.01 0.15 0.25 0.30 0.39 1.74

# haircut approximation in the equation above

qhcut <- function(p, df1, df2, zeta.s, lower.tail = TRUE) {
atant <- atan((1/sqrt(df1 - 1)) * qt(p, df = df1 -

1, ncp = sqrt(df2) * zeta.s, lower.tail = !lower.tail))

# a slightly better approximation is: retval

# <- 1 - sin(atant - 0.0184 * zeta.s *

# sqrt(df1 - 1))

retval <- 1 - sin(atant)

}
# if you wanted to look at how bad the plug-in

# estimator is, then uncomment the following (you

# are warned): zeta.hat.s <- experiments[2,];

# qqplot(qhcut(ppoints(length(hcuts)),n.stok,n.obs,zeta.hat.s),hcuts,

# \t\t\t xlab = 'Theoretical Approximate

# Quantiles', ylab = 'Sample Quantiles');

# qqline(hcuts,datax=FALSE,distribution =

# function(p) { qhcut(p,n.stok,n.obs,zeta.hat.s)

# }, \t\t\t col=2)

# qqplot;

qqplot(qhcut(ppoints(length(hcuts)), n.stok, n.obs,

zeta.s), hcuts, xlab = "Theoretical Approximate Quantiles",

ylab = "Sample Quantiles")

qqline(hcuts, datax = FALSE, distribution = function(p) {
qhcut(p, n.stok, n.obs, zeta.s)

}, col = 2)

I check the quality of the approximation given in Equation 33 by a Q-Q plot
in Figure 3. For the case where n = 1012 (4 years of daily observations), p = 6
and ζ∗ = 1.2yr−1/2, the t-approximation is very good indeed.

The median value of the haircut is on the order of 25%, meaning that the
median population SNR of the sample portfolios is around 0.9yr−1/2. The max-
imum value of the haircut over the 4096 simulations, however is 1.74, which is
larger than one; this happens if and only if the sample portfolio has negative
expected return: ν̂∗

⊤µ < 0. In this case the Markowitz portfolio is actually
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Figure 3: Q-Q plot of 4096 simulated haircut values versus the approximation
given by Equation 33 is shown.
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destroying value because of modeling error: the mean return of the selected
portfolio is negative, even though positive mean is achievable.

The approximation in Equation 33 involves the unknown population param-
eters µ and Σ, but does not make use of the observed quantities µ̂ and Σ̂.
It seems mostly of theoretical interest, perhaps for producing prediction inter-
vals on h when planning a trading strategy (i.e., balancing n and p). A more

practical problem is that of estimating confidence intervals on ν̂⊤µ/
√
ν̂⊤Σ−1ν̂

having observed µ̂ and Σ̂. In this case one cannot simply plug-in some estimate
of ζ∗ computed from ζ̂∗ (via MLE, KRS, etc.) into Equation 33. The reason
is that the error in the approximation of ζ∗ is not independent of the modeling
error that causes the haircut.

2.4.2 Empirical approximations under Gaussian returns

For ‘sane’ ranges of n, p, and ζ∗, Monte Carlo studies using Gaussian returns
support the following approximations for the haircut, which you should take
with a grain of salt:

h ≈ 1− sin

(
arctan

(
t√

p− 1

)
− 0.0184ζ∗

√
p− 1

)
,

where t ∼ t
(√

nζ∗, p− 1
)
,

median (h) ≈ 1− sin

(
arctan

( √
nζ∗√
p− 1

))
,

E [h] ≈ 1−

√
nζ2∗

p+ nζ2∗
,

Var (h) ≈ p(
p+ [nζ2∗ ]

1.08
)2 .

(34)

The first of these is a slight modification of the approximation given in
Equation 33, which captures some of the SNR loss due to mis-estimation of Σ.
Note that each of these approximations uses the unknown maximal SNR, ζ∗;
plugging in the sample estimate ζ̂∗ will give poor approximations because ζ̂∗ is
biased. (See Section 2.2 and Section 2.3.)

These approximations are compared to empirical values from the the 4096
Monte Carlo simulations reported above, in Table 4.

Monte.Carlo approximation
median 0.25 0.27
mean 0.30 0.30

standard deviation 0.20 0.19

Table 4: Empirical approximate values of the median, mean, and standard de-
viation of the haircut distribution are given for 4096 Monte Carlo simulations
of 1012 days of Gaussian data for 6 assets with ζ∗ = 1.2yr−1/2. The approxi-
mations from Equation 34 are also reported.
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3 Sharpe ratio and constrained portfolio opti-
mization

3.1 Basic subspace constraint

Let G be an kg × k matrix of rank kg ≤ k. Let GC be the matrix whose rows
span the null space of the rows of G, i.e., GCG⊤ = 0. Consider the constrained
optimization problem

max
ν̂:GC ν̂=0, ν̂⊤Σ̂ν̂≤R2

ν̂⊤µ̂− r0√
ν̂⊤Σ̂ν̂

, (35)

where, as previously, µ̂, Σ̂ are the sample mean vector and covariance matrix,
r0 is the risk-free rate, and R > 0 is a risk ‘budget’.

The gist of this constraint is that feasible portfolios must be some linear
combination of the rows of G, or ν̂ = G⊤ν̂g, for some unknown vector ν̂g. When
viewed in this light, the constrained problem reduces to that of optimizing the
portfolio on kg assets with sample mean Gµ̂ and sample covariance GΣ̂G⊤. This
problem has solution

ν̂∗,G =df cG
⊤
(
GΣ̂G⊤

)−1

Gµ̂, (36)

where the constant c is chosen to maximize return under the given risk budget,
as in the unconstrained case. The Sharpe ratio of this portfolio is

ζ̂∗,G =df
ν̂∗,G

⊤µ̂− r0√
ν̂∗,G

⊤Σ̂ν̂∗,G

=

√
(Gµ̂)⊤

(
GΣ̂G⊤

)−1

(Gµ̂)− r0
R
. (37)

Again, for purposes of estimating the population analogue, we can largely ig-
nore, for simplicity of exposition, the deterministic ‘drag’ term r0/R. As in the
unconstrained case, the random term is a T 2 statistic, which can be transformed
to a non-central F as

n

n− 1

n− kg
kg

(
ζ̂∗,G +

r0
R

)2
∼ F

(
kg, n− kg, n

(
ζ∗,G +

r0
R

)2)
.

This allows us to make inference about ζ∗,G, the population analogue of ζ̂∗,G.

3.2 Spanning and hedging

Consider the constrained portfolio optimization problem on k assets,

max
ν̂:GΣ̂ν̂=g, ν̂⊤Σ̂ν̂≤R2

ν̂⊤µ̂− r0√
ν̂⊤Σ̂ν̂

, (38)

where G is an kg × k matrix of rank kg, and, as previously, µ̂, Σ̂ are sample
mean vector and covariance matrix, r0 is the risk-free rate, and R > 0 is a risk
‘budget’. We can interpret the G constraint as stating that the covariance of
the returns of a feasible portfolio with the returns of a portfolio whose weights
are in a given row of G shall equal the corresponding element of g. In the
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garden variety application of this problem, G consists of kg rows of the identity
matrix, and g is the zero vector; in this case, feasible portfolios are ‘hedged’ with
respect to the kg assets selected by G (although they may hold some position in
the hedged assets).

Assuming that the G constraint and risk budget can be simultaneously sat-
isfied, the solution to this problem, via the Lagrange multiplier technique, is

ν̂∗ = c

(
Σ̂−1µ̂− G⊤

(
GΣ̂G⊤

)−1

Gµ̂

)
+ G⊤

(
GΣ̂G⊤

)−1

g,

c2 =
R2 − g⊤

(
GΣ̂G⊤

)
g

µ̂⊤Σ̂−1µ̂− (Gµ̂)⊤
(
GΣ̂G⊤

)−1

(Gµ̂)
,

(39)

where the numerator in the last equation need be positive for the problem to
be feasible.

The case where g ̸= 0 is ‘pathological’, as it requires a fixed non-zero covari-
ance of the target portfolio with some other portfolio’s returns. Setting g = 0
ensures the problem is feasible, and I will make this assumption hereafter. Under
this assumption, the optimal portfolio is

ν̂∗ = c

(
Σ̂−1µ̂− G⊤

(
GΣ̂G⊤

)−1

Gµ̂

)
= c1ν̂∗,I − c2ν̂∗,G,

using the notation from Section 3.1. Note that, up to scaling, Σ̂−1µ̂ is the
unconstrained optimal portfolio, and thus the imposition of the G constraint
only changes the unconstrained portfolio in assets corresponding to columns of
G containing non-zero elements. In the garden variety application where G is a
single row of the identity matrix, the imposition of the constraint only changes
the holdings in the asset to be hedged (modulo changes in the leading constant
to satisfy the risk budget).

The squared Sharpe ratio of the optimal portfolio is

ζ̂2∗ = µ̂⊤Σ̂−1µ̂− (Gµ̂)⊤
(
GΣ̂G⊤

)−1

(Gµ̂) = ζ̂2∗,I − ζ̂2∗,G, (40)

using the notation from Section 3.1, and setting r0 = 0.
Some natural questions to ask are

1. Does the imposition of the G constraint cause a material decrease in Sharpe
ratio? Can we estimate the size of the drop?

Performing the same computations on the population analogues (i.e., µ,
Σ), we have ζ2∗ = ζ2∗,I − ζ2∗,G, and thus the drop in squared signal-noise

ratio by imposing the G hedge constraint is equal to ζ2∗,G. We can per-

form inference on this quantity by considering the statistic ζ̂2∗,G, as in the
previous section.

2. Is the constrained portfolio ‘good’? Formally we can test the hypothesis
H0 : ζ2∗,I − ζ2∗,G = 0, or find point or interval estimates of ζ2∗,I − ζ2∗,G.

This generalizes the known tests of portfolio spanning. [28, 25] A spanning
test considers whether the optimal portfolio on a pre-fixed subset of kg
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assets has the same Sharpe ratio as the optimal portfolio on all k assets,
i.e., whether those kg assets ‘span’ the set of all assets.

If you let G be the kg × k matrix consisting of the kg rows of the identity
matrix corresponding to the kg assets to be tested for spanning, then the
term

ζ̂2∗,G = (Gµ̂)⊤
(
GΣ̂G⊤

)−1

(Gµ̂)

is the squared Sharpe ratio of the optimal portfolio on only the kg spanning
assets. A spanning test is then a test of the hypothesis

H0 : ζ2∗,I = ζ2∗,G.

The test statistic

FG =
n− k

k − kg

ζ̂2∗,I − ζ̂2∗,G
n−1
n + ζ̂2∗,G

(41)

was shown by Rao to follow an F distribution under the null hypothesis.
[57] Giri showed that, under the alternative, and conditional on observing

ζ̂2∗,G,

FG ∼ F

(
k − kg, n− k,

n

1 + n
n−1 ζ̂

2
∗,G

(
ζ2∗,I − ζ2∗,G

))
, (42)

where F (v1, v2, δ) is the non-central F -distribution with v1, v2 degrees of
freedom and non-centrality parameter δ. See Section D. [19]

3.3 Portfolio optimization with an ℓ2 constraint

Consider the constrained portfolio optimization problem on k assets,

max
ν̂:ν̂⊤Γν̂≤R2

ν̂⊤µ̂− r0√
ν̂⊤Σ̂ν̂

, (43)

where R is an ℓ2 constraint, and Γ is a fixed, symmetric positive definite matrix.
This corresponds to the case where one is maximizing Sharpe ratio subject
to a volatility constraint imposed by a covariance different from the one used
to estimate Sharpe ratio. This can result from e.g., using a longer history to
compute Γ, or from having an insane risk-manager, etc.

Let P be the matrix whose rows are the generalized eigenvalues of Σ̂, Γ, and
let Λ be the diagonal matrix whose elements are the generalized eigenvalues.
That is, we have

Σ̂P = ΓPΛ, P⊤ΓP = I.

Now let ν̂ = Pv̂. We can re-frame the original problem, Equation 43, in terms
of v̂ as follows:

max
v̂:v̂⊤v̂≤R2

v̂⊤Pµ̂− r0√
v̂⊤Λv̂

, (44)

Employing the Lagrange multiplier technique, this optimization problem is
solved by

v̂∗ = c(Λ+ γI)−1Pµ̂, (45)
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where c is set to satisfy the risk cap, and γ comes from the Lagrange multiplier.
To satisfy the risk cap, we should have

c =
R√

µ̂⊤P⊤ (Λ+ γI)−2 Pµ̂
.

The problem is reduced to a one-dimensional optimization of γ:

max
γ

µ̂⊤P⊤(Λ+ γI)−1Pµ̂− r0
R

√
µ̂⊤P⊤ (Λ+ γI)−2 Pµ̂√

µ̂⊤P⊤Λ (Λ+ γI)−2 Pµ̂
. (46)

Unfortunately, this problem has to be solved numerically in γ. Moreover,
the statistical properties of the resultant optimum are not, to my knowledge,
well understood.

3.4 Optimal Sharpe ratio under positivity constraint

Consider the following portfolio optimization problem:

max
ν̂:ν̂≥0, ν̂⊤Σ̂ν̂≤R2

ν̂⊤µ̂− r0√
ν̂⊤Σ̂ν̂

, (47)

where the constraint ν̂ ≥ 0 is to be interpreted element-wise. In general, the
optimal portfolio, call it ν̂∗,+, must be found numerically.4 4. Unless,

by some
miracle, the
unconstrained
optimal port-
folio happens
to satisfy
the positivity
constraint.

The squared Sharpe ratio of the portfolio ν̂∗,+ has value

ζ̂2∗,+ =

(
ν̂∗,+

⊤µ̂
)2

ν̂∗,+
⊤Σ̂ν̂∗,+

.

The statistic nζ̂2∗,+, which is a constrained Hotelling T 2, has been studied to
test the hypothesis of zero multivariate mean against an inequality-constrained
alternative hypothesis. [64, 62]

Unfortunately, ζ̂2∗,+ is not a similar statistic. That is, its distribution de-
pends on the population analogue, ζ2∗,+, but also on the uknown nuisance pa-

rameter, Σ. And so using ζ̂2∗,+ to test the hypothesis H0 : ζ2∗,+ = 0 only yields
a conservative test, with a maximal type I rate. Intuitively, the Hotelling T 2,
which is invariant with respect to an invertible transform, should not mix well
with the positive-orthant constraint, which is not invariant.

One consequence of non-similarity is that using in-sample Sharpe ratio as
a yardstick of the quality of so constrained portfolio is unwise. For one can
imagine universe A, containing of two zero-mean assets, and universe B with two
assets with positive mean, where the different covariances in the two universes
implies that the sample optimal constrained Sharpe ratio is likely to be larger
in universe A than in universe B.

4 Multivariate inference in unified form

Here I describe a way to think about multivariate distributions that eliminates,
to some degree, the distinction between mean and covariance, in order to sim-
plify calculations and exposition. The basic idea is to prepend a deterministic 1

30



to the random vector, then perform inference on the uncentered second moment
matrix. A longer form of this chapter is available elsewhere. [52]

Let x̃ be the p-variate vector x prepended with a 1: x̃ =
[
1,x⊤]⊤. Consider

the second moment of x̃:

Θ =df E
[
x̃x̃⊤

]
=

[
1 µ⊤

µ Σ+ µµ⊤

]
. (48)

By inspection one can confirm that the inverse of Θ is

Θ−1 =

[
1 + µ⊤Σ−1µ −µ⊤Σ−1

−Σ−1µ Σ−1

]
=

[
1 + ζ2∗ −ν∗

⊤

−ν∗ Σ−1

]
.

The (upper) Cholesky factor of Θ is

Θ1/2 =

[
1 µ⊤

0 Σ1/2

]
.

In some situations, the Cholesky factor of Θ−1 might be of interest. In this
situation, one can append a 1 to x instead of prepending it. When Θ is defined
in this way, the Cholesky factor of Θ−1 (but not that of Θ) has a nice form:[

Σ−1/2 −Σ−1/2µ
0 1

]⊤ [
Σ−1/2 −Σ−1/2µ

0 1

]
=

[
Σ−1 −ν∗
−ν∗

⊤ 1 + ζ2∗

]
, (49)

where the latter is Θ−1 when defined by appending a 1.
The relationships above are merely facts of linear algebra, and so hold for

the sample estimates as well:[
1 + ζ̂2∗ −ν̂∗

⊤

−ν̂∗ Σ̂−1

]−1

=

[
1 µ̂⊤

µ̂ Σ̂+ µ̂µ̂⊤

]
=

[
1 µ̂⊤

0 Σ̂1/2

]⊤ [
1 µ̂⊤

0 Σ̂1/2

]
.

Given n i.i.d. observations of x, let X̃ be the matrix whose rows are the
vectors x̃i

⊤. The näıve sample estimator

Θ̂ =df
1

n
X̃⊤X̃ (50)

is an unbiased estimator since Θ = E
[
x̃⊤x̃

]
.

4.1 Asymptotic distribution of the Markowitz portfolio

Collecting the mean and covariance into the second moment matrix as we have
done gives the asymptotic distribution of the sample Markowitz portfolio with-
out much work. This computation generalizes the ‘standard’ asymptotic analy-
sis of Sharpe ratio of multiple assets, as in Section 1.5.

Let vec (A), and vech (A) be the vector and half-space vector operators. The
former turns an p× p matrix into an p2 vector of its columns stacked on top of
each other; the latter vectorizes a symmetric (or lower triangular) matrix into
a vector of the non-redundant elements. [41]
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Define, as we have above, Θ̂ to be the unbiased sample estimate of Θ, based
on n i.i.d. samples of x̃. Under the multivariate central limit theorem [70]

√
n
(
vech

(
Θ̂
)
− vech (Θ)

)
⇝ N (0,Ω) , (51)

where Ω is the variance of vech
(
Θ̂
)
, which, in general, is unknown. For the

case where x is multivariate Gaussian, Ω is known; see Section ??.
The Markowitz portfolio appears in −Θ̂−1. Let L be the ‘Elimination Ma-

trix,’ a matrix of zeros and ones with the property that vech (A) = L vec (A) .
[41] Let D be the duplication matrix, which has the property that vec (A) =
D vech (A) .We can find the asymptotic distribution of Θ̂−1 via the delta method.
The derivative of the matrix inverse is given by

dvec
(
A−1

)
d vec (A)

= −A−1 ⊗ A−1, (52)

for symmetric A. [41, 16] We can reduce this to the non-redundant parts via
the Elimination matrix:

dvech
(
A−1

)
d vech (A)

= L
dvec

(
A−1

)
d vec (A)

D = −L
(
A−1 ⊗ A−1

)
D. (53)

Then we have, via the delta method,

√
n
(
vech

(
Θ̂−1

)
− vech

(
Θ−1

))
⇝

N
(
0,
[
L
(
Θ−1 ⊗Θ−1

)
D
]⊤

Ω
[
L
(
Θ−1 ⊗Θ−1

)
D
])

. (54)

To estimate the covariance of vech
(
Θ̂−1

)
− vech

(
Θ−1

)
, plug in Θ̂ for Θ in

the covariance computation, and use some consistent estimator for Ω, call it Ω̂.
The simple sample estimate can be had by computing the sample covariance of

the vectors vech
(
x̃ix̃i

⊤
)
=
[
1,xi

⊤, vech
(
xixi

⊤)⊤]⊤. More elaborate covari-

ance estimators can be used, for example, to deal with violations of the i.i.d.
assumptions.

Empirically, the marginal Wald test for zero weighting in the Markowitz
portfolio based on this approximation are nearly identical to the t-statistics
produced by the procedure of Britten-Jones, as shown below. [11]

nday <- 1024

nstk <- 5

# under the null: all returns are zero mean;

set.seed(as.integer(charToRaw("7fbb2a84-aa4c-4977-8301-539e48355a35")))

rets <- matrix(rnorm(nday * nstk), nrow = nday)

# t-stat via Britten-Jones procedure

bjones.ts <- function(rets) {
ones.vec <- matrix(1, nrow = dim(rets)[1], ncol = 1)

bjones.mod <- lm(ones.vec ~ rets - 1)
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bjones.sum <- summary(bjones.mod)

retval <- bjones.sum$coefficients[, 3]

}
# wald stat via inverse second moment trick

ism.ws <- function(rets) {
# flipping the sign on returns is idiomatic,

asymv <- ism_vcov(-rets)

asymv.mu <- asymv$mu[1:asymv$p]

asymv.Sg <- asymv$Ohat[1:asymv$p, 1:asymv$p]

retval <- asymv.mu/sqrt(diag(asymv.Sg))

}

bjones.tstat <- bjones.ts(rets)

ism.wald <- ism.ws(rets)

# compare them:

print(bjones.tstat)

## rets1 rets2 rets3 rets4 rets5

## 0.495 0.048 1.208 -0.454 -1.464

print(ism.wald)

## asset_001 asset_002 asset_003 asset_004 asset_005

## 0.496 0.048 1.211 -0.457 -1.464

# repeat under the alternative;

set.seed(as.integer(charToRaw("a5f17b28-436b-4d01-a883-85b3e5b7c218")))

zero.rets <- t(matrix(rnorm(nday * nstk), nrow = nday))

mu.vals <- (1/sqrt(253)) * seq(-1, 1, length.out = nstk)

rets <- t(zero.rets + mu.vals)

bjones.tstat <- bjones.ts(rets)

ism.wald <- ism.ws(rets)

# compare them:

print(bjones.tstat)

## rets1 rets2 rets3 rets4 rets5

## -3.74 -1.76 -0.03 2.90 2.54

print(ism.wald)

## asset_001 asset_002 asset_003 asset_004 asset_005

## -3.69 -1.75 -0.03 2.90 2.54

4.2 Unified Multivariate Gaussian

Note that
(x− µ)

⊤Σ−1 (x− µ) = x̃⊤Θ−1x̃− 1.

Using the block determinant formula, we find that Θ has the same determinant
as Σ, that is |Θ| = |Σ| . These relationships hold without assuming a particular
distribution for x.

33



Assume, now, that x is multivariate Gaussian. Then the density of x can
be expressed more simply as

fN (x;µ,Σ) =
1√

(2π)
p |Σ|

exp

(
−1

2
(x− µ)

⊤Σ−1 (x− µ)

)
,

=
(|Σ|)−

1
2

(2π)
p/2

exp

(
−1

2

(
x̃⊤Θ−1x̃− 1

))
,

= (2π)
−p/2

(|Θ|)−
1
2 exp

(
−1

2

(
x̃⊤Θ−1x̃− 1

))
,

= (2π)
−p/2

exp

(
1

2
− 1

2
log |Θ| − 1

2
tr
(
Θ−1x̃x̃⊤

))
,

∴ − log fN (x;µ,Σ) = cp +
1

2
log |Θ|+ 1

2
tr
(
Θ−1x̃x̃⊤

)
,

for the constant cp = e
1
2 − p

2 log (2π) .

Given n i.i.d. observations of x, let X̃ be the matrix whose rows are the
vectors xi

⊤. Then the negative log density of X̃ is

− log fN

(
X̃;Θ

)
= ncp +

n

2
log |Θ|+ 1

2
tr
(
Θ−1X̃⊤X̃

)
.

Again let Θ̂ = X̃⊤X̃/n, the unbiased sample estimate of Θ. Then

−2 log fN
(
X̃;Θ

)
n

= cp + log |Θ|+ tr
(
Θ−1Θ̂

)
.

By Lemma (5.1.1) of Press [56], this can be expressed as a density on Θ̂,
which is a sufficient statistic:

−2 log f
(
Θ̂;Θ

)
n

=
−2 log fN

(
X̃;Θ

)
n

− 2

n

(
n− p− 2

2
log
∣∣∣Θ̂∣∣∣)

− 2

n

p+ 1

2

(
n− p

2

)
log π −

p+1∑
j=1

log Γ

(
n+ 1− j

2

) ,

= cp −
p+ 1

n

(
n− p

2

)
log π − 2

n

p+1∑
j=1

log Γ

(
n+ 1− j

2

)
+ log |Θ| − n− p− 2

n
log
∣∣∣Θ̂∣∣∣+ tr

(
Θ−1Θ̂

)
,

= c′n,p + log |Θ| − n− p− 2

n
log
∣∣∣Θ̂∣∣∣+ tr

(
Θ−1Θ̂

)
,

= c′n,p − log
∣∣Θ−1

∣∣− n− p− 2

n
log
∣∣∣Θ̂∣∣∣+ tr

(
Θ−1Θ̂

)
.

The density of Θ̂ is thus

f
(
Θ̂;Θ

)
= c′′n,p

∣∣∣Θ̂∣∣∣n−p−2
2

|Θ|
n
2

exp
(
−n

2
tr
(
Θ−1Θ̂

))
. (55)
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Thus nΘ̂ has the same density, up to the leading constant, as a p+1-dimensional
Wishart random variable with n degrees of freedom and scale matrix Θ. In fact,
nΘ̂ is a conditional Wishart, conditional on Θ̂1,1 = 1.

4.3 Maximum Likelihood Estimator

The maximum likelihood estimator of Θ is found by taking the derivative of the
(log) likelihood with respect to Θ and finding a root. However, the derivative
of log likelihood with respect to Θ is mildly unpleasant:

dlog f
(
Θ̂;Θ

)
dΘ

= −n

2

dlog |Θ|
dΘ

− n

2

dtr
(
Θ−1Θ̂

)
dΘ

,

= −n

2
Θ−1 +

n

2
Θ−1Θ̂Θ−1,

(56)

However, the derivative with respect to Θ−1 is a bit simpler:

dlog f
(
Θ̂;Θ

)
dΘ−1

=
n

2

dlog
∣∣Θ−1

∣∣
dΘ−1

− n

2

dtr
(
Θ−1Θ̂

)
dΘ−1

,

=
n

2

(
Θ− Θ̂

)
.

(57)

(See Magnus and Neudecker or the Matrix Cookbook for a refresher on matrix
derivatives. [42, 55]) Thus the likelihood is maximized by ΘMLE = Θ̂, i.e.,
the unbiased sample estimator is also the MLE. Note that this is also a root of
Equation 56.

Since ΘMLE = Θ̂, the log likelihood of the MLE is

log f
(
ΘMLE

∣∣∣Θ̂) = −n

2
c′n,p −

n

2
log
∣∣ΘMLE

∣∣+ n− p− 2

2
log
∣∣∣Θ̂∣∣∣

+ tr
(
ΘMLE

−1Θ̂
)
,

= −n

2
c′n,p −

p+ 2

2
log
∣∣∣Θ̂∣∣∣+ (p+ 1) .

(58)

4.4 Likelihood Ratio Test

Suppose that Θ0 is the maximum likelihood estimate of Θ under some null
hypothesis under consideration. The likelihood ratio test statistic is

−2 log Λ =df −2 log

 f
(
Θ0

∣∣∣Θ̂)
f
(
ΘMLE

∣∣∣Θ̂)
 ,

= n
(
log
∣∣Θ0ΘMLE

−1
∣∣+ tr

([
Θ0

−1 −ΘMLE
−1
]
Θ̂
))

,

= n
(
log
∣∣∣Θ0Θ̂

−1
∣∣∣+ tr

(
Θ0

−1Θ̂
)
− [p+ 1]

)
.

(59)

4.4.1 Tests on the Precision and Markowitz Portfolio

For some conformable symmetric matrices Ai, and given scalars ai, consider the
null hypothesis

H0 : tr
(
AiΘ

−1
)
= ai, i = 1, . . . ,m. (60)
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The constraints have to be sensible. For example, they cannot violate the pos-
itive definiteness of Θ−1, etc. Without loss of generality, we can assume that
the Ai are symmetric, since Θ is symmetric, and for symmetric G and square
H, tr (GH) = tr

(
G 1

2

(
H+ H⊤)), and so we could replace any non-symmetric Ai

with 1
2

(
Ai + Ai

⊤
)
.

Employing the Lagrange multiplier technique, the maximum likelihood esti-
mator under the null hypothesis satisfies

0 =
dlog f

(
Θ̂;Θ

)
dΘ−1

−
∑
i

λi

dtr
(
AiΘ

−1
)

dΘ−1
,

= −Θ+ Θ̂−
∑
i

λiAi,

∴ ΘMLE = Θ̂−
∑
i

λiAi.

The maximum likelihood estimator under the constraints has to be found nu-
merically by solving for the λi, subject to the constraints in Equation 60.

This framework slightly generalizes Dempster’s “Covariance Selection.” [15]
Covariance selection reduces to the case where each ai is zero, and each Ai

is a matrix of all zeros except two (symmetric) ones somewhere in the lower
right p× p sub matrix. In all other respects, however, the solution here follows
Dempster.

An iterative technique for finding the MLE based on a Newton step would
proceed as follow. [48] Let λ(0) be some initial estimate of the vector of λi.
(A good initial estimate can likely be had by abusing the asymptotic normality

result from Section 4.1.) The residual of the kth estimate, λ(k) is

ϵ
(k)
i =df tr

Ai

Θ̂−∑
j

λ
(k)
j Aj

−1
− ai. (61)

The Jacobian of this residual with respect to the lth element of λ
(k)
i s

dϵ
(k)
i

dλ
(k)
l

= tr

Ai

Θ̂−∑
j

λ
(k)
j Aj

−1

Al

Θ̂−∑
j

λ
(k)
j Aj

−1
 ,

= vec (Ai)
⊤


Θ̂−∑

j

λ
(k)
j Aj

−1

⊗

Θ̂−∑
j

λ
(k)
j Aj

−1
 vec (Al) .

(62)

Newton’s method is then the iterative scheme

λ(k+1) ← λ(k) −
(
dϵ(k)

dλ(k)

)−1

ϵ(k). (63)

When (if?) the iterative scheme converges on the optimum, one can compute
the likelihood ratio statistic −2 log Λ, as defined in Equation 59. By Wilks’
Theorem, under the null hypothesis, −2 log Λ is, asymptotically in n, distributed
as a chi-square with m degrees of freedom. [72]
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5 Miscellanea

5.1 Which returns?

There is often some confusion regarding the form of returns (i.e., log returns or
‘relative’ returns) to be used in computation of the Sharpe ratio. Usually log
returns are recommended because they aggregate over time by summation (e.g.,
the sum of a week’s worth of daily log returns is the weekly log return), and
thus taking the mean of them is considered sensible. For this reason, adjusting
the time frame (e.g., annualizing) of log returns is trivial.

However, relative returns have the property that they are additive ’laterally’:
the relative return of a portfolio on a given day is the dollar-weighted mean of the
relative returns of each position. This property is important when one considers
more general attribution models, or Hotelling’s distribution. To make sense of
the sums of relative returns one can think of a fund manager who always invests
a fixed amount of capital, siphoning off excess returns into cash, or borrowing5 5. at no inter-

est!cash to purchase stock. Under this formulation, the returns aggregate over time
by summation just like log returns.

One reason fund managers might use relative returns when reporting Sharpe
ratio is because it inflates the results! The ‘boost’ from computing Sharpe using
relative returns is approximately:

ζ̂r − ζ̂

ζ̂
≈ 1

2

∑
i x

2∑
i x

, (64)

where ζ̂r is the Sharpe measured using relative returns and ζ̂ uses log returns.
This approximation is most accurate for daily returns, and for the modest values
of Sharpe ratio one expects to see for real funds.

5.2 Sharpe tricks

5.2.1 Sharpe ratio bounds probability of a loss

Suppose the SNR of a return series is positive. Then, by Cantelli’s inequality:

Pr {x < 0} = Pr {µ− x > µ} = Pr {µ− x > ζσ} ≤ 1

1 + ζ2
.

This is a very loose upper bound on the probability of a loss, and is fairly useless
on any timescale for which the SNR is less than one.

5.3 Sharpe ratio and drawdowns

Drawdowns are the quant’s bugbear. Though a fund may have a reasonably
high signal-noise ratio, it will likely face redemptions and widespread manage-
rial panic if it experiences a large drawdown. Moreover, drawdowns are a statis-
tically nebulous beast: the sample maximum drawdown does not correspond in
an obvious way to some population parameter; the variance of sample maximum
drawdown is typically very high; traded strategies are typically cherry-picked to
not have a large maximum drawdown in backtests; the distribution of maximum
drawdowns is certainly affected by skew and kurtosis, heteroskedasticity, omit-
ted variable bias and autocorrelation. Even assuming i.i.d. Gaussian returns,
modeling drawdowns is non-trivial. [40, 4]
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However, it may be helpful to have a simple model of drawdowns, and there
is a connection with the Sharpe ratio. Given n observations of the mark to
market of a single asset, pi, the maximum drawdown is defined as

Dn =df max1≤i<j≤n log

(
pi
pj

)
. (65)

The drawdown is negative the most extreme peak to point log return, and is
always non-negative. The maximum drawdown can be expressed as a a percent
loss as 100

(
eDn − 1

)
%.

Let xi be the log returns: xi = log pi

pi−1
, assumed to be i.i.d. Let µ and σ

be the population mean and standard deviation of the log returns xi. Now note
that

log

(
pi
pj

)
= −

∑
i<k≤j

xk = −

[j − i− 1]µ+ σ
∑

i<k≤j

yk

 ,

= −σ

[j − i− 1] ζ +
∑

i<k≤j

yk

 ,

where yi is a zero-mean, unit-variance random variable that is a linear function
of xi.

Now re-express the maximum drawdown in units of the volatility of log
returns at the sampling frequency:

Dn

σ
= −min1≤i<j≤n

[j − i− 1] ζ +
∑

i<k≤j

yk

 . (66)

The volatility is a natural numeraire: one expects an asset with a larger volatility
to have larger drawdowns. Moreover, the quantity on the righthand side is a
random variable drawn from a one parameter (the signal-noise ratio) family,
rather than a two parameter (location and scale) family.

5.3.1 VaR-like constraint

One reasonable way a portfolio manager might approach drawdowns is to de-
fine a ‘knockout’ drawdown from which she will certainly not recover6 and a 6. This is

certainly a
function of the
fund’s clients,
or the PM’s
boss.

maximum probability of hitting that knockout in a given epoch (i.e., n). For
example, the desired property might be “the probability of a 40% drawdown in
one year is less than 0.1%.” These constrain the acceptable signal-noise ratio
and volatility of the fund.

As a risk constraint, this condition shares the hallmark limitation of the
value-at-risk (VaR) measure, namely that it may limit the probability of a cer-
tain sized drawdown, but not its expected magnitude. For example, underwrit-
ing catastrophe insurance may satisfy this drawdown constraint, but may suffer
from enormous losses when a drawdown does occur. Nevertheless, this VaR-like
constraint is simple to model, and may be more useful than harmful.

Fix the one-parameter family of distributions on y. Then, for given ϵ, δ, and
n, the acceptable funds are defined by the set

C (ϵ, δ, n) =df {(ζ, σ) | σ > 0, Pr {Dn ≥ σϵ} ≤ δ } . (67)
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It is obvious that the set C (ϵ, δ, n) is ‘lower right monotonic’, i.e., a fund with
lower volatility or higher signal-noise ratio than a fund in the set is also in the
set7. That is, if (ζ1, σ1) ∈ C (ϵ, δ, n) and ζ1 ≤ ζ2 and σ2 ≤ σ1 then (ζ2, σ2) ∈ 7. Ignoring the

obvious discon-
tinuity at the
origin.

C (ϵ, δ, n).
When the x are daily returns, the range of signal-noise ratio one may rea-

sonably expect for portfolios of equities is fairly modest. In this case, the lower
boundary of C (ϵ, δ, n) can be approximated by a half space:

{(ζ, σ) ∈ C (ϵ, δ, n) | |ζ| ≤ ζbig } ≈ {(ζ, σ) | σ ≤ σ0 + bζ, |ζ| ≤ ζbig } ,

where σ0 and b are functions of ϵ, δ, n, and the family of distributions on y.
The minimum acceptable signal-noise ratio is −σ0/b. It may be the case that
σ0 is negative.
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A Glossary

µ The true, or population, mean return of a single asset.

σ The population standard deviation of a single asset.

ζ The population signal-to-noise ratio (SNR), defined as ζ =df µ/σ.

µ̂ The unbiased sample mean return of a single asset.

σ̂ The sample standard deviation of returns of a single asset.

ζ̂ The sample Sharpe ratio, defined as ζ̂ =df µ̂/σ̂.

n Typically the sample size, the number of observations of the return of an
asset or collection of assets.

r0 The risk-free, or disastrous rate of return.

p Typically the number of assets in the multiple asset case.

µ The population mean return vector of p assets.

Σ The population covariance matrix of p assets.

ν∗ The maximal SNR portfolio, constructed using population data: ν∗ =df

Σ−1µ.

ζ∗ The SNR of ν∗.
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µ̂ The Sample mean return vector of p assets.

Σ̂ The sample covariance matrix of p assets.

ν̂ A portfolio, built on sample data.

ν̂∗ The maximal Sharpe ratio portfolio, constructed using sample data: ν̂∗ =df

Σ̂−1µ̂.

ζ̂∗ The Sharpe ratio of ν̂∗.

Ft (x; v1, δ) the CDF of the non-central t distribution, with v1 degrees of free-
dom and non-centrality parameter δ, evaluated at x.

tq (v1, δ) the inverse CDF, or q-quantile of the non-central t distribution, with
v1 degrees of freedom and non-centrality parameter δ.

Ff (x; v1, v2) the CDF of the F distribution, with degrees of freedom v1 and
v2, evaluated at x.

Ff (x; v1, v2, δ) the CDF of the non-central F distribution, with degrees of
freedom v1 and v2 and non-centrality parameter δ, evaluated at x.

fq (v1, v2, δ) the inverse CDF, or q-quantile of the non-central F distribution,
with degrees of freedom v1 and v2 and non-centrality parameter δ.

γ3 the skew of a random variable.

γ4 the excess kurtosis of a random variable.

κi the ith uncentered moment of a random variable.

κ̂i the ith uncentered sample moment of a sample.

B Asymptotic efficiency of sharpe ratio

Suppose that x1, x2, . . . , xn are drawn i.i.d. from a normal distribution with
unknown SNR and variance. Suppose one has an (vector) estimator of the SNR
and the variance. The Fisher information matrix can easily be shown to be:

I (ζ, σ) = n

(
1 ζ

2σ2

ζ
2σ2

2+ζ2

4σ4

)
(68)

Inverting the Fisher information matrix gives the Cramer-Rao lower bound
for an unbiased vector estimator of SNR and variance:

I−1 (ζ, σ) =
1

n

(
1 + ζ2/2 −ζσ2

−ζσ2 2σ4

)
(69)

Now consider the estimator
[
ζ̃, σ̂2

]⊤
. This is an unbiased estimator for[

ζ, σ2
]⊤

. One can show that the variance of this estimator is

Var

([
ζ̃, σ̂2

]⊤)
=

 (1+nζ2)(n−1)
dn

2n(n−3)
− ζ2 ζσ2

(
1
dn
− 1
)

ζσ2
(

1
dn
− 1
)

2σ4

n−1

 . (70)
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The variance of ζ̃ follows from Equation 4. The cross terms follow from the
independence of the sample mean and variance, and from the unbiasedness of
the two estimators. The variance of σ̂2 is well known.

Since dn = 1+ 3
4(n−1)+O

(
n−2

)
, the asymptotic variance of ζ̃ is

(n−1)+n
2 ζ2

(n+(3/2))(n−3)+

O
(
n−2

)
, and the covariance of ζ̃ and σ̂2 is −ζσ̂2 3

4n+O
(
n−2

)
. Thus the estima-

tor
[
ζ̃, σ̂2

]⊤
is asymptotically efficient, i.e., it achieves the Cramer-Rao lower

bound asymptotically.

C Some moments

It is convenient to have the first two moments of some common distributions.
Suppose F is distributed as a non-central F -distribution with v1 and v2

degrees of freedom and non-centrality parameter δ, then the mean and variance
of F are [69]:

E [F ] =
v2
v1

v1 + δ

v2 − 2
,

Var (F ) =

(
v2
v1

)2
2

(v2 − 2)(v2 − 4)

(
(δ + v1)

2

v2 − 2
+ 2δ + v1

)
.

(71)

Suppose T 2 is distributed as a (non-central) Hotelling’s statistic for n ob-
servations on p assets, with non-centrality parameter δ. Then [5]

n− p

p(n− 1)
T 2 = F

takes a non-central F -distribution with v1 = p and v2 = n−p degrees of freedom.
Then we have the following moments:

E
[
T 2
]
=

(n− 1) (p+ δ)

n− p− 2
,

Var
(
T 2
)
=

2 (n− 1)
2

(n− p− 2)(n− p− 4)

(
(δ + p)2

n− p− 2
+ 2δ + p

)
.

(72)

Suppose ζ̂2∗ is the maximal Sharpe ratio on a basket of p assets with n

observations, assuming i.i.d. Gaussian errors. Then nζ̂2∗ is distributed as a
non-central Hotelling statistic, and we have the following moments:

E
[
ζ̂2∗

]
=

n− 1

n

(
p+ nζ2∗

)
n− p− 2

=

(
1− 1

n

) (
ca + ζ2∗

)
1− ca − 2

n

,

Var
(
ζ̂2∗

)
=

(
n− 1

n

)2
2

(n− p− 2)(n− p− 4)

(
(nζ2∗ + p)2

n− p− 2
+ 2nζ2∗ + p

)
,

=

(
1− 1

n

)2
1

n

2

(1− ca − 2
n )(1− ca − 4

n )

(
(ζ2∗ + ca)

2

1− ca − 2
n

+ 2ζ2∗ + ca

)
,

(73)

where ca = p/n is the aspect ratio, and ζ2∗ is the maximal SNR achievable on a
basket of the assets: ζ2∗ = µ⊤Σ−1µ.
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The distribution of Hotelling’s statistic is known [5] for general µ and Σ,
and can be expressed in terms of a noncentral F -distribution:

n− p

p(n− 1)
T 2 =

n(n− p)

p(n− 1)
ζ̂2∗ ∼ F (δ, p, n− p) ,

where the distribution has p and n− p degrees of freedom, and

δ = nµ⊤Σ−1µ = nζ2∗

is the non-centrality parameter, and ζ∗ is the population optimal SNR.

C.1 Square Root F

If F is distributed as a non-central F -distribution with v1 and v2 degrees of
freedom and non-centrality parameter δ, then the mean and variance of F are
[69]:

E [F ] =
v2
v1

v1 + δ

v2 − 2
,

Var (F ) =

(
v2
v1

)2
2

(v2 − 2)(v2 − 4)

(
(δ + v1)

2

v2 − 2
+ 2δ + v1

)
.

(74)

Using the Taylor series expansion of the square root gives the approximate
mean of

√
F :

E
[√

F
]
≈
√
E [F ]−

v2
2 (δ2+(v1+2) (2 δ+v1))
v12 (v2−4) (v2−2) − (E [F ])

2

8 (E [F ])
3
2

. (75)

D Untangling Giri

Here I translate Giri’s work on Rao’s LRT into the terminology used in the rest
of this note. [19] In equation (1.9), Giri defines the LRT statistic Z by

Z =df

1−NX̄⊤
[2]

(
S22 +NX̄[2]X̄

⊤
[2]

)−1

X̄[2]

1−NX̄⊤
[1]

(
S11 +NX̄[1]X̄

⊤
[1]

)−1

X̄[1]

. (76)

Simply applying the Woodbury formula, we have(
S11 +NX̄[1]X̄

⊤
[1]

)−1

= S11
−1 −N

(
S11

−1X̄[1]

) (
1 +NX̄⊤

[1]S11
−1X̄[1]

)−1(
S11

−1X̄[1]

)⊤
,

= S11
−1 −

N
(
S11

−1X̄[1]

) (
S11

−1X̄[1]

)⊤
1 +NX̄⊤

[1]S11
−1X̄[1]
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And thus

NX̄⊤
[1]

(
S11 +NX̄[1]X̄

⊤
[1]

)−1

X̄[1] = NX̄⊤
[1]S11

−1X̄[1] −

(
NX̄⊤

[1]S11
−1X̄[1]

)2
1 +NX̄⊤

[1]S11
−1X̄[1]

,

=
NX̄⊤

[1]S11
−1X̄[1]

1 +NX̄⊤
[1]S11

−1X̄[1]

,

1−NX̄⊤
[1]

(
S11 +NX̄[1]X̄

⊤
[1]

)−1

X̄[1] =
1

1 +NX̄⊤
[1]S11

−1X̄[1]

.

Thus the Z statistic can be more simply defined as

Z =
1 +NX̄⊤

[1]S11
−1X̄[1]

1 +NX̄⊤
[2]S22

−1X̄[2]

. (77)

In section 3, Giri notes that, conditional on observing R1, Z takes a (non-
central) beta distribution with 1

2 (N − p) and 1
2 (p− q) degrees of freedom and

non-centrality parameter δ2 (1−R1). From inspection, it is a ’type II’ non-
central beta, which can be transformed into a noncentral F :

N − p

p− q

1− Z

Z
=

N − p

p− q

NX̄⊤
[2]S22

−1X̄[2] −NX̄⊤
[1]S11

−1X̄[1]

1 +NX̄⊤
[1]S11

−1X̄[1]

. (78)

Giri defines R1 in equation (2.2). It is equivalent to

1−R1 =
1

1 +NX̄⊤
[1]S11

−1X̄[1]

.

Giri defines δ1, δ2 in equation (2.3). We have

δ2 = Nξ⊤Σ−1ξ −Nξ[1]
⊤Σ11

−1ξ[1].

Taking this all together, we have, conditional on observing X̄⊤
[1]S11

−1X̄[1],

N − p

p− q

NX̄⊤
[2]S22

−1X̄[2] −NX̄⊤
[1]S11

−1X̄[1]

1 +NX̄⊤
[1]S11

−1X̄[1]

∼

F

p− q,N − p,
N
(
ξ⊤Σ−1ξ − ξ[1]

⊤Σ11
−1ξ[1]

)
1 +NX̄⊤

[1]S11
−1X̄[1]

 . (79)

Now note that S11 refers to the sample Gram matrix, and thus S11/N is the
biased covariance estimate, Σ̃ on the subset of q assets, while X̄[1] is the mean
of the subset of q assets. Giri’s terminology translates into the terminology of
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spanning tests used in Section 3.2 as follows:

NX̄⊤
[1]S11

−1X̄[1] =
n

n− 1
ζ̂2∗,G,

NX̄⊤
[2]S22

−1X̄[2] =
n

n− 1
ζ̂2∗,I,

ξ[1]
⊤Σ11

−1ξ[1] = ζ2∗,G,

ξ⊤Σ−1ξ = ζ2∗,I,

N = n,

p− q = k − kg.

Thus, conditional on observing ζ̂2∗,G, we have

n− k

k − kg

ζ̂2∗,I − ζ̂2∗,G

(n− 1)/n+ ζ̂2∗,G
∼ F

(
k − kg, n− k,

n

1 + n
n−1 ζ̂

2
∗,G

(
ζ2∗,I − ζ2∗,G

))
. (80)

50


	The Sharpe ratio
	Distribution of the Sharpe ratio
	Tests involving the Sharpe ratio
	Moments of the Sharpe ratio
	Asymptotics and confidence intervals
	Asymptotic Distribution of Sharpe ratio
	Scalar case
	Tests of equality of multiple Sharpe ratio

	Power and sample size
	Deviations from assumptions
	Sharpe ratio and Autocorrelation
	Sharpe ratio and Heteroskedasticity
	Sharpe ratio and Non-normality

	Linear attribution models
	Examples of linear attribution models
	Tests involving the linear attribution model
	Deviations from the model


	Sharpe ratio and portfolio optimization
	Tests involving Hotelling's Statistic
	Power and Sample Size

	Asymptotics and Confidence Intervals
	Inference on SNR
	The `haircut'
	Approximate haircut under Gaussian returns
	Empirical approximations under Gaussian returns


	Sharpe ratio and constrained portfolio optimization
	Basic subspace constraint
	Spanning and hedging
	Portfolio optimization with an 2 constraint
	Optimal Sharpe ratio under positivity constraint

	Multivariate inference in unified form
	Asymptotic distribution of the Markowitz portfolio
	Unified Multivariate Gaussian
	Maximum Likelihood Estimator
	Likelihood Ratio Test
	Tests on the Precision and Markowitz Portfolio


	Miscellanea
	Which returns?
	Sharpe tricks
	Sharpe ratio bounds probability of a loss

	Sharpe ratio and drawdowns
	VaR-like constraint


	Glossary
	Asymptotic efficiency of sharpe ratio
	Some moments
	Square Root F

	Untangling Giri

