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1 Introduction

The package RDHonest implements bias-aware inference methods in regression discontinuity (RD)
designs developed in Armstrong and Kolesár [2018], Armstrong and Kolesár [2020], and Kolesár
and Rothe [2018]. In this vignette, we demonstrate the implementation of these methods using
datasets from Lee [2008], Oreopoulos [2006], and Battistin et al. [2009] and Ludwig and Miller
[2007], which are included in the package as a data frame lee08, cghs, rcp and headst. The dataset
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from Lalive [2008] used in Kolesár and Rothe [2018] is also included in the package as data frame
rebp.

2 Sharp RD

2.1 Model

We observe units i = 1, . . . , n, with the outcome Yi for the ith unit given by

Yi = fY(xi) + uY,i (1)

where fY(xi) is the expectation of Yi conditional on the running variable xi and uY,i is the regression
error that is conditionally mean zero by definition.

A unit is assigned to treatment if and only if the running variable xi lies weakly above a known
cutoff. We denote the assignment indicator by Zi = I{xi ≥ c0}. In a sharp RD design, all units
comply with the assigned treatment, so that the observed treatment coincides with treatment
assignment, Di = Zi. The parameter of interest is given by the jump of f at the cutoff,

τY = lim
x↓c0

fY(x)− lim
x↑c0

fY(x).

Under mild continuity conditions, τY can be interpreted as the effect of the treatment for units at
the threshold (Hahn et al. [2001]). Let σ2

Y(xi) denote the conditional variance of Yi.

In the Lee [2008] dataset lee08, the running variable corresponds to the margin of victory of
a Democratic candidate in a US House election, and the treatment corresponds to winning the
election. Therefore, the cutoff is zero. The outcome of interest is the Democratic vote share in the
following election.

The cghs dataset from Oreopoulos [2006] consists of a subsample of British workers. The RD design
exploits a change in minimum school-leaving age in the UK from 14 to 15, which occurred in 1947.
The running variable is the year in which the individual turned 14, with the cutoff equal to 1947 so
that the “treatment” is being subject to a higher minimum school-leaving age. The outcome is log
earnings in 1998.

2.2 Plots

The package provides a function RDScatter to plot the raw data. To remove some noise, the
function plots averages over avg number of observations.

library("RDHonest")
## plot 50-bin averages in for observations 50 at most
## points away from the cutoff. See Figure 1.
RDScatter(voteshare ~ margin, data = lee08, subset = abs(lee08$margin) <=

50, avg = 50, propdotsize = FALSE, xlab = "Margin of victory",
ylab = "Vote share in next election")

The running variable in the Oreopoulos dataset is discrete. It is therefore natural to plot the average
outcome by each value of the running variable, which is achieved using by setting avg=Inf. The
option propdotsize=TRUE makes the size of the points proportional to the number of observations
that the point averages over.
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Figure 1: Lee (2008) data

## see Figure 2
f2 <- RDScatter(log(earnings) ~ yearat14, data = cghs, cutoff = 1947,

avg = Inf, xlab = "Year aged 14", ylab = "Log earnings",
propdotsize = TRUE)

## Adjust size of dots if they are too big
f2 + ggplot2::scale_size_area(max_size = 4)

2.3 Inference based on local polynomial estimates

The function RDHonest constructs one- and two-sided confidence intervals (CIs) around local
linear estimators using either a user-supplied bandwidth, or bandwidth that is optimized for a
given performance criterion. The sense of honesty is that, if the regression errors are normally
distributed with known variance, the CIs are guaranteed to achieve correct coverage in finite
samples, and achieve correct coverage asymptotically uniformly over the parameter space otherwise.
Furthermore, because the CIs explicitly take into account the possible bias of the estimators, the
asymptotic approximation does not rely on the bandwidth to shrinking to zero at a particular
rate—in fact, the CIs are valid even if the bandwidth is fixed as n → ∞.

We first estimate τY using local linear regression: instead of using all available observations, we
only use observations within a narrow estimation window around the cutoff, determined by a
bandwidth h. Within this estimation window, we may choose to give more weight to observations
closer to the cutoff—this weighing is determined a kernel K. The local linear regression is just a
weighted least squares (WLS) regression of Yi onto the treatment indicator, the running variable,
and their interaction, weighting each observation using kernel weights K(xi/h). The local linear
regression estimator τ̂Y,h or τY is given by the first element of the vector of regression coefficients

3



8.4

8.7

9.0

1940 1950 1960
Year aged 14

Lo
g 

ea
rn

in
gs

Figure 2: Oreopoulos (2006) data

from this regression,

β̂Y,h =

(
n

∑
i=1

K(xi/h)m(xi)m(xi)
′
)−1 n

∑
i=1

K(xi/h)m(xi)Yi,

where m(x) = (I{x ≥ 0}, I{x ≥ 0}x, 1, x)′ collects all the regressors, and we normalize the cutoff
to zero. When the kernel is uniform, K(u) = I{|u| ≤ 1}, τ̂Y,h is simply the treatment coefficient
from an OLS regression of Yi onto m(xi) for observations that are within distance h of the cutoff.
Other kernel choices may weight observations within the estimation window [−h, h] differently,
giving more weight to observations that are relatively closer to the cutoff.

Equivalently, using the Frisch–Waugh–Lovell theorem, τ̂Y,h may also be computed by first running
an auxiliary WLS regression of the treatment indicator Di onto the remaining regressors, (I{xi ≥
0}xi, 1, xi) and then running a WLS regression of the outcome Yi onto the residuals D̃i from this
auxiliary regression,

τ̂Y,h =
n

∑
i=1

ki,hYi, ki,h =
K(xi/h)D̃i

∑n
i=1 K(xi/h)D̃2

i
.

This representation makes it clear that the estimator simply a weighted average of the outcomes. By
definition of the residual D̃i, the weights sum to zero, and satisfy ∑i ki,hxi = ∑i ki,hxi I{xi ≥ 0} = 0:
this ensures that our estimate of the jump at 0 is unbiased when the regression function is piecewise
linear inside the estimation window.

2.3.1 Bias-aware confidence intervals

The estimator τ̂Y,h is a regression estimator, so it will be asymptotically normal under mild regularity
conditions. In particular, if the residuals ui are well-behaved, a sufficient condition is that none of
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the weights ki,h are too influential in the sense that the maximal leverage goes to zero, as we discuss
in the diagnostics section.

Due to the asymptotic normality, the simplest approach to inference is to use the usual CI, τ̂Y,h ±
z1−α/2ŝe(τ̂Y,h), where zα is the α quantile of the standard normal distribution. However, this CI
will typically undercover relative to its nominal confidence level 1 − α because it’s not correctly
centered: unless the regression function fY is exactly linear inside the estimation window, the
estimator τ̂Y,h will be biased. If fY is “close” to linear, then this bias will be small, but if it is wiggly,
the bias may be substantial, leading to severe coverage distortions.

The idea behind bias-aware inference methods is to bound the potential bias of the estimator by
making an explicit assumption on the smoothness of fY. A convenient way of doing this is to bound
the curvature of fY by restricting its second derivative. To allow fY to be discontinuous at zero, we
assume that it’s twice differentiable on either side of the cutoff, with a second derivative bounded
by a known constant M. The choice of the exact curvature parameter M is key to implementing
bias-aware methods, and we discuss it below. Once M is selected, we can work out the potential
finite-sample bias of the estimator and account for it in the CI construction. In particular, it turns
out that the absolute value of the bias of τ̂Y,h is maximized at the piecewise quadratic function
x 7→ Mx2(I{x < 0} − I{x ≥ 0})/2, so that

|E[τ̂Y,h − τY]| ≤ BM,h := −M
2

n

∑
i=1

ki,hx2
i sign(xi).

Hence, a simple way to ensure that we achieve correct coverage regardless of the true shape of the
regression function fY (so long as | f ′′Y (x)| ≤ M) is to simply enlarge the usual CI by this bias bound,
leading to the CI τ̂Y,h ± (BM,h + z1−α/2ŝe(τ̂Y,h)). We can actually to slightly better than this, since
the bias bound can’t simultaneously be binding on both endpoints of the CI. In particular, observe
that in large samples, the t-statistic (τ̂Y,h − τY)/ŝe(τ̂Y,h) is normally distributed with variance one,
and mean that is bounded by t = BM,h/ŝe(τ̂Y,h) (ignoring sampling variability in the standard
error, which is negligible in large samples). To ensure correct coverage, we therefore replace the
usual critical value z1−α/2, with the 1 − α quantile of folded normal distribution |N (t, 1)|, cvα(t)
(note cvα(0) = z1−α/2). This leads to the bias-aware CI

τ̂Y,h ± cvα(BM,h/ŝe(τ̂Y,h))ŝe(τ̂Y,h) (2)

Notice the bias bound BM,h accounts for the exact finite-sample bias of the estimator. The only
asymptotic approximation we have used in its construction is the approximate normality of the
estimator τ̂Y,h, which obtains without any restrictions on fY—we only need the maximal leverage
to be close to zero, mirroring a standard leverage condition from parametric regression settings.

The function CVb gives the critical values cvα(t):

CVb(0, alpha = 0.05) ## Usual critical value
#> [1] 1.959964
CVb(1/2, alpha = 0.05)
#> [1] 2.181477
## Tabulate critical values for different bias levels
CVb(0:5, alpha = 0.1)
#> [1] 1.644854 2.284468 3.281552 4.281552 5.281552 6.281552

The function RDHonest puts all these steps together. Specifying curvature parameter M = 0.1,
bandwidth h = 8, and a triangular kernel yields:
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r0 <- RDHonest(voteshare ~ margin, data = lee08, kern = "triangular",
M = 0.1, h = 8)

print(r0)
#>
#> Call:
#> RDHonest(formula = voteshare ~ margin, data = lee08, M = 0.1,
#> kern = "triangular", h = 8)
#>
#> Inference for Sharp RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(margin>0) 5.873853 1.348925 0.6706413 (2.934244, 8.813462)
#>
#> Onesided CIs: (-Inf, 8.763279), (2.984427, Inf)
#> Number of effective observations: 793.5835
#> Maximal leverage for sharp RD parameter: 0.009168907
#> Smoothness constant M: 0.1
#> P-value: 5.793498e-05
#>
#> Based on local regression with bandwidth: 8, kernel: triangular
#> Regression coefficients:
#> I(margin>0) I(margin>0):margin (Intercept) margin
#> 5.8739 0.1448 46.2830 0.6062

• The default for calculating the standard errors is to use the nearest neighbor method. Spec-
ifying se.method="EHW" changes them to the regression-based heteroskedasticity-robust
Eicker-Huber-White standard errors. It can be shown that unless the regression function fY
is linear inside the estimation window, the EHW standard errors generally overestimate the
conditional variance.

• The default option sclass="H" specifies the parameter space as second-order Hölder smooth-
ness class, which formalizes our assumption above that the second derivative of fY is bounded
by M on either side of the cutoff. The package also allows the user to use a Taylor smoothness
class by setting sclass="T". This changes the computation of the worst-case bias, and allows
fY to correspond to any function such that the approximation error from a second-order
Taylor expansion around the cutoff is bounded by Mx2/2. For more discussion, see Section 2
in Armstrong and Kolesár [2018] (note the constant C in that paper equals C = M/2 here).

• Other options for kern are "uniform" and "epanechnikov", or the user can also supply their
own kernel function.

• RDHonest reports two-sided as well one-sided CIs. One-sided CIs simply subtract off the
worst-case bias bound BM,h in addition to subtracting the standard error times the z1−α critical
value from the estimate. It also reports the p-value for the hypothesis that τY = 0.

• RDHonest also reports the fitted regression coefficients β̂Y,h, and returns the lm object under
r0$lm. We see from the above that the fitted slopes below and above the cutoff differ by 0.14,
for instance.

2.4 Automatic bandwidth choice

Instead of specifying a bandwidth, one can just specify the curvature parameter M, and the
bandwidth will be chosen optimally for a given optimality criterion—minimizing the worst-case
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MSE of the estimator, or minimizing the length the resulting confidence interval. Typically, this
makes little difference:

RDHonest(voteshare ~ margin, data = lee08, kern = "triangular",
M = 0.1, opt.criterion = "MSE")

#>
#> Call:
#> RDHonest(formula = voteshare ~ margin, data = lee08, M = 0.1,
#> kern = "triangular", opt.criterion = "MSE")
#>
#> Inference for Sharp RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(margin>0) 5.936649 1.294421 0.8322588 (2.954829, 8.918469)
#>
#> Onesided CIs: (-Inf, 8.89804), (2.975258, Inf)
#> Number of effective observations: 889.0468
#> Maximal leverage for sharp RD parameter: 0.008236381
#> Smoothness constant M: 0.1
#> P-value: 4.025594e-05
#>
#> Based on local regression with bandwidth: 8.848512, kernel: triangular
#> Regression coefficients:
#> I(margin>0) I(margin>0):margin (Intercept) margin
#> 5.9366 0.1175 46.2826 0.6058
## Choose bws optimal for length of CI
RDHonest(voteshare ~ margin, data = lee08, kern = "triangular",

M = 0.1, opt.criterion = "FLCI")
#>
#> Call:
#> RDHonest(formula = voteshare ~ margin, data = lee08, M = 0.1,
#> kern = "triangular", opt.criterion = "FLCI")
#>
#> Inference for Sharp RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(margin>0) 5.954455 1.278777 0.8833915 (2.952762, 8.956147)
#>
#> Onesided CIs: (-Inf, 8.941247), (2.967662, Inf)
#> Number of effective observations: 917.7729
#> Maximal leverage for sharp RD parameter: 0.007988637
#> Smoothness constant M: 0.1
#> P-value: 3.665694e-05
#>
#> Based on local regression with bandwidth: 9.11113, kernel: triangular
#> Regression coefficients:
#> I(margin>0) I(margin>0):margin (Intercept) margin
#> 5.9545 0.1099 46.2825 0.6058

To compute the optimal bandwidth, the package assumes homoskedastic variance on either side of
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the cutoff, which it estimates based on a preliminary local linear regression using the Imbens and
Kalyanaraman [2012] bandwidth selector. This homoskedasticity assumption is dropped when the
final standard errors are computed.

Notice that, when the variance function σ2
Y(x) is known, neither the conditional variance of the

estimator, sd(τ̂Y,h)
2 = ∑n

i=1 k2
i,hσ2

Y(xi), nor the bias bound BM,h depend on the outcome data.
Therefore, the MSE and the length of the infeasible CI, 2 cvα(BM,h/ sd(τ̂Y,h)) sd(τ̂Y,h), do not depend
on the outcome data. To stress this property, we refer to this infeasible CI (and, with some abuse of
terminology, also the feasible version in eq. (2)) as a fixed-length confidence interval (FLCI). As a
consequence of this property, optimizing the bandwidth for CI length does not impact the coverage
of the resulting CI.

2.5 Choice of curvature parameter

The curvature parameter M is the most important implementation choice. It would be convenient if
one could use data-driven methods to automate its selection. Unfortunately, if one only assume that
the second derivative of fY is bounded by some constant M, it is not possible to do that: one cannot
use data to select M without distorting coverage (Low [1997], Armstrong and Kolesár [2018]). This
result is essentially an instance of the general issue with using pre-testing or using model selection
rules, such as using cross-validation or information criteria like AIC or BIC to pick which controls
to include in a regression: doing so leads to distorted confidence intervals. Here the curvature
parameter M indexes the size of the model: a large M is the analog of saying that all available
covariates need to be included in the model to purge omitted variables bias; a small M is the analog
of saying that a small subset of them will do. Just like one needs to use institutional knowledge
of the problem at hand to decide which covariates to include in a regression, ideally one uses
problem-specific knowledge to select M. Analogous to reporting results based on different subsets
of controls in columns of a table with regression results, one can vary the choice of M by way of
sensitivity analysis.

Depending on the problem at hand, it may be difficult to translate problem-specific intuition
about how close we think the regression function is to a linear function into a statement about the
curvature parameter M. In such cases, it is convenient to have a rule of thumb for selecting M
using the data. To do this, we need to impose additional restrictions on fY besides assuming that
its second derivative is bounded in order to get around the results on impossibility of post-model
selection inference discussed above. An appealing way of doing this is to relate the assumption
about the local smoothness of fY at the cutoff point, which drives the bias of the estimator but is
difficult to measure in the data, to the global smoothness of fY, which is much easier to measure.
In our implementation, we measure global smoothness by fitting a global quartic polynomial f̌ ,
separately on either side of the cutoff, following Armstrong and Kolesár [2020]. We assume the
local second derivative of fY, M, is no larger than the maximum second derivative of the global
polynomial approximation f̌ . Under this assumption, we can calibrate M by setting

M̂ROT = sup
x∈[xmin,xmax]

| f̌ ′′(x)|.

There are different ways of relating local and global smoothness, which lead to different calibrations
of M. For instance, Imbens and Wager [2019] propose fitting a global quadratic polynomial instead,
and then multiplying the maximal curvature of the fitted model by a constant such as 2 or 4. An
important question for future research is to figure out whether there is a way of relating local and
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global smoothness that is empirically appealing across a wide range of scenarios. See also Noack
and Rothe [2021] for a discussion how to visualize the choice of M to aid with its interpretation.

When the user doesn’t supply M, the package uses the rule of thumb M̂ROT, and prints a message to
inform the user:

## Data-driven choice of M
RDHonest(voteshare ~ margin, data = lee08)
#> Using Armstrong & Kolesar (2020) ROT for smoothness constant M
#>
#> Call:
#> RDHonest(formula = voteshare ~ margin, data = lee08)
#>
#> Inference for Sharp RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(margin>0) 5.849736 1.365882 0.8880143 (2.694435, 9.005036)
#>
#> Onesided CIs: (-Inf, 8.984425), (2.715046, Inf)
#> Number of effective observations: 764.5629
#> Maximal leverage for sharp RD parameter: 0.009560827
#> Smoothness constant M: 0.1428108
#> P-value: 0.0001406869
#>
#> Based on local regression with bandwidth: 7.715099, kernel: triangular
#> Regression coefficients:
#> I(margin>0) I(margin>0):margin (Intercept) margin
#> 5.8497 0.1218 46.3188 0.6235

2.6 Inference when running variable is discrete

The confidence intervals described above can also be used when the running variable is discrete,
with G support points: their construction makes no assumptions on the nature of the running
variable (see Section 5.1 in Kolesár and Rothe [2018] for more detailed discussion).

Units that lie exactly at the cutoff are considered treated, since the definition of treatment assignment
is that the running variable lies weakly above the cutoff, xi ≥ c0.

As an example, consider the Oreopoulos [2006] data, in which the running variable is age in years:

## Replicate Table 2, column (10) in Kolesar and Rothe
## (2018)
RDHonest(log(earnings) ~ yearat14, cutoff = 1947, data = cghs,

kern = "uniform", M = 0.04, opt.criterion = "FLCI",
sclass = "H")

#>
#> Call:
#> RDHonest(formula = log(earnings) ~ yearat14, data = cghs, cutoff = 1947,
#> M = 0.04, kern = "uniform", opt.criterion = "FLCI", sclass = "H")
#>
#> Inference for Sharp RD parameter (using Holder class), confidence level 95%:
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#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(yearat14>0) 0.07909463 0.06784089 0.04736585 (-0.08061322, 0.2388025)
#>
#> Onesided CIs: (-Inf, 0.2380488), (-0.07985957, Inf)
#> Number of effective observations: 7424
#> Maximal leverage for sharp RD parameter: 0.0004652917
#> Smoothness constant M: 0.04
#> P-value: 0.3511574
#>
#> Based on local regression with bandwidth: 2, kernel: uniform
#> Regression coefficients:
#> I(yearat14>0) I(yearat14>0):yearat14 (Intercept)
#> 0.079095 0.023387 8.721185
#> yearat14
#> 0.001302

In addition, the package provides function RDHonestBME that calculates honest confidence intervals
under the assumption that the specification bias at zero is no worse at the cutoff than away from
the cutoff as in Section 5.2 in Kolesár and Rothe [2018].

## Replicate Table 2, column (6), run local linear
## regression (order=1) with a uniform kernel (other
## kernels are not implemented for RDHonestBME)
RDHonestBME(log(earnings) ~ yearat14, cutoff = 1947, data = cghs,

h = 3, order = 1)
#>
#> Call:
#> RDHonestBME(formula = log(earnings) ~ yearat14, data = cghs,
#> cutoff = 1947, h = 3, order = 1)
#>
#> Inference for Sharp RD parameter (using BME class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(x >= 0)TRUE 0.06488857 0.04902804 0.02229399 (-0.06965587, 0.2019889)
#>
#> Onesided CIs: (-Inf, 0.1835311), (-0.05160896, Inf)
#> Number of effective observations: 10533
#> Maximal leverage for sharp RD parameter: 0.0004201627
#> P-value: 0.1857787
#>
#> Based on local regression with bandwidth: 3, kernel: uniform
#> Regression coefficients:
#> (Intercept) I(xˆ1) I(x >= 0)TRUE
#> 8.740207 0.015933 0.064889
#> I(xˆ1):I(x >= 0)TRUE
#> 0.002151

Let us describe the implementation of the variance estimator V̂(W) used to construct the CI
following Section 5.2 in Kolesár and Rothe [2018]. Suppose the point estimate is given by the first
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element of the regression of the outcome yi on m(xi). For instance, local linear regression with
uniform kernel and bandwidth h corresponds to m(x) = I(|x| ≤ h) · (I(x > c0), 1, x, x · I(x > c0))′.
Let θ = Q−1E[m(xi)yi], where Q = E[m(xi)m(xi)

′], denote the estimand for this regression (treating
the bandwidth as fixed), and let δ(x) = f (x) − m(x)′θ denote the specification error at x. The
RD estimate is given by first element of the least squares estimator θ̂ = Q̂−1 ∑i m(xi)yi, where
Q̂ = ∑i m(xi)m(xi)

′.

Let w(xi) denote a vector of indicator (dummy) variables for all support points of xi within distance
h of the cutoff, so that µ(xg), where xg is the gth support point of xi, is given by the gth element of
the regression estimand S−1E[w(xi)yi], where S = E[w(xi)w(xi)

′]. Let µ̂ = Ŝ−1 ∑i w(xi)yi, where
Ŝ = ∑i w(xi)w(xi)

′ denote the least squares estimator. Then an estimate of (δ(x1), . . . , δ(xG))
′ is

given by δ̂, the vector with elements µ̂g − xg θ̂.

By standard regression results, the asymptotic distribution of θ̂ and µ̂ is given by

√
n
(

θ̂ − θ
µ̂ − µ

)
d→ N (0, Ω) ,

where

Ω =

(
Q−1E[(ϵ2

i + δ(xi)
2)m(xi)m(xi)

′]Q−1 Q−1E[ϵ2
i m(xi)w(xi)

′]S−1

S−1E[ϵ2
i w(xi)m(xi)

′]Q−1 S−1E[ϵ2
i w(xi)w(xi)

′]S−1

)
.

Let ûi denote the regression residual from the regression of yi on m(xi), and let ϵ̂i denote the
regression residuals from the regression of yi on w(xi). Then a consistent estimator of the asymptotic
variance Ω is given by

Ω̂ = n ∑
i

TiT′
i , T′

i =
(
ûim(xi)

′Q̂−1 ϵ̂iw(xi)
′Ŝ−1

)
.

Note that the upper left block and lower right block correspond simply to the Eicker-Huber-White
estimators of the asymptotic variance of θ̂ and µ̂. By the delta method, a consistent estimator of the
asymptotic variance of (δ̂, θ̂1) is given by

Σ̂ =

(
−X I
e′1 0

)
Ω̂
(
−X I
e′1 0

)′
,

where X is a matrix with gth row equal to x′g, and e1 is the first unit vector.

Recall that in the notation of Kolesár and Rothe [2018], W = (g−, g+, s−, s+), and g+ and g− are
such that xg− < c0 ≤ xg+ , and s+, s− ∈ {−1, 1}. An upper limit for a right-sided CI for θ1 + b(W)
is then given by

θ̂1 + s+δ̂(xg+) + s−δ̂(xg−) + z1−αV̂(W),

where V̂(W) = a(W)′Σ̂a(W), and a(W) ∈ RGh+1 denotes a vector with the g−th element equal to
s−, (G−

h + g+)th element equal to s+, the last element equal to one, and the remaining elements
equal to zero. The rest of the construction then follows the description in Section 5.2 in Kolesár and
Rothe [2018].
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3 Fuzzy RD

3.1 Model

In a fuzzy RD design, the treatment status Di of a unit does not necessarily equate the treatment
assignment Zi = I{xi ≥ c0}. Instead, the treatment assignment induces a jump in the treatment
probability at the cutoff. Correspondingly, we augment the outcome model with a first stage that
measures the effect of the running variable on the treatment:

Yi = fY(xi) + uY,i, Di = fD(xi) + uY,i, (3)

where fD, fY are the conditional mean functions.

To account for imperfect compliance the fuzzy RD parameter scales the jump in the outcome equa-
tion τY by the jump in the treatment probability at the cutoff, τD = limx↓c0 fD(x)− limx↑c0 fD(x).
This fuzzy RD parameter, θ = τY/τD, measures the local average treatment effect for individuals at
the threshold who comply with the treatment assignment, provided mild continuity conditions
and a monotonicity condition hold (Hahn et al. [2001]). Under perfect compliance, the treatment
probability jumps all the way from zero to one at the threshold so that τD = 1, and the two
parameters coincide.

For example, in the Battistin et al. [2009] dataset, the treatment variable is an indicator for retirement,
and the running variable is the number of years since being eligible to retire. The cutoff is 0.
Individuals exactly at the cutoff are dropped from the dataset. If there were individuals exactly at
the cutoff, they are assumed to receive the treatment assignment (i.e. be eligible for retirement).

3.2 Inference based on local polynomial estimates

A natural estimator for the fuzzy RD parameter θ is the sample analog based on local linear
regression,

θ̂h =
τ̂Y,h

τ̂D,h
.

Unlike in the sharp case, our bias-aware CIs do rely on the consistency of the estimator, which
generally requires the bandwidth to shrink with the sample size. Since this estimator is a ratio of
regression coefficients, it follows by the delta method that so long as τD ̸= 0, the estimator will
be asymptotically normal in large samples. In fact, the estimator is equivalent to a weighted IV
regression of Yi onto Di, using Zi as an instrument, and xi and its interaction with Zi as controls, so
the variance formula is analogous to the IV variance formula:

sd(θ̂h)
2 =

sd(τY,h)
2 + θ2 sd(τD,h)

2 − 2 cov(τD,h, τY,h)θ

τ2
D

,

where cov(τD,h, τY,h) = ∑i k2
i,h cov(Yi, Di | xi) is the covariance of the estimators.

If the second derivative of fY is bounded by MY and the second derivative of fD is bounded by
MD, a linearization argument from Section 3.2.3 in Armstrong and Kolesár [2020] that the bias
can be bounded in large samples by BM,h, with M = (MY + |θ|MD)/|τD|, which now depends
on θ itself. Therefore, optimal bandwidth calculations will require a preliminary estimate of |θ|,
which can be passed to RDHonest via the option T0. Like in the sharp case, the optimal bandwidth
calculations assume homoskedastic covariance of (uY,i, uD,i) on either side of the cutoff, which
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are estimated based on a preliminary local linear regression for both the outcome and first stage
equation, with bandwidth given by the Imbens and Kalyanaraman [2012] bandwidth selector
applied to the outcome equation.

## Initial estimate of treatment effect for optimal
## bandwidth calculations
r <- RDHonest(log(cn) | retired ~ elig_year, data = rcp,

kern = "triangular", M = c(0.001, 0.002), opt.criterion = "MSE",
sclass = "H", T0 = 0)

## Use it to compute optimal bandwidth
RDHonest(log(cn) | retired ~ elig_year, data = rcp, kern = "triangular",

M = c(0.001, 0.002), opt.criterion = "MSE", sclass = "H",
T0 = r$coefficients$estimate)

#>
#> Call:
#> RDHonest(formula = log(cn) | retired ~ elig_year, data = rcp,
#> M = c(0.001, 0.002), kern = "triangular", opt.criterion = "MSE",
#> sclass = "H", T0 = r$coefficients$estimate)
#>
#> Inference for Fuzzy RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> retired -0.09062179 0.07162253 0.04374348 (-0.253552, 0.07230844)
#>
#> Onesided CIs: (-Inf, 0.07093026), (-0.2521738, Inf)
#> Number of effective observations: 7465.396
#> Maximal leverage for fuzzy RD parameter: 0.0008176489
#> First stage estimate: 0.3479478
#> First stage smoothness constant M: 0.002
#> Reduced form smoothness constant M: 0.001
#> P-value: 0.286715
#>
#> Based on local regression with bandwidth: 9.551734, kernel: triangular
#> Regression coefficients:
#> log(cn) retired
#> I(elig_year>0) -0.031532 0.347948
#> I(elig_year>0):elig_year -0.005692 -0.009782
#> (Intercept) 9.760643 0.246088
#> elig_year -0.005370 0.032019

3.3 Choice of curvature parameters

Like in the sharp RD case, without further restrictions, the curvature parameters MY and MD
cannot be data-driven: to maintain honesty over the whole function class, a researcher must choose
them a priori, rather than attempting to use a data-driven method. Therefore, one should, whenever
possible, use problem-specific knowledge to decide what choices of MY and MD are reasonable a
priori.

For cases in which this is difficult, the function RDHonest implements the rule of thumb Armstrong
and Kolesár [2020] described earlier, based on computing the global smoothness of both fY and fD
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using a quartic polynomial. When the user doesn’t supply the curvature bounds, the package uses
the rule of thumb M̂ROT, and prints a message to inform the user:

## Data-driven choice of M
RDHonest(log(cn) | retired ~ elig_year, data = rcp, kern = "triangular",

opt.criterion = "MSE", sclass = "H", T0 = r$coefficients$estimate)
#> Using Armstrong & Kolesar (2020) ROT for smoothness constant M
#>
#> Call:
#> RDHonest(formula = log(cn) | retired ~ elig_year, data = rcp,
#> kern = "triangular", opt.criterion = "MSE", sclass = "H",
#> T0 = r$coefficients$estimate)
#>
#> Inference for Fuzzy RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> retired -0.1762098 0.1042236 0.08473369 (-0.4329103, 0.08049077)
#>
#> Onesided CIs: (-Inf, 0.07995648), (-0.4323761, Inf)
#> Number of effective observations: 4543.727
#> Maximal leverage for fuzzy RD parameter: 0.001114888
#> First stage estimate: 0.3185837
#> First stage smoothness constant M: 0.008178929
#> Reduced form smoothness constant M: 0.002849525
#> P-value: 0.1962011
#>
#> Based on local regression with bandwidth: 6.127523, kernel: triangular
#> Regression coefficients:
#> log(cn) retired
#> I(elig_year>0) -0.056138 0.318584
#> I(elig_year>0):elig_year -0.009435 -0.019943
#> (Intercept) 9.777239 0.273343
#> elig_year 0.001841 0.042820

See Armstrong and Kolesár [2020] for a discussion of the restrictions on the parameter space under
which this method yields honest inference.

4 Extensions

4.1 Covariates

RD datasets often contain information on a vector of K pre-treatment covariates Wi, such as
pre-intervention outcomes, demographic, or socioeconomic characteristics of the units. Similar
to randomized controlled trials, while the presence of covariates doesn’t help to weaken the
fundamental identifying assumptions, augmenting the RD estimator with predetermined covariates
can increase its precision.

Let us first describe covariate adjustment in the sharp RD case. We implement the covariate
adjustment studied in Calonico et al. [2019], namely to include Wi as one of the regressors in the
WLS regression, regressing Yi onto m(xi) and Wi. As in the case with no covariates, we weight each
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observation with the kernel weight K(xi/h). This leads to the estimator

τ̃Y,h = β̃Y,h,1, β̃Y,h =

(
n

∑
i=1

K(xi/h)m̃(xi, Wi)m̃(xi, Wi)
′
)−1 n

∑
i=1

K(xi/h)m̃(xi, Wi)Yi,

where m̃(xi, Wi) = (m(xi)
′, W ′

i )
′. Denote the coefficient on Wi in this regression by γ̃Y,h; this

corresponds to the last K elements of β̃Y,h. As in the case without covariates, we first take the
bandwidth h as given, and defer bandwidth selection choice to the end of this subsection.

To motivate the estimator under our framework, and to derive bias-aware CIs that incorporate
covariates, we need to formalize the assumption that the covariates are predetermined (without
any assumptions on the covariates, it is optimal to ignore the covariates and use the unadjusted
estimator τ̂Y,h). Let fW(x) = E[Wi | Xi = x] denote the regression function from regressing the
covariates on the running variable, and let

ΣWW(x) = var(Wi | Xi = x), ΣWY(x) = cov(Wi, Yi | Xi = x).

We assume that the variance and covariance functions are continuous, except possibly at zero.
Let γY = (ΣWW(0+) + ΣWW(0−))−1(ΣWY(0+) + ΣWY(0−)) denote the coefficient on Wi when we
regress Yi onto Wi for observations at the cutoff. Let Ỹi := Yi − W ′

i γY denote the covariate-adjusted
outcome. To formalize the assumption that the covariates are pre-determined, we assume that
τW = limx↓0 fW(0)− limx↑0 fW(0) = 0, which implies that τY can be identified as the jump in the
covariate-adjusted outcome Ỹi at 0. Following Appendix B.1 in Armstrong and Kolesár [2018], we
also assume that the covariate-adjusted outcome varies smoothly with the running variable (except
for a possible jump at the cutoff), in that the second derivative of

f̃ (x) := fY(x)− fW(x)′γY

is bounded by a known constant M̃. In addition, we assume fW has bounded second derivatives.

Under these assumptions, if γY was known and hence Ỹi was directly observable, we could estimate
τ as in the case without covariates, replacing M with M̃ and Yi with Ỹi. Furthermore, as discussed
in Armstrong and Kolesár [2018], such approach would be optimal under homoskedasticity as-
sumptions. Although γY is unknown, it turns out that the estimator τ̃Y,h has the same large sample
behavior as the infeasible estimator τ̂Ỹ,h. To show this, note that by standard regression algebra,
τ̃Y,h can equivalently be written as

τ̃Y,h = τ̂Y−W ′γ̃Y,h,h = τ̂Ỹ,h −
K

∑
k=1

τ̂Wk ,h(γ̃Y,h,k − γY,k).

The first equality says that covariate-adjusted estimate is the same as an unadjusted estimate that
replaces the original outcome Yi with the covariate-adjusted outcome Yi − W ′

i γ̃Y,h. The second
equality uses the decomposition Yi − W ′

i γ̃Y,h = Ỹi − W ′
i (γ̃Y,h − γY) to write the estimator as a sum

of the infeasible estimator and a linear combination of “placebo RD estimators” τ̂Wk ,h, that replace Yi
in the outcome equation with the kth element of Wi, Since fW has bounded second derivatives, these
placebo estimators converge to zero, with rate that is at least as fast as the rate of convergence of the
infeasible estimator τ̂Ỹ,h: τ̂Wk ,h = Op(BM̃,h + sd(τ̂Ỹ,h)). Furthermore, under regularity conditions,
γ̃Y,h converges to γY, so that the second term in the previous display is asymptotically negligible

15



relative to the first. Consequently, we can form bias-aware CIs based on τ̃Y,h as in the case without
covariates, treating the covariate-adjusted outcome Yi − W ′

i γ̃Y as the outcome,

τ̃Y,h ± cv1−α(BM̃,h/ sd(τ̂Ỹ,h)) sd(τ̂Ỹ,h), sd(τ̂Ỹ,h)
2 =

n

∑
i=1

k2
i,hσ2

Ỹ(xi),

where σ2
Ỹ(xi) = σ2

Y(xi) + γ′
YΣWW(xi)γY − 2γ′

YΣWY(xi). If the covariates are effective at explaining
variation in the outcomes, then the quantity ∑i k2

i,h (γ
′
YΣWW(xi)γY − 2γ′

YΣWY(xi)) will be negative,
and sd(τ̂Ỹ,h) ≤ sd(τ̂Y,h). If the smoothness of the covariate-adjusted conditional mean function
fY − f ′WγY is greater than the smoothness of the unadjusted conditional mean function fY, so that
M̃ ≤ M, then using the covariates will help tighten the confidence intervals.

Implementation of covariate-adjustment requires a choice of M̃, and computing the optimal band-
width requires a preliminary estimate of the variance of the covariate-adjusted outcome. In our
implementation, we first estimate the model without covariates (using a rule of thumb to calibrate
M, the bound on the second derivative of fY), and compute the bandwidth ȟ that’s MSE optimal
without covariates. Based on this bandwidth, we compute a preliminary estimate γ̃Y,ȟ of γY, and
use this preliminary estimate to compute a preliminary covariate-adjusted outcome Yi − W ′

i γ̃Y,ȟ.
If M̃ is not supplied, we calibrate M̃ using the rule of thumb, using this preliminary covariate-
adjusted outcome as the outcome. Similarly, we use this preliminary covariate-adjusted outcome
as the outcome to compute a preliminary estimator of the conditional variance σ2

Ỹ(xi), for optimal
bandwidth calculations, as in the case without covariates. With this choice of bandwidth h, in the
second step, we estimate τY using the estimator τ̃Y,h defined above.

A demonstration using the headst data:

## No covariates
rn <- RDHonest(mortHS ~ povrate, data = headst)
#> Using Armstrong & Kolesar (2020) ROT for smoothness constant M
## Use Percent attending school aged 14-17, urban,
## black, and their interaction as covariates.
rc <- RDHonest(mortHS ~ povrate | urban * black + sch1417,

data = headst)
#> Using Armstrong & Kolesar (2020) ROT for smoothness constant M
rn
#>
#> Call:
#> RDHonest(formula = mortHS ~ povrate, data = headst)
#>
#> Inference for Sharp RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(povrate>0) -3.15129 1.272338 0.7014739 (-5.980412, -0.3221684)
#>
#> Onesided CIs: (-Inf, -0.357007), (-5.945573, Inf)
#> Number of effective observations: 256.5127
#> Maximal leverage for sharp RD parameter: 0.0279751
#> Smoothness constant M: 0.2993999
#> P-value: 0.02831734
#>
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#> Based on local regression with bandwidth: 4.880646, kernel: triangular
#> Regression coefficients:
#> I(povrate>0) I(povrate>0):povrate (Intercept)
#> -3.1513 0.4805 3.7589
#> povrate
#> 0.2800
#> 24 observations with missing values dropped
rc
#>
#> Call:
#> RDHonest(formula = mortHS ~ povrate | urban * black + sch1417,
#> data = headst)
#>
#> Inference for Sharp RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(povrate>0) -2.678646 1.163838 0.6105652 (-5.240691, -0.1166008)
#>
#> Onesided CIs: (-Inf, -0.1537367), (-5.203555, Inf)
#> Number of effective observations: 303.9467
#> Maximal leverage for sharp RD parameter: 0.02287772
#> Smoothness constant M: 0.185326
#> P-value: 0.04014376
#>
#> Based on local regression with bandwidth: 5.891514, kernel: triangular
#> Regression coefficients:
#> I(povrate>0) I(povrate>0):povrate (Intercept)
#> -2.6786458 0.3592431 15.2995726
#> povrate urban black
#> 0.1117840 0.0111355 0.0401396
#> sch1417 urban:black
#> -0.1553701 -0.0005111
#> 29 observations with missing values dropped

We see that the inclusion of covariates leads to a reduction in the rule-of-thumb curvature and also
smaller standard errors (this would be true even if the bandwidth was kept fixed). Correspondingly,
the CIs are tighter by about 9 percentage points:

ci_len <- c(rc$coefficients$conf.high - rc$coefficients$conf.low,
rn$coefficients$conf.high - rn$coefficients$conf.low)

100 * (1 - ci_len[1]/ci_len[2])
#> [1] 9.440274

In the fuzzy RD case, we need to covariate-adjust the treatment Di as well as the outcome. The
implementation mirrors the sharp case. Define γD analogously to γY, and assume that the second
derivative of fY(x)− fW(x)′γY is bounded by a known constant M̃Y, and that fD(x)− fW(x)′γD is
bounded by a known constant M̃D. The covariate-adjusted estimator is given by θ̃h = τ̃Y,h/τ̃D,h,
with variances and worst-case bias computed as in the case without covariates, replacing the
treatment and outcome with their covariate-adjusted versions.
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A demonstration using the rcp data, where we add education controls:

RDHonest(log(cn) | retired ~ elig_year | education, data = rcp,
T0 = r$coefficients$estimate)

#> Using Armstrong & Kolesar (2020) ROT for smoothness constant M
#>
#> Call:
#> RDHonest(formula = log(cn) | retired ~ elig_year | education,
#> data = rcp, T0 = r$coefficients$estimate)
#>
#> Inference for Fuzzy RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> retired -0.26109 0.113415 0.1029379 (-0.5508736, 0.02869354)
#>
#> Onesided CIs: (-Inf, 0.02839886), (-0.5505789, Inf)
#> Number of effective observations: 3259.425
#> Maximal leverage for fuzzy RD parameter: 0.001393073
#> First stage estimate: 0.316514
#> First stage smoothness constant M: 0.007191008
#> Reduced form smoothness constant M: 0.005370042
#> P-value: 0.08225438
#>
#> Based on local regression with bandwidth: 5.069605, kernel: triangular
#> Regression coefficients:
#> log(cn) retired
#> I(elig_year>0) -0.082639 0.316514
#> I(elig_year>0):elig_year -0.031593 -0.008402
#> (Intercept) 9.378002 0.515120
#> elig_year 0.025771 0.035794
#> educationelementary school 0.275151 -0.201655
#> educationlower secondary 0.431725 -0.287265
#> educationvocational studies 0.580132 -0.360524
#> educationupper secondary 0.741646 -0.294614
#> educationcollege or higher 0.923659 -0.424387

Relative to the previous estimate without covariates, the point estimate is now much larger. This is
in part due to slightly smaller bandwidth used, and the regression function for the reduced form
appears noisy below the cutoff, potentially due to measurement error: see Figure 3. As a result, the
estimates are quite sensitive to the bandwidth used. The noise is also responsible for the rather
large data-driven estimates of the curvature parameters.

## see Figure 3
f3 <- RDScatter(log(cn) ~ elig_year, data = rcp, cutoff = 0,

avg = Inf, xlab = "Years to eligibility", ylab = "Log consumption of non-durables",
propdotsize = TRUE, subset = abs(elig_year) < 15)

## Adjust size of dots if they are too big
f3 + ggplot2::scale_size_area(max_size = 5)
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Figure 3: Battistin et al (2009) data

4.2 Aggregated data and weighted regression

In some cases, data is only observed as cell averages. For instance, suppose that instead of observing
the original cghs data, we only observe averages for cells as follows:

dd <- data.frame()
## Collapse data by running variable
for (j in unique(cghs$yearat14)) {

ix <- cghs$yearat14 == j
df <- data.frame(y = mean(log(cghs$earnings[ix])), x = j,

weights = sum(ix), sigma2 = var(log(cghs$earnings[ix]))/sum(ix))
dd <- rbind(dd, df)

}

The column weights gives the number of observations that each cell averages over. In this case, if
we weight the observations using weights, we can recover the original estimates (and the same
worst-case bias). If we use the estimates of the conditional variance of the outcome, dd$sigma2,
then we can also replicate the standard error calculations:

s0 <- RDHonest(log(earnings) ~ yearat14, cutoff = 1947,
data = cghs)

#> Using Armstrong & Kolesar (2020) ROT for smoothness constant M
## keep same bandwidth
s1 <- RDHonest(y ~ x, cutoff = 1947, data = dd, weights = weights,

sigmaY2 = sigma2, se.method = "supplied.var", h = s0$coefficients$bandwidth)
#> Using Armstrong & Kolesar (2020) ROT for smoothness constant M
## Results are identical:
s0
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#>
#> Call:
#> RDHonest(formula = log(earnings) ~ yearat14, data = cghs, cutoff = 1947)
#>
#> Inference for Sharp RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(yearat14>0) 0.07047433 0.05307276 0.03796328 (-0.05531319, 0.1962619)
#>
#> Onesided CIs: (-Inf, 0.1957345), (-0.05478587, Inf)
#> Number of effective observations: 9074.452
#> Maximal leverage for sharp RD parameter: 0.0005055239
#> Smoothness constant M: 0.02296488
#> P-value: 0.2905956
#>
#> Based on local regression with bandwidth: 3.442187, kernel: triangular
#> Regression coefficients:
#> I(yearat14>0) I(yearat14>0):yearat14 (Intercept)
#> 0.070474 0.009301 8.732659
#> yearat14
#> 0.010848
s1
#>
#> Call:
#> RDHonest(formula = y ~ x, data = dd, weights = weights, cutoff = 1947,
#> h = s0$coefficients$bandwidth, se.method = "supplied.var",
#> sigmaY2 = sigma2)
#>
#> Inference for Sharp RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(x>0) 0.07047433 0.05307276 0.03796328 (-0.05531319, 0.1962619)
#>
#> Onesided CIs: (-Inf, 0.1957345), (-0.05478587, Inf)
#> Number of effective observations: 9074.452
#> Maximal leverage for sharp RD parameter: 0.0005055239
#> Smoothness constant M: 0.02296488
#> P-value: 0.2905956
#>
#> Based on local regression with bandwidth: 3.442187, kernel: triangular
#> Regression coefficients:
#> I(x>0) I(x>0):x (Intercept) x
#> 0.070474 0.009301 8.732659 0.010848

Without supplying the variance estimates and specifying se.method="supplied.var", the variance
estimates will not match, since the collapsed data is not generally not sufficient to learn about the
true variability of the collapsed outcomes.

The same method works in fuzzy designs, but one has to also save the conditional variance of the
treatment and its covariance with the outcome:
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r0 <- RDHonest(log(cn) | retired ~ elig_year, data = rcp,
h = 7)

#> Using Armstrong & Kolesar (2020) ROT for smoothness constant M
dd <- data.frame(x = sort(unique(rcp$elig_year)), y = NA,

d = NA, weights = NA, sig11 = NA, sig12 = NA, sig21 = NA,
sig22 = NA)

for (j in seq_len(NROW(dd))) {
ix <- rcp$elig_year == dd$x[j]
Y <- cbind(log(rcp$cn[ix]), rcp$retired[ix])
dd[j, -1] <- c(colMeans(Y), sum(ix), as.vector(var(Y))/sum(ix))

}
r1 <- RDHonest(y | d ~ x, data = dd, weights = weights,

sigmaY2 = sig11, T0 = 0, sigmaYD = sig21, sigmaD2 = sig22,
h = 7, se.method = "supplied.var")

#> Using Armstrong & Kolesar (2020) ROT for smoothness constant M
## Outputs match up to numerical precision
max(abs(r0$coefficients[2:11] - r1$coefficients[2:11]))
#> [1] 2.728484e-11

4.3 Clustering

In some applications, the data are collected by clustered sampling. In such cases, the user can specify
a vector clusterid signifying cluster membership. In this case, preliminary bandwidth calculations
assume that the regression errors have a Moulton-type structure, with homoskedasticity on either
side of the cutoff:

cov(Yi, Yj) =


σ2
+ if i = j and xi ≥ 0,

σ2
− if i = j and xi < 0,

ρ if i ̸= j and g(i) = g(j),
0 otherwise,

where g(i) ∈ {1, . . . , G} denotes cluster membership. Since it appears difficult to generalize the
nearest neighbor variance estimator to clustering, we use regression-based cluster-robust variance
formulas to compute estimator variances, so that option se.method="EHW" is required.

## make fake clusters
set.seed(42)
clusterid <- sample(1:50, NROW(lee08), replace = TRUE)
sc <- RDHonest(voteshare ~ margin, data = lee08, se.method = "EHW",

clusterid = clusterid, M = 0.14, h = 7)
## Since clusters are unrelated to outcomes, not
## clustering should yield similar standard errors
sn <- RDHonest(voteshare ~ margin, data = lee08, se.method = "EHW",

M = 0.14, h = 7)
sc
#>
#> Call:
#> RDHonest(formula = voteshare ~ margin, data = lee08, M = 0.14,
#> h = 7, se.method = "EHW", clusterid = clusterid)
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#>
#> Inference for Sharp RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(margin>0) 5.821591 1.528091 0.7131699 (2.527825, 9.115358)
#>
#> Onesided CIs: (-Inf, 9.048247), (2.594936, Inf)
#> Number of effective observations: 695.1204
#> Maximal leverage for sharp RD parameter: 0.01063752
#> Smoothness constant M: 0.14
#> P-value: 0.0004238717
#>
#> Based on local regression with bandwidth: 7, kernel: triangular
#> Regression coefficients:
#> I(margin>0) I(margin>0):margin (Intercept) margin
#> 5.82159 0.07179 46.38139 0.65536
sn
#>
#> Call:
#> RDHonest(formula = voteshare ~ margin, data = lee08, M = 0.14,
#> h = 7, se.method = "EHW")
#>
#> Inference for Sharp RD parameter (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> I(margin>0) 5.821591 1.417699 0.7131699 (2.725463, 8.91772)
#>
#> Onesided CIs: (-Inf, 8.866669), (2.776514, Inf)
#> Number of effective observations: 695.1204
#> Maximal leverage for sharp RD parameter: 0.01063752
#> Smoothness constant M: 0.14
#> P-value: 0.000159109
#>
#> Based on local regression with bandwidth: 7, kernel: triangular
#> Regression coefficients:
#> I(margin>0) I(margin>0):margin (Intercept) margin
#> 5.82159 0.07179 46.38139 0.65536

4.4 Specification testing

The package also implements lower-bound estimates for the smoothness constant M for the Taylor
and Hölder smoothness class, as described in the supplements to Kolesár and Rothe [2018] and
Armstrong and Kolesár [2018]

r1 <- RDHonest(voteshare ~ margin, data = lee08, M = 0.1,
se.method = "nn")

### Only use three point-average for averages of a 100
### points closest to cutoff, and report results
### separately for points above and below cutoff
RDSmoothnessBound(r1, s = 100, separate = TRUE, multiple = FALSE,
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sclass = "T")
#> estimate conf.low
#> Below cutoff 0.3337537 0.1224842
#> Above cutoff 0.1738905 0.0000000
## Pool estimates based on observations below and
## above cutoff, and use three-point averages over the
## entire support of the running variable
RDSmoothnessBound(r1, s = 100, separate = FALSE, multiple = TRUE,

sclass = "H")
#> estimate conf.low
#> Pooled 0.1959213 0.01728526

4.5 Optimal weights under Taylor smoothness class

For the second-order Taylor smoothness class, the function RDHonest, with kernel="optimal",
computes finite-sample optimal estimators and confidence intervals, as described in Section 2.2 in
Armstrong and Kolesár [2018]. This typically yields tighter CIs:

r1 <- RDHonest(voteshare ~ margin, data = lee08, kern = "optimal",
M = 0.1, opt.criterion = "FLCI", se.method = "nn")$coefficients

r2 <- RDHonest(voteshare ~ margin, data = lee08, kern = "triangular",
M = 0.1, opt.criterion = "FLCI", se.method = "nn", sclass = "T")$coefficients

r1$conf.high - r1$conf.low
#> [1] 6.33639
r2$conf.high - r2$conf.low
#> [1] 6.685286

5 Inference at a point

The package can also perform inference at a point, and optimal bandwidth selection for inference
at a point. Suppose, for example, one was interested in the vote share for candidates with margin
of victory equal to 20 points:

## Specify we're interested in inference at x0=20, and
## drop observations below cutoff
RDHonest(voteshare ~ margin, data = lee08, subset = margin >

0, cutoff = 20, kern = "uniform", opt.criterion = "MSE",
sclass = "H", point.inference = TRUE)

#> Using Armstrong & Kolesar (2020) ROT for smoothness constant M
#>
#> Call:
#> RDHonest(formula = voteshare ~ margin, data = lee08, subset = margin >
#> 0, cutoff = 20, kern = "uniform", opt.criterion = "MSE",
#> sclass = "H", point.inference = TRUE)
#>
#> Inference for Value of conditional mean (using Holder class), confidence level 95%:
#> Estimate Std. Error Maximum Bias Confidence Interval
#> (Intercept) 61.66394 0.468336 0.2482525 (60.63086, 62.69703)
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#>
#> Onesided CIs: (-Inf, 62.68254), (60.64535, Inf)
#> Number of effective observations: 738
#> Maximal leverage for value of conditional mean: 0.001435988
#> Smoothness constant M: 0.0275703
#> P-value: 0
#>
#> Based on local regression with bandwidth: 7.311286, kernel: uniform
#> Regression coefficients:
#> (Intercept) margin
#> 61.6639 0.4076

To compute the optimal bandwidth, the package assumes homoskedastic variance on either side
of the cutoff, which it estimates based on a preliminary local linear regression using the Fan and
Gijbels [1996] rule of thumb bandwidth selector. This homoskedasticity assumption is dropped
when the final standard errors are computed.

6 Diagnostics: leverage and effective observations

The estimators in this package are just weighted regression estimators, or ratios of regression
estimators in the fuzzy RD case. Regression estimators are linear in outcomes, taking the form
∑i ki,hYi, where ki,h are estimation weights, returned by data$est_w part of the RDHonest output
(see expression for τ̂Y,h above).

For the sampling distribution of the estimator to be well-approximated by a normal distribution,
it is important that these regression weights not be too large: asymptotic normality requires
Lmax = maxj k2

j,h/ ∑i k2
i,h → 0. If uniform kernel is used, the weights ki,h are just the diagonal

elements of the partial projection matrix. We therefore refer to Lmax as maximal (partial) leverage,
and it is reported in the RDHonest output. The package issues a warning if the maximal leverage
exceeds 0.1—in such cases using a bigger bandwidth is advised.

In the fuzzy RD case, by Theorem B.2 in the appendix to Armstrong and Kolesár [2020], the
estimator is asymptotically equivalent to ∑i ki,h(Yi − Diθ)/τD, where ki,h are the weights for τ̂Y,h.
The maximal leverage calculations are thus analogous to the sharp case.

With local regression methods, it is clear that observations outside the estimation window don’t
contribute to estimation, reducing the effective sample size. If the uniform kernel is used, the
package therefore reports the number of observations inside the estimation window as the “number
of effective observations”.

To make this number comparable across different kernels, observe that, under homoskedasticity,
the variance of a linear estimator ∑i kiYi is σ2 ∑i k2

i . We expect this to scale in inverse proportion
to the sample size: with twice as many observations and the same bandwidth, we expect the
variance to halve. Therefore, if the variance ratio relative to a uniform kernel estimator with
weights ∑i kuni f orm,iYi is σ2 ∑i k2

uni f orm,i/σ2 ∑i k2
i = ∑i k2

uni f orm,i/ ∑i k2
i , the precision of this estimator

is the same as if we used a uniform kernel, but with ∑i k2
uni f orm,i/ ∑i k2

i as many observations.
Correspondingly, we define the number of effective observations for other kernels as the number
of observations inside the estimation window times ∑i k2

uni f orm,i/ ∑i k2
i . With this definition, using
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a triangular kernel typically yields effective samples sizes equal to about 80% of the number of
observations inside the estimation window.

Finally, to assess which observations are important for pinning down the estimate, it can be useful
to explicitly plot the estimation weights.
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