
Package ‘QCA’
December 4, 2024

Version 3.23

Title Qualitative Comparative Analysis

URL https://github.com/dusadrian/QCA

BugReports https://github.com/dusadrian/QCA/issues

Depends R (>= 3.6.0), admisc (> 0.35)

LazyData yes

Imports methods, shiny, declared, venn, lpSolve

Description An extensive set of functions to perform Qualitative Comparative Analysis:
crisp sets ('csQCA'), temporal ('tQCA'), multi-value ('mvQCA')
and fuzzy sets ('fsQCA'), using a GUI - graphical user interface.
'QCA' is a methodology that bridges the qualitative and quantitative
divide in social science research. It uses a Boolean minimization
algorithm, resulting in a minimal causal configuration associated
with a given phenomenon.

License GPL (>= 3)

NeedsCompilation yes

Author Adrian Dusa [aut, cre, cph] (<https://orcid.org/0000-0002-3525-9253>),
Ciprian Paduraru [ctb] (<https://orcid.org/0000-0002-4518-374X>),
jQuery Foundation [cph] (jQuery library and jQuery UI library),
jQuery contributors [ctb, cph] (jQuery library; authors listed in

inst/gui/www/lib/jquery-AUTHORS.txt),
Vasil Dinkov [ctb, cph] (jquery.smartmenus.js library),
Dmitry Baranovskiy [ctb, cph] (raphael.js library),
Emmanuel Quentin [ctb, cph] (raphael.inline_text_editing.js library),
Jimmy Breck-McKye [ctb, cph] (raphael-paragraph.js library),
Alrik Thiem [aut] (from version 1.0-0 up to version 1.1-3)

Maintainer Adrian Dusa <dusa.adrian@unibuc.ro>

Repository CRAN

Date/Publication 2024-12-04 08:30:02 UTC

1

https://github.com/dusadrian/QCA
https://github.com/dusadrian/QCA/issues
https://orcid.org/0000-0002-3525-9253
https://orcid.org/0000-0002-4518-374X

2 About the QCA package

Contents
About the QCA package . 2
calibrate . 4
causalChain . 9
complexity . 13
findRows . 14
findTh . 16
fuzzyand, fuzzyor . 17
generate . 19
Implicant matrix functions: allExpressions, createMatrix, getRow 20
minimize . 23
modelFit . 29
Parameters of fit . 31
PI chart functions: makeChart, findmin, solveChart . 34
retention . 38
runGUI . 40
superSubset, findSubsets, findSupersets . 40
truthTable . 45
Xplot . 50
XYplot . 52
_Cebotari and Vink . 55
_Hino . 56
_Legacy datasets . 57
_Lipset . 58
_Nieuwbeerta . 59
_Ragin and Strand . 60

Index 62

About the QCA package QCA: A Package for Qualitative Comparative Analysis

Description

The package QCA contains functions to perform Qualitative Comparative Analysis, complemented
with a graphical user interface. It implements the comparative method as first described by Ragin
(1987), and extended by Cronqvist and Berg-Schlosser (2009) and Ragin (2000, 2008). QCA is
a bridge between the qualitative and quantitative research methodologies, making use of the qual-
itative procedures in a systematic, algorithmic way (therefore increasing the “confidence” in the
results, as understood by quantitative researchers).

The Quine-McCluskey minimization algorithms implemented in this package are mathematically
exact, as described by Dusa (2007b), Dusa (2010), Dusa and Thiem (2015) and Dusa (2018). They
all return the same, relevant set of prime implicants for csQCA (binary crisp sets QCA), mvQCA
(multi-value QCA) and fsQCA (fuzzy-sets QCA).

The package also showcases functionality for other types of QCA like tsQCA (temporal QCA), see
Caren and Panofsky (2005), Ragin and Strand (2008) and more recently also causal chains similar
to those from the package cna (see Ambuehl et al 2015).

About the QCA package 3

The results of the QCA package are consistent with (and sometimes better than) the results of the
other software packages for QCA, most notably fs/QCA by Ragin and Davey (2014) and Tosmana
by Cronqvist and Berg-Schlosser (2009). A comparison of several such software is provided by
Thiem and Dusa (2013).

More recent versions bring major improvements and additions, most notably: - a new minimization
algorithm called CCubes (Consistency Cubes), that is hundreds of times faster than the previous
eQMC; - conjunctural directional expectations; - extension to categorical data.

Details

Package: QCA
Type: Package
Version: 3.23
Date: 2024-12-03
License: GPL (>= 3)

Author(s)

Adrian Dusa
Department of Sociology
University of Bucharest
<dusa.adrian@unibuc.ro>

References

Ambuehl, M. et al (2015) A Package for Coincidence Analysis (CNA), R Package Version 2.0 [Com-
puter Program], CRAN.

Caren, N.; Panofsky, A. (2005) “TQCA: A Technique for Adding Temporality to Qualitative Com-
parative Analysis.” Sociological Methods & Research vol.34, no.2, pp.147-172.

Cronqvist, L. (2016) Tosmana: Tool for Small-N Analysis, Version 1.522 [Computer Program].
Trier: University of Trier. url: https://www.tosmana.net/

Dusa, A. (2007a) “User manual for the QCA(GUI) package in R”. Journal of Business Research
vol.60, no.5, pp.576-586, doi:10.1016/j.jbusres.2007.01.002

Dusa, A. (2007b) Enhancing Quine-McCluskey. WP 2007-49, COMPASSS Working Papers series.

Dusa, A. (2010) “A Mathematical Approach to the Boolean Minimization Problem.” Quality &
Quantity vol.44, no.1, pp.99-113, doi:10.1007/s111350089183x

Dusa, A.; Thiem, A. (2015) “Enhancing the Minimization of Boolean and Multivalue Output Func-
tions With eQMC” Journal of Mathematical Sociology vol.39, no.2, pp.92-108,
doi:10.1080/0022250X.2014.897949

Dusa, A. (2018) “Consistency Cubes: A Fast, Efficient Method for Boolean Minimization”, R
Journal, doi:10.32614/RJ2018080

Ragin, C.C. (1987) The Comparative Method: Moving beyond Qualitative and Quantitative Strate-
gies. Berkeley: University of California Press.

https://cran.r-project.org/package=cna/
https://www.tosmana.net/
https://doi.org/10.1016/j.jbusres.2007.01.002
https://compasss.org/working-papers-series/
https://doi.org/10.1007/s11135-008-9183-x
https://doi.org/10.1080/0022250X.2014.897949
https://doi.org/10.32614/RJ-2018-080

4 calibrate

Ragin, C.C. (2000) Fuzzy-Set Social Science. Chicago: University of Chicago Press.

Ragin, C.C. (2008) Redesigning Social Inquiry: Fuzzy Sets and Beyond. Chicago: University of
Chicago Press.

Ragin, C.C.; Strand, S.I. (2008) “Using Qualitative Comparative Analysis to Study Causal Order:
Comment on Caren and Panofsky (2005)”. Sociological Methods & Research vol.36, no.4, pp.431-
441.

Ragin, C.C.; Davey, S. (2014) fs/QCA: Fuzzy-Set/Qualitative Comparative Analysis, Version 2.5
[Computer Program]. Irvine: Department of Sociology, University of California.

Thiem, A.; Dusa, A. (2013) “Boolean Minimization in Social Science Research: A Review of
Current Software for Qualitative Comparative Analysis (QCA).” Social Science Computer Review
vol.31, no.4, pp.505-521.

calibrate Calibrate raw data to crisp or fuzzy sets

Description

This function transforms (calibrates) the raw data to either crisp or fuzzy sets values, using both the
direct and the indirect methods of calibration.

Usage

calibrate(x, type = "fuzzy", method = "direct", thresholds = NA,
logistic = TRUE, idm = 0.95, ecdf = FALSE, below = 1, above = 1, ...)

Arguments

x A numerical causal condition.

type Calibration type, either "crisp" or "fuzzy".

method Calibration method, either "direct", "indirect" or "TFR".

thresholds A vector of (named) thresholds.

logistic Calibrate to fuzzy sets using the logistic function.

idm The set inclusion degree of membership for the logistic function.

ecdf Calibrate to fuzzy sets using the empirical cumulative distribution function of
the raw data.

below Numeric (non-negative), determines the shape below crossover.

above Numeric (non-negative), determines the shape above crossover.

... Additional parameters, mainly for backwards compatibility.

calibrate 5

Details

Calibration is a transformational process from raw numerical data (interval or ratio level of mea-
surement) to set membership scores, based on a certain number of qualitative anchors.

When type = "crisp", the process is similar to recoding the original values to a number of cat-
egories defined by the number of thresholds. For one threshold, the calibration produces two
categories (intervals): 0 if below, 1 if above. For two thresholds, the calibration produces three
categories: 0 if below the first threshold, 1 if in the interval between the thresholds and 2 if above
the second threshold etc.

When type = "fuzzy", calibration produces fuzzy set membership scores, using three anchors for
the increasing or decreasing s-shaped distributions (including the logistic function), and six anchors
for the increasing or decreasing bell-shaped distributions.

The argument thresholds can be specified either as a simple numeric vector, or as a named nu-
meric vector. If used as a named vector, for the first category of s-shaped distributions, the names
of the thresholds should be:

"e" for the full set exclusion
"c" for the set crossover
"i" for the full set inclusion

For the second category of bell-shaped distributions, the names of the thresholds should be:

"e1" for the first (left) threshold for full set exclusion
"c1" for the first (left) threshold for set crossover
"i1" for the first (left) threshold for full set inclusion
"i2" for the second (right) threshold for full set inclusion
"c2" for the second (right) threshold for set crossover
"e2" for the second (right) threshold for full set exclusion

If used as a simple numerical vector, the order of the values matter.

If e < c < i, then the membership function is increasing from e to i. If i < c < e, then the
membership function is decreasing from i to e.

Same for the bell-shaped distribution, if e1 < c1 < i1 ≤ i2 < c2 < e2, then the membership
function is first increasing from e1 to i1, then flat between i1 and i2, and then decreasing from i2
to e2. In contrast, if i1< c1< e1≤ e2< c2< i1, then the membership function is first decreasing
from i1 to e1, then flat between e1 and e2, and finally increasing from e2 to i2.

When logistic = TRUE (the default), the argument idm specifies the inclusion degree of member-
ship for the logistic function. If logistic = FALSE, the function returns linear s-shaped or bell-
shaped distributions (curved using the arguments below and above), unless activating the argument
ecdf.

If there is no prior knowledge on the shape of the distribution, the argument ecdf asks the com-
puter to determine the underlying distribution of the empirical, observed points, and the calibrated
measures are found along that distribution.

6 calibrate

Both logistic and ecdf arguments can be used only for s-shaped distributions (using 3 thresh-
olds), and they are mutually exclusive.

The parameters below and above (active only when both logistic and ecdf are deactivated, es-
tablish the degree of concentration and dilation (convex or concave shape) between the threshold
and crossover:

0 < below < 1 dilates in a concave shape below the crossover
below = 1 produces a linear shape (neither convex, nor concave)
below > 1 concentrates in a convex shape below the crossover
0 < above < 1 dilates in a concave shape above the crossover
above = 1 produces a linear shape (neither convex, nor concave)
above > 1 concentrates in a convex shape above the crossover

Usually, below and above have equal values, unless specific reasons exist to make them different.

For the type = "fuzzy" it is also possible to use the "indirect" method to calibrate the data, using
a procedure first introduced by Ragin (2008). The indirect method assumes a vector of thresholds
to cut the original data into equal intervals, then it applies a (quasi)binomial logistic regression with
a fractional polynomial equation.

The results are also fuzzy between 0 and 1, but the method is entirely different: it has no anchors
(specific to the direct method), and it doesn’t need to specify a calibration function to calculate the
scores with.

The third method applied to fuzzy calibrations is called "TFR" and calibrates categorical data (such
as Likert type response scales) to fuzzy values using the Totally Fuzzy and Relative method (Chelli
and Lemmi, 1995).

Value

A numeric vector of set membership scores, either crisp (starting from 0 with increments of 1), or
fuzzy numeric values between 0 and 1.

Author(s)

Adrian Dusa

References

Cheli, B.; Lemmi, A. (1995) “A ’Totally’ Fuzzy and Relative Approach to the Multidimensional
Analysis of Poverty”. In Economic Notes, vol.1, pp.115-134.

Dusa, A. (2019) QCA with R. A Comprehensive Resource. Springer International Publishing,
doi:10.1007/9783319756684.

Ragin, C. (2008) “Fuzzy Sets: Calibration Versus Measurement.” In The Oxford Handbook of Po-
litical Methodology, edited by Janet Box-Steffensmeier, Henry E. Brady, and David Collier, pp.87-
121. Oxford: Oxford University Press.

https://doi.org/10.1007/978-3-319-75668-4

calibrate 7

Examples

generate heights for 100 people
with an average of 175cm and a standard deviation of 10cm
set.seed(12345)
x <- rnorm(n = 100, mean = 175, sd = 10)

cx <- calibrate(x, type = "crisp", thresholds = 175)
plot(x, cx, main="Binary crisp set using 1 threshold",

xlab = "Raw data", ylab = "Calibrated data", yaxt="n")
axis(2, at = 0:1)

cx <- calibrate(x, type = "crisp", thresholds = c(170, 180))
plot(x, cx, main="3 value crisp set using 2 thresholds",

xlab = "Raw data", ylab = "Calibrated data", yaxt="n")
axis(2, at = 0:2)

calibrate to a increasing, s-shaped fuzzy-set
cx <- calibrate(x, thresholds = "e=165, c=175, i=185")
plot(x, cx, main = "Membership scores in the set of tall people",

xlab = "Raw data", ylab = "Calibrated data")

calibrate to an decreasing, s-shaped fuzzy-set
cx <- calibrate(x, thresholds = "i=165, c=175, e=185")
plot(x, cx, main = "Membership scores in the set of short people",

xlab = "Raw data", ylab = "Calibrated data")

when not using the logistic function, linear increase
cx <- calibrate(x, thresholds = "e=165, c=175, i=185", logistic = FALSE)
plot(x, cx, main = "Membership scores in the set of tall people",

xlab = "Raw data", ylab = "Calibrated data")

tweaking the parameters "below" and "above" the crossover,
at value 3.5 approximates a logistic distribution, when e=155 and i=195
cx <- calibrate(x, thresholds = "e=155, c=175, i=195", logistic = FALSE,

below = 3.5, above = 3.5)
plot(x, cx, main = "Membership scores in the set of tall people",

xlab = "Raw data", ylab = "Calibrated data")

calibrate to a bell-shaped fuzzy set
cx <- calibrate(x, thresholds = "e1=155, c1=165, i1=175, i2=175, c2=185, e2=195",

below = 3, above = 3)
plot(x, cx, main = "Membership scores in the set of average height",

xlab = "Raw data", ylab = "Calibrated data")

8 calibrate

calibrate to an inverse bell-shaped fuzzy set
cx <- calibrate(x, thresholds = "i1=155, c1=165, e1=175, e2=175, c2=185, i2=195",

below = 3, above = 3)
plot(x, cx, main = "Membership scores in the set of non-average height",

xlab = "Raw data", ylab = "Calibrated data")

the default values of "below" and "above" will produce a triangular shape
cx <- calibrate(x, thresholds = "e1=155, c1=165, i1=175, i2=175, c2=185, e2=195")
plot(x, cx, main = "Membership scores in the set of average height",

xlab = "Raw data", ylab = "Calibrated data")

different thresholds to produce a linear trapezoidal shape
cx <- calibrate(x, thresholds = "e1=155, c1=165, i1=172, i2=179, c2=187, e2=195")
plot(x, cx, main = "Membership scores in the set of average height",

xlab = "Raw data", ylab = "Calibrated data")

larger values of above and below will increase membership in or out of the set
cx <- calibrate(x, thresholds = "e1=155, c1=165, i1=175, i2=175, c2=185, e2=195",

below = 10, above = 10)
plot(x, cx, main = "Membership scores in the set of average height",

xlab = "Raw data", ylab = "Calibrated data")

while extremely large values will produce virtually crisp results
cx <- calibrate(x, thresholds = "e1=155, c1=165, i1=175, i2=175, c2=185, e2=195",

below = 10000, above = 10000)
plot(x, cx, main = "Binary crisp scores in the set of average height",

xlab = "Raw data", ylab = "Calibrated data", yaxt="n")
axis(2, at = 0:1)
abline(v = c(165, 185), col = "red", lty = 2)

check if crisp
round(cx, 0)

using the empirical cumulative distribution function
require manually setting logistic to FALSE
cx <- calibrate(x, thresholds = "e=155, c=175, i=195", logistic = FALSE,

ecdf = TRUE)
plot(x, cx, main = "Membership scores in the set of tall people",

xlab = "Raw data", ylab = "Calibrated data")

the indirect method, per capita income data from Ragin (2008)
inc <- c(40110, 34400, 25200, 24920, 20060, 17090, 15320, 13680, 11720,

11290, 10940, 9800, 7470, 4670, 4100, 4070, 3740, 3690, 3590,
2980, 1000, 650, 450, 110)

cinc <- calibrate(inc, method = "indirect",
thresholds = "1000, 4000, 5000, 10000, 20000")

causalChain 9

plot(inc, cinc, main = "Membership scores in the set of high income",
xlab = "Raw data", ylab = "Calibrated data")

calibrating categorical data
set.seed(12345)
values <- sample(1:7, 100, replace = TRUE)

TFR <- calibrate(values, method = "TFR")

table(round(TFR, 3))

causalChain Perform CNA - coincidence analysis using QCA

Description

This function mimics the functionality in the package cna, finding all possible necessary and suffi-
cient solutions for all possible outcomes in a specific dataset.

Usage

causalChain(data, ordering = NULL, strict = FALSE, pi.cons = 0, pi.depth = 0,
sol.cons = 0, sol.cov = 1, sol.depth = 0, ...)

Arguments

data A data frame containing calibrated causal conditions.

ordering A character string, or a list of character vectors specifying the causal ordering
of the causal conditions.

strict Logical, prevents causal conditions on the same temporal level to act as out-
comes for each other.

pi.cons Numerical fuzzy value between 0 and 1, minimal consistency threshold for a
prime implicant to be declared as sufficient.

pi.depth Integer, a maximum number of causal conditions to be used when searching for
conjunctive prime implicants.

sol.cons Numerical fuzzy value between 0 and 1, minimal consistency threshold for a
model to be declared as sufficient.

sol.cov Numerical fuzzy value between 0 and 1, minimal coverage threshold for a model
to be declared as necessary.

sol.depth Integer, a maximum number of prime implicants to be used when searching for
disjunctive models.

... Other arguments to be passed to functions minimize() and truthTable().

10 causalChain

Details

Although claiming to be a novel technique, coincidence analysis is yet another form of Boolean
minimization. What it does is very similar and results in the same set of solutions as performing
separate QCA analyses where every causal condition from the data is considered an outcome.

This function aims to demonstrate this affirmation and show that results from package cna can be
obtained with package QCA. It is not intended to offer a complete replacement for the function
cna(), but only to replicate its so called “asf” - atomic solution formulas.

The three most important arguments from function cna() have direct correspondents in function
minimize():

con corresponds to sol.cons.
con.msc corresponds to pi.cons.

cov corresponds to sol.cov.

Two other arguments from function cna() have been directly imported in this function, to complete
the list of arguments that generate the same results.

The argument ordering splits the causal conditions in different temporal levels, where prior ar-
guments can act as causal conditions, but not as outcomes for the subsequent temporal conditions.
One simple way to split conditions is to use a list object, where different components act as different
temporal levels, in the order of their index in the list: conditions from the first component act as
the oldest causal factors, while those from the and the last component are part of the most recent
temporal level.

Another, perhaps simpler way to express the same thing is to use a single character, where factors
on the same level are separated with a comma, and temporal levels are separated by the sign <.

A possible example is: "A, B, C < D, E < F".

Here, there are three temporal levels and conditions A, B and C can act as causal factors for the
conditions D, E and F, while the reverse is not possible. Given that D, E and F happen in a subse-
quent temporal levels, they cannot act as causal conditions for A, B or C. The same thing is valid
with D and E, which can act as causal conditions for F, whereas F cannot act as a causal condition
for D or E, and certainly not for A, B or C.

The argument strict controls whether causal conditions from the same temporal level may be
outcomes for each other. If activated, none of A, B and C can act as causal conditions for the other
two, and the same thing happens in the next temporal level where neither D nor E can be causally
related to each other.

Although the two functions reach the same results, they follow different methods. The input for the
minimization behind the function cna() is a coincidence list, while in package QCA the input for
the minimization procedure is a truth table. The difference is subtle but important, with the most
important difference that package cna is not exhaustive.

To find a set of solutions in a reasonable time, the formal choice in package cna is to deliberately
stop the search at certain (default) depths of complexity. Users are free to experiment with these
depths from the argument maxstep, but there is no guarantee the results will be exhaustive.

On the other hand, the function causalChain() and generally all related functions from package
QCA are spending more time to make sure the search is exhaustive. Depths can be set via the
arguments pi.depth and sol.depth, but unlike package cna these are not mandatory.

causalChain 11

By default, the package QCA employes a different search algorithm based on Consistency Cubes
(Dusa, 2018), analysing all possible combinations of causal conditions and all possible combina-
tions of their respective levels. The structure of the input dataset (number of causal conditions,
number of levels, number of unique rows in the truth table) has a direct implication on the search
time, as all of those characteristics become entry parameters when calculating all possible combi-
nations.

Consequently, two kinds of depth arguments are provided:

pi.depth the maximum number of causal conditions needed to conjunctively
construct a prime implicant; it is the complexity level where the search
can be stopped, as long as the PI chart can be solved.

sol.depth the maximum number of prime implicants needed to disjunctively
build a solution model that covers all initial positive output configurations.

These arguments introduce a possible new way of deriving prime implicants and solution models,
that can lead to different results (i.e. even more parsimonious) compared to the classical Quine-
McCluskey. When either of them is modified from the default value of 0, the minimization method
is automatically set to "CCubes" and the remainders are automatically included in the minimization.

The higher these depths, the higher the search time. Connversely, the search time can be signif-
icantly shorter if these depths are smaller. Irrespective of how large pi.depth is, the algorithm
will always stop at a maximum complexity level where no new, non-redundant prime implicants are
found. The argument sol.depth is relevant only when activating the argument all.sol to solve
the PI chart.

The argument sol.cons introduces another method of solving the PI chart. Normally, once the
solution models are found among all possible combinations of k prime implicants, consistencies and
coverages are subsequently calculated. When sol.cons is lower than 1, then models are searched
based on their consistencies, which should be at least equal to this threshold.

Exhaustiveness is guaranteed in package QCA precisely because it uses a truth table as an input
for the minimization procedure. The only exception is the option of finding solutions based on
their consistency, with the argument sol.cons: for large PI charts, time can quickly increase to
infinity, to identify all possible irredundant (disjunctions that are not subsets of previously found)
disjunctive models. In such a situation, the number of combinations of all possible numbers of
prime implicants is potentially too large to be solved in a polynomial time and if not otherwise
specified in the argument sol.depth the function causalChain() silently sets a complexity level
of 7 prime implicants per model.

When minimizing a dataset instead of a truth table, unless otherwise specified, the argument incl.cut
is automatically set to the minimum value between pi.cons and sol.cons, then passed to the func-
tion truthTable().

Value

A list of length equal to the number of columns in the data. Each component contains the result of
the QCA minimization for that specific column acting as an outcome.

Author(s)

Adrian Dusa

12 causalChain

See Also

minimize, truthTable

Examples

Not run:
The following examples assume the package cna is installed
library(cna)
cna(d.educate, what = "a")

same results with
cc <- causalChain(d.educate)
cc

inclusion and coverage scores can be inspected for each outcome
ccEIC

another example, function cna() requires specific complexity depths
cna(d.women, maxstep = c(3, 4, 9), what = "a")

same results with, no specific depths are required
causalChain(d.women)

multivalue data require a different function in package cna
mvcna(d.pban, ordering = list(c("C", "F", "T", "V"), "PB"),

cov = 0.95, maxstep = c(6, 6, 10), what = "a")

same results again, simpler command
causalChain(d.pban, ordering = "C, F, T, V < PB", sol.cov = 0.95)

specifying a lower consistency threshold for the solutions
mvcna(d.pban, ordering = list(c("C", "F", "T", "V"), "PB"), con = .93,

maxstep = c(6, 6, 10), what = "a")

same thing with
causalChain(d.pban, ordering = "C, F, T, V < PB", pi.cons = 0.93,

sol.cons = 0.95)

setting consistency thresholds for the PIs, solutions and also
a coverage threshold for the solution (note that an yet another
function for fuzzy sets is needed in package cna)

dat2 <- d.autonomy[15:30, c("AU","RE", "CN", "DE")]
fscna(dat2, ordering = list("AU"), con = .9, con.msc = .85, cov = .85,

what = "a")

again, the same results using the same function:
causalChain(dat2, ordering = "AU", sol.cons = 0.9, pi.cons = 0.85,

complexity 13

sol.cov = 0.85)

End(Not run)

complexity Number of combinations at a given complexity layer

Description

This function calculates the number of all possible combinations of conditions (including all levels
for each condition), at a given complexity layer.

Usage

complexity(n, layers, noflevels, ...)

Arguments

n Numeric scalar, the number of input conditions.

layers Numeric vector, the complexity layer(s) with values from 1 to n.

noflevels Numeric vector containing the number of levels for each of the n conditions.

... Other arguments, mainly for internal use.

Details

These are the number of combinations which the CCubes algorithm (Dusa, 2018) checks to deter-
mine the prime implicants from a minimization process.

In the bottom-up approach, CCubes first checks for single conditions (combinations of both pres-
ence and absence, or more levels if multi-value), then all possible combinations of levels for two
conditions etc.

The precise equation that partitions the search space into complexity layers is:

k∑
c=1

(
k

c

) c∏
s=1

ls

where l stands for the number of levels for each combination of c conditions out of k.

Value

A numeric vector.

Author(s)

Adrian Dusa

14 findRows

References

Dusa, A. (2018) “Consistency Cubes: A Fast, Efficient Method for Boolean Minimization”, R
Journal, doi:10.32614/RJ2018080

Examples

complexity(3) # all layers from 1 to 3

complexity(5, layers = 2)

findRows Find untenable configurations

Description

This function finds various types of untenable assumptions that are used when excluding certain
configurations from the minimization process.

Usage

findRows(obj = NULL, expression = "", observed = FALSE, type = 1, ...)

Arguments

obj A truth table (an object of class "QCA_tt") or an equivalent numerical matrix.

expression String: a QCA expression written in sum of products form.

observed Logical: also return subset relations for observed configurations, when obj is a
truth table.

type Numeric vector, specifying the type(s) of untenable configurations.

... Additional arguments to be passed to function truthTable(), for the negation
of the outcome.

Details

The primary purpose is to find untenable assumptions to be excluded from the Boolean minimiza-
tion process. For this reason, the input is most of the times a truth table, but for demonstration
purposes it can also be a simple matrix having column names.

It started as a function to find rows that are subsets of a given SOP expression, and it developed to
cover even more untenable asumptions.

Subset rows can be anything, from remainders to the observed configurations: positive output, neg-
ative output and contradictions). By default, the function returns only the subset configurations for
the remaiders, but activating the argument observed adds the corresponding observed configura-
tions to the output.

https://doi.org/10.32614/RJ-2018-080

findRows 15

It might ocasionally find negative output configurations or contradictions, but that doesn’t have any
side effect because they are going to be excluded from the minimization anyways, unless contradic-
tions are included in the minimization. The only category that really matters if they are identified
or not, are the positive output configurations.

The contradictory simplifying assumptions (CSAs) are those which are used for both the presence
and the absence of the outcome, while simultaneous subset relations (SSRs) when observed config-
urations are sufficient for both the presence and the absence of the outcome. CSAs and SSRs are
incoherent conterfactuals, part of a category called Untenable Assumptions.

This function takes does what is normally done with a series of commands, in a more integrated and
systematic way.

Providing a truth table is sufficient to perform all these tasks, because a truth table already contains
all necessary information of how it was produced, most importantly the inclusion cut-off(s). By
default, it uses the same options to produce a truth table for the negation of the outcome (if the input
truth table was created for its presence, or the other way round), and minimizes both to inspect their
simplifying assumptions to detect which are contradictory.

Identical simplifying assumptions that found in both parsimonious solutions are declared as con-
tradictory. Observed configurations that are sufficient for both the presence and the absence of the
outcome are incoherent because of the simultaneous subset relations problem.

The following types of untenable assumptions can be searched for:

0 all of them
1 subsets of a given expression (default)
2 contradictory simplifying assumptions
3 simultaneous subset relations

To find contradictory simplifying assumptions, a truth table for the negated outcome is constructed,
using the incl.cut argument from the obj input object. If the inclusion cut-off has a single value,
the same is used for the negated outcome, and if it has two values the second is used.

If very specific cutoff values are needed for the negation of the outcome, these can be provided via
the ... argument, that will be passed to function truthTable().

Value

A numeric vector of row numbers from the truth table.

Author(s)

Adrian Dusa

See Also

truthTable, minimize

16 findTh

Examples

Lipset's binary crisp version
ttLC <- truthTable(LC, "SURV", show.cases = TRUE)

findRows(obj = ttLC, "DEV*~IND*STB")

all subset rows from the truth table, also for observed configurations
findRows(obj = ttLC, "DEV*~IND*STB", observed = TRUE)

Lipset's fuzzy version
ttLF <- truthTable(LF, outcome = "SURV", incl.cut = 0.8)

findRows(obj = ttLF, type = 2) # contradictory simplifying assumptions

Contradictory simplifying assumptions using different cutoff values
for the _negation_ of the outcome

findRows(obj = ttLF, type = 2, incl.cut = 0.9, pri.cut = 0.7)

findTh Find calibration thresholds

Description

The purpose of this function is to automatically find calibration thresholds for a numerical causal
condition, to be split into separate groups.

Usage

findTh(x, n = 1, hclustm = "complete", distm = "euclidean", ...)

Arguments

x A numerical causal condition.

n The number of thresholds to find.

hclustm The agglomeration (clustering) method to be used.

distm The distance measure to be used.

... Other arguments (mainly for backwards compatibility).

Details

The process of calibration into crisp sets assumes expert knowledge about the best threshold(s) that
separate the raw data into the most meaningful groups.

In the absence of such knowledge, an automatic procedure might help grouping the raw data ac-
cording to statistical clustering techniques.

fuzzyand, fuzzyor 17

The number of groups to split depends on the number of thresholds: one thresholds splits into two
groups, two thresholds splits into three groups etc.

For more details about how many groups can be formed with how many thresholds, see cutree().

More details about the clustering techniques used in this function are found using hclust(), and
also more details about different distance measures can be found with dist(). This function uses
their default values.

Value

A numeric vector of length n.

Author(s)

Adrian Dusa

See Also

cutree, hclust, dist

Examples

hypothetical list of country GDPs
gdp <- c(460, 500, 900, 2000, 2100, 2400, 15000, 16000, 20000)

find one threshold to separate into two groups
findTh(gdp)
8700

find two thresholds to separate into two groups
findTh(gdp, n = 2)
8700 18000

using different clustering methods
findTh(gdp, n = 2, hclustm = "ward.D2", distm = "canberra")
1450 8700

fuzzyand, fuzzyor Logical operations

Description

These functions perform logical operations AND and OR, for binary crisp or fuzzy set membership
scores.

18 fuzzyand, fuzzyor

Usage

fuzzyand(..., na.rm = FALSE)

fuzzyor(..., na.rm = FALSE)

Arguments

... Two or more numerical (calibrated) objects containing membership scores, or a
matrix / data frame of calibrated columns.

na.rm Logical, indicating whether missing values should be removed.

Value

A numerical vector of class "QCA_fuzzy", with a name attribute expression

Author(s)

Adrian Dusa

Examples

Cebotari & Vink (2013, 2015)

DEMOC*GEOCON*NATPRIDE
using(CVF, fuzzyand(DEMOC, GEOCON, NATPRIDE))

same thing with
fuzzyand(CVF[, c(1,3,5)])

DEMOC*~GEOCON*NATPRIDE
fa <- using(

CVF,
fuzzyand(DEMOC, 1 - GEOCON, NATPRIDE)

)
fa

attr(fa, "name")

ETHFRACT + POLDIS
using(CVF, fuzzyor(ETHFRACT, POLDIS))

same thing with
fuzzyor(CVF[, c(2,4)])

ETHFRACT + ~POLDIS
fo <- using(CVF, fuzzyor(ETHFRACT, 1 - POLDIS))
fo

attr(fo, "name")

generate 19

generate Generate a custom data structure

Description

This function acts as a DGS - Data Generating Structure for a certain SOP expression.

Usage

generate(expression = "", snames = "", noflevels, ...)

Arguments

expression String: a SOP - sum of products expression.

snames A string containing the sets’ names, separated by commas.

noflevels Numerical vector containing the number of levels for each set.

... Other arguments, mainly for internal use.

Details

Using the power of SOP expressions, this function can generate the data for any type of expressions,
either Boolean or multi-value.

Causal conditions should always be separated by a product sign "*", unless: - they are single letters,
or - the set names are provided, or - the expression is multi-value

All conditions are considered binary crisp, unless the number of levels are provided in conjunction
with the set names, in the order of their specification from the snames argument.

This is an extension of the function expand() from package admisc, the process of data generating
process being essentially a Quine expansion to a Disjunctive Normal Form.

Value

A data frame.

Author(s)

Adrian Dusa

20 Implicant matrix functions: allExpressions, createMatrix, getRow

Examples

generate(D + ~AB + B~C -> Z)

the positive configurations in their complete DNF expansion:
expanded <- expand(D + ~AB + B~C, snames = c(A, B, C, D))
~A~B~CD + ~A~BCD + ~AB~CD + ~ABCD + A~B~CD + A~BCD +
AB~CD + ABCD + ~AB~C~D + ~ABC~D + AB~C~D

which has the equivalent simpler, initial expression:
simplify(expanded)
D + ~AB + B~C

same structure with different set names
(note the mandatory use of the product sign *)
generate(Alpha + ~Beta*Gamma + Gamma*~Delta -> Omicron)

introducing an additional, irrelevant condition
(note the product sign is not mandatory if providing the set names)
setnames <- "Alpha, Beta, Gamma, Delta, Epsilon"
dat <- generate(Alpha + ~BetaGamma + Gamma~Delta -> Omicron, snames = setnames)

head(dat)

Alpha Beta Gamma Delta Epsilon Omicron
1 0 0 0 0 0 0
2 0 0 0 0 1 0
3 0 0 0 1 0 0
4 0 0 0 1 1 0
5 0 0 1 0 0 1
6 0 0 1 0 1 1

minimize(dat, outcome = Omicron)

M1: Alpha + ~Beta*Gamma + Gamma*~Delta <-> Omicron

Implicant matrix functions: allExpressions, createMatrix, getRow

Functions Related to the Implicant Matrix

Description

This is a set of functions dedicated to the implicant matrix, a space where all causal configurations
and their minimized solutions are found.

They can produce all possible implicants and prime implicants, or all possible combinations for a
specific number of causal conditions and their number of values (either binary or multi-value).

Implicant matrix functions: allExpressions, createMatrix, getRow 21

Usage

allExpressions(noflevels = NULL, arrange = FALSE, depth, raw = FALSE, ...)

createMatrix(noflevels = NULL, ...)

getRow(row.no = NULL, noflevels = NULL, zerobased = FALSE, ...)

Arguments

noflevels The number of levels (values) for each causal condition.

arrange Logical, if TRUE the result matrix is arranged for visual inspection.

depth Integer, an upper number of causal conditions to form expressions with.

raw Logical, if TRUE it returns the matrix indicating which conditions have been
minimized, using -1.

row.no A vector, the desired row numbers.

zerobased Logical, if TRUE the first row number is zero.

... Other arguments.

Details

A truth table for binary crisp conditions is a matrix with 2k rows, where k is the number of causal
conditions.

For multi-value causal conditions, the same equation can be generalised to:

v1 · v2 · · · · · vk
where v is the number of values (levels) for every causal condition from 1 to k.

Implicant matrices contain all rows from the truth table, plus all of their supersets, (all implicants
and prime implicants), including the empty set (Dusa 2007, 2010).

For a binary crisp set procedure, there are 3k − 1 possible expressions (groupings), see Ragin
(2010). Including the empty set (the situation when all causal conditions have been minimized), the
implicant matrix consists of exactly 3k rows, including the truth table configurations.

In fact, 3k is also obtained by the product:

(2 + 1) · (2 + 1) · · · · · (2 + 1)

For multi-value causal conditions, the same equation can be generalised to:

(v1 + 1) · (v2 + 1) · · · · · (vk + 1)

where every number of levels in each causal conditions is incremented with 1, to allow coding the
minimization of literals in each (prime) implicant (see examples).

The function allExpressions() creates a matrix which contains all possible implicants and prime
implicants, displayed in the original values form using the code -1 to point the minimized literals,
while the other functions use the code 0, all other values being incremented with 1.

Specifying a smaller depth automatically activates the argument arrange.

When the argument arrange is activated, the output is arranged in the increasing order of the num-
ber of conditions which form conjunctions, up to the maximum number specified by the argument
depth (which if NULL, it is considered equal to the number of columns in the matrix).

22 Implicant matrix functions: allExpressions, createMatrix, getRow

The function createMatrix() creates a base matrix for truth tables and implicant matrices.

The function getRow() takes the number of a row in the truth table or implicant matrix (in its
decimal form), and transforms it into its binary (or multi-base) representation, as a configuration of
binary or multi-values for each causal condition.

Note that R is a 1-based language (all numbers start from 1), and similarly positions in vectors and
matrices start with 1. For this reason, although (mathematicall) the binary representation of the
decimal number 0 (for example, at three causal conditions) is 0 0 0, in R that would be the “first”
line in the implicant matrix, therefore 0 0 0 is translated into the number 1, unless the argument
zerobased is activated.

Value

A matrix with k columns and:

v1 · v2 · · · · · vk rows if a truth table;

(v1 + 1) · (v2 + 1) · · · · · (vk + 1) rows if an implicant matrix;

x rows, equal to the length of row.no.

Author(s)

Adrian Dusa

References

Dusa, A. (2007b) Enhancing Quine-McCluskey. WP 2007-49, COMPASSS Working Papers series.

Dusa, Adrian. 2010. “A Mathematical Approach to the Boolean Minimization Problem.” Quality
& Quantity vol.44, no.1, pp.99-113.

Ragin, Charles C. (2000) Fuzzy-Set Social Science. Chicago: University of Chicago Press.

See Also

expand.grid

Examples

three binary causal conditions, having two levels each: 0 and 1
noflevels <- c(2, 2, 2)

for three binary causal conditions
allExpressions(noflevels)

the same matrix, this time arranged better
(last rows represent the truth table)
allExpressions(noflevels, arrange = TRUE)

show only the implicants (excluding the truth table)
allExpressions(noflevels, arrange = TRUE, depth = 2)

using the raw form

https://compasss.org/working-papers-series/

minimize 23

allExpressions(noflevels, raw = TRUE)

create a base truth table for 3 binary conditions
createMatrix(noflevels)

its implicant matrix
createMatrix(noflevels + 1)

create a base truth table where the second condition has three levels
createMatrix(c(2, 3, 2))

deriving rows
rows <- c(2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17)
mat <- getRow(rows, noflevels + 1) # note the +1
rownames(mat) <- rows
colnames(mat) <- c("A", "B", "C")
mat

implicant matrix normal values
#
A B C | A B C
2 0 0 1 | 2 - - 0 ~C
4 0 1 0 | 4 - 0 - ~B
5 0 1 1 | 5 - 0 0 ~B~C
7 0 2 0 | 7 - 1 - B
8 0 2 1 | 8 - 1 0 B~C
10 1 0 0 | 10 0 - - ~A
11 1 0 1 | 11 0 - 0 ~A~C
13 1 1 0 | 13 0 0 - ~A~B
14 1 1 1 | 14 0 0 0 ~A~B~C
16 1 2 0 | 16 0 1 - ~AB
17 1 2 1 | 17 0 1 0 ~AB~C

minimize Minimize a truth table

Description

This function performs the QCA minimization of an input truth table, or if the input is a dataset the
minimization it minimizes a set of causal conditions with respect to an outcome. Three minimiza-
tion methods are available: the classical Quine-McCluskey, the enhanced Quine-McCluskey and
the latest Consistency Cubes algorithm that is built for performance.

All algorithms return the same, exact solutions, see Dusa (2018) and Dusa and Thiem (2015).

https://journal.r-project.org/archive/2018/RJ-2018-080/
https://www.tandfonline.com/doi/full/10.1080/0022250X.2014.897949

24 minimize

Usage

minimize(input, include = "", dir.exp = NULL, details = FALSE, pi.cons = 0,
sol.cons = 0, all.sol = FALSE, row.dom = FALSE, first.min = FALSE,
max.comb = 0, use.labels = FALSE, method = "CCubes", ...)

Arguments

input A truth table object (preferred) or a data frame containing calibrated causal con-
ditions and an outcome.

include A vector of other output values to include in the minimization process.

dir.exp Character, a vector of directional expectations to derive the intermediate solu-
tion.

details Logical, print more details about the solution.

pi.cons Numerical fuzzy value between 0 and 1, minimal consistency threshold for a
prime implicant to be declared as sufficient.

sol.cons Numerical fuzzy value between 0 and 1, minimal consistency threshold for a
model to be declared as sufficient.

all.sol Logical, search for all possible models, including the non-minimal.

row.dom Logical, perform row dominance in the prime implicants’ chart to eliminate
redundant prime implicants.

first.min Logical, to return only the very first minimal solution (see Details).

max.comb Numeric real, to limit the size of the PI chart (see Details).

use.labels Logical, use category labels if present (see Examples).

method Minimization method, one of "CCubes" (default), or "QMC" the classical Quine-
McCluskey, or "eQMC" the enhanced Quine-McCluskey.

... Other arguments, passed to other functions.

Details

Most of the times, this function takes a truth table object as the input for the minimization proce-
dure, but the same argument can refer to a data frame containing calibrated columns.

For the later case, the function minimize() originally had some additional formal arguments which
were sent to the function truthTable(): outcome, conditions, n.cut, incl.cut, show.cases,
use.letters and inf.test.

All of these parameters are still possible with function minimize(), but since they are sent to the
truthTable() function anyway, it is unnecessary to duplicate their explanation here. The only
situation which does need an additional description relates to the argument outcome, where unlike
truthTable() which accepts a single one, the function minimize() accepts multiple outcomes
and performs a minimization for each of them (a situation when all columns are considered causal
conditions).

The argument include specifies which other truth table rows are included in the minimization
process. Most often, the remainders are included but any value accepted in the argument explain
is also accepted in the argument include.

minimize 25

The argument dir.exp is used to specify directional expectations, as described by Ragin (2003).
They can be specified using SOP (sum of products) expressions, which opens up the possibility
to experiment with conjunctural directional expectations. "Don’t care" conditions are simply left
unspecified.

If at least one of the conditions included in the analysis is multi-value, the entire dir.exp expression
should be specified in multi-value notation using squared brackets. If a condition X is crisp or fuzzy,
the multi-value notation X[0] is interpreted as its absence, as in the ~X notation.

Activating the details argument has the effect of printing parameters of fit for each prime implicant
and each overall model, the essential prime implicants being listed in the top part of the table. It
also prints the truth table, in case the argument input has been provided as a data frame instead of
a truth table object.

The default method (when all.sol = FALSE), is to find the minimal number (k) of prime impli-
cants needed to cover all initial positive output configurations (minterms), then exhaustively search
through all possible disjunctions of k prime implicants which do cover those configurations.

Once the PI chart is constructed using the prime implicants found in the previous stages, the ar-
gument row.dom can be used to further eliminate irrelevant prime implicants when solving the PI
chart, applying the principle of row dominance: if a prime implicant A covers the same (intial)
positive output configurations as another prime implicant B and in the same time covers other con-
figurations which B does not cover, then B is irrelevant and eliminated.

A large number of causal conditions (i.e. over 15), combined with a large number of cases (i.e. hun-
dreds) usually produce a very large number of prime implicants, resulting in a huge and extremely
complex PI chart with sometimes thousands of rows and hundreds of columns.

For such a complex PI chart, even finding a minimum is a formidable task, and exhaustively solving
it is very likely impossible in polynomial time. For this reason, after each level of complexity
the CCubes algorithm determines if the PI chart is too difficult, by calculating the total number of
combinations of minimum k PIs necessary to cover all columns.

The argument max.comb controls this maximum number of combinations. It is a rational number
counted in (fractions of) billions, defaulted at zero to signal searching to the maximum possible
extent. If the total number of combinations exceeds a positive value of max.comb, the PI chart is
determined as too complex, the search is stopped and CCubes attempts to return all possible models
using the PIs from the previous levels of complexity, when the PI chart was still not too complex.

In the extreme situation even this is not feasible, the argument first.min controls returning only
one (the very first found) minimal model, if at all possible.

Value

An object of class "qca" when using a single outcome, or class "mqca" when using multiple out-
comes. These objects are lists having the following components:

tt The truth table object.

options Values for the various options used in the function (including defaults).

negatives The line number(s) of the negative configuration(s).

initials The initial positive configuration(s).

PIchart A list containing the PI chart(s).

primes The prime implicant(s).

26 minimize

solution A list of solution model(s).

essential A list of essential PI(s).

pims A list of PI membership scores.

IC The matrix containing the inclusion and coverage scores for the model(s).

SA A list of simplifying assumptions.

i.sol A list of components specific to intermediate model(s), each having a PI chart,
prime implicant membership scores, (non-simplifying) easy counterfactuals and
difficult counterfactuals.

complex Flag solutions from a too complex PI chart

call The user’s command which produced all these objects and result(s).

Author(s)

Adrian Dusa

References

Cebotari, V.; Vink, M.P. (2013) “A Configurational Analysis of Ethnic Protest in Europe”. Interna-
tional Journal of Comparative Sociology vol.54, no.4, pp.298-324, doi:10.1177/0020715213508567.

Cebotari, V.; Vink, M.P. (2015) “Replication Data for: A configurational analysis of ethnic protest
in Europe”, Harvard Dataverse, V2, doi:10.7910/DVN/PT2IB9.

Cronqvist, L.; Berg-Schlosser, D. (2009) “Multi-Value QCA (mvQCA)”, in Rihoux, B.; Ragin,
C. (eds.) Configurational Comparative Methods. Qualitative Comparative Analysis (QCA) and
Related Techniques, SAGE.

Dusa, A.; Thiem, A. (2015) “Enhancing the Minimization of Boolean and Multivalue Output Func-
tions With eQMC” Journal of Mathematical Sociology vol.39, no.2, pp.92-108,
doi:10.1080/0022250X.2014.897949.

Dusa, A. (2018) “Consistency Cubes: A Fast, Efficient Method for Boolean Minimization”, R
Journal vol.10, issue 2, pp. 357-370, doi:10.32614/RJ2018080

Dusa, A. (2019) QCA with R. A Comprehensive Resource. Springer International Publishing,
doi:10.1007/9783319756684.

Ragin, C. (2003) Recent Advances in Fuzzy-Set Methods and Their Application to Policy Questions.
WP 2003-9, COMPASSS Working Papers series.

Ragin, C. (2009) “Qualitative Comparative Analysis Using Fuzzy-Sets (fsQCA)”, in Rihoux, B.;
Ragin, C. (eds.) Configurational Comparative Methods. Qualitative Comparative Analysis (QCA)
and Related Techniques, SAGE.

Ragin, C.C.; Strand, S.I. (2008) “Using Qualitative Comparative Analysis to Study Causal Order:
Comment on Caren and Panofsky (2005).” Sociological Methods & Research vol.36, no.4, pp.431-
441, doi:10.1177/0049124107313903.

Rihoux, B.; De Meur, G. (2009) “Crisp Sets Qualitative Comparative Analysis (mvQCA)”, in Ri-
houx, B.; Ragin, C. (eds.) Configurational Comparative Methods. Qualitative Comparative Analy-
sis (QCA) and Related Techniques, SAGE.

https://doi.org/10.1177/0020715213508567
https://doi.org/10.7910/DVN/PT2IB9
https://doi.org/10.1080/0022250X.2014.897949
https://doi.org/10.32614/RJ-2018-080
https://doi.org/10.1007/978-3-319-75668-4
https://compasss.org/working-papers-series/
https://doi.org/10.1177/0049124107313903

minimize 27

See Also

truthTable, factorize

Examples

Not run:

Lipset binary crisp data

the associated truth table
ttLC <- truthTable(LC, SURV, sort.by = "incl, n", show.cases = TRUE)
ttLC

conservative solution (Rihoux & De Meur 2009, p.57)
cLC <- minimize(ttLC)
cLC

view the Venn diagram for the associated truth table
library(venn)
venn(cLC)

add details and case names
minimize(ttLC, details = TRUE)

negating the outcome
ttLCn <- truthTable(LC, ~SURV, sort.by = "incl, n", show.cases = TRUE)
minimize(ttLCn)

parsimonious solution, positive output
pLC <- minimize(ttLC, include = "?", details = TRUE)
pLC

the associated simplifying assumptions
pLC$SA

parsimonious solution, negative output
pLCn <- minimize(ttLCn, include = "?", details = TRUE)
pLCn

Lipset multi-value crisp data (Cronqvist & Berg-Schlosser 2009, p.80)

truth table, conditions all columns from DEV to IND
note the sequence operator ":"
ttLM <- truthTable(LM, SURV, conditions = DEV:IND,

sort.by = "incl", show.cases = TRUE)

conservative solution, positive output
minimize(ttLM, details = TRUE)

parsimonious solution, positive output

28 minimize

minimize(ttLM, include = "?", details = TRUE)

negate the outcome
ttLMn <- truthTable(LM, ~SURV, conditions = DEV:IND,

sort.by = "incl", show.cases = TRUE)

conservative solution, negative output
minimize(ttLMn, details = TRUE)

parsimonious solution, positive output
minimize(ttLMn, include = "?", details = TRUE)

Lipset fuzzy sets data (Ragin 2009, p.112)

ttLF <- truthTable(LF, SURV, incl.cut = 0.8, sort.by = "incl", show.cases = TRUE)

conservative solution
minimize(ttLF, details = TRUE)

parsimonious solution
minimize(ttLF, include = "?", details = TRUE)

intermediate solution
minimize(ttLF, include = "?", details = TRUE,

dir.exp = c(DEV, URB, LIT, IND, STB))

directional expectations can also be specified using a sequence
minimize(ttLF, include = "?", details = TRUE, dir.exp = DEV:STB)

URB as a don't care condition (left unspecified) and
conjunctural directional expectations
minimize(ttLF, include = "?", details = TRUE,

dir.exp = c(DEV, STB, ~LIT*IND))

Cebotari & Vink (2013, 2015)

ttCVF <- truthTable(CVF, outcome = PROTEST, incl.cut = 0.8,
sort.by = "incl, n", show.cases = TRUE)

pCVF <- minimize(ttCVF, include = "?", details = TRUE)
pCVF

inspect the PI chart
pCVF$PIchart

DEMOC*ETHFRACT*~POLDIS is dominated by DEMOC*ETHFRACT*GEOCON
using row dominance to solve the PI chart
pCVFrd <- minimize(ttCVF, include = "?", row.dom = TRUE, details = TRUE)

modelFit 29

plot the prime implicants on the outcome
pims <- pCVFrd$pims

par(mfrow = c(2, 2))
for(i in 1:4) {

XYplot(pims[, i], CVF$PROTEST, cex.axis = 0.6)
}

temporal QCA (Ragin & Strand 2008) serving the input as a dataset,
which will automatically be passed to truthTable() as an intermediary
step before the minimization

minimize(RS, outcome = REC, details = TRUE)

employ category labels

ttLF <- truthTable(LF, SURV, incl.cut = 0.8, sort.by = "incl", show.cases = TRUE)

minimize(ttLF, include = "?", use.labels = TRUE)

or

ttLF <- truthTable(
LF, SURV, incl.cut = 0.8, sort.by = "incl", show.cases = TRUE,
use.labels = TRUE

)

minimize(ttLF, include = "?")

End(Not run)

modelFit Theory evaluation

Description

Function to enable theory evaluation, as introduced by Ragin (1987, p.118) and extended Schneider
& Wageman (2012, p.295), by producing parameters of fit for all possible intersections between a
given theoretical statement (a SOP expresison) and the solutions found by function minimize().

Usage

modelFit(model, theory = "", select = NULL, ...)

30 modelFit

Arguments

model A minimization object of class "QCA_min".

theory Character, a SOP expression.

select Character or numerical vector to select one or more models.

... Other arguments, mainly for internal use.

Details

Following Ragin’s (1987) original work, theory evaluation amounts to intersecting a theoretical
expectation with a model resulting from a minimization process.

There are in fact four intersections: presence - presence, presence - absence, absence - presence
and absence - absence, where by “absence” is actually meant a negation of an expression using the
function negate().

When multiple models exist, all of them are automatically detected, negated and intersection with
the theory. Intersections and parameters of fit are going to be produced using a single theoretical
expression.

In case of high model diversity, it is sometimes useful to select only a subset to fit against theory.
In such situations, the argument select can be provided with either the name(s) of the model (for
instance "C1P5" for intermediate solutions) or simply the number of the model(s) of interest (for
conservative and parsimonious solutions).

Value

A list containing objects of class "QCA_pof" with the parameters of fit. For a single theoretical
expression and a single model, the object is a simple "QCA_pof" object.

Author(s)

Adrian Dusa

References

Ragin, C.C. (1987) The Comparative Method: Moving beyond Qualitative and Quantitative Strate-
gies. Berkeley: University of California Press.

Schneider, C.Q.; Wagemann, C. (2012) Set-Theoretic Methods for the Social Sciences: A Guide to
Qualitative Comparative Analysis (QCA). Cambridge: Cambridge University Press.

See Also

intersection, negate, pof

Examples

Lipset fuzzy version data

ttLF <- truthTable(LF, outcome = SURV, incl.cut = 0.8)

Parameters of fit 31

parsimonious solution
pLF <- minimize(ttLF, include = "?")

modelFit(model = pLF, theory = "DEV*STB")

hypothetical exploration of intermediate solutions
iLF <- minimize(ttLF, include = "?", dir.exp = "1,0,0,0,0")

modelFit(iLF, "DEV*STB")

Parameters of fit Calculate parameters of fit

Description

These functions returns inclusion (consistency) and coverage, plus PRI for sufficiency and RoN for
necessity. The function pofind() is a stripped down version of the pof() function, to calculate
parameters of fit for single conditions.

Usage

pof(setms = NULL, outcome = NULL, data = NULL, relation = "necessity",
use.labels = FALSE, inf.test = "", incl.cut = c(0.75, 0.5), add = NULL, ...)

pofind(data = NULL, outcome = "", conditions = "", relation = "necessity",
use.labels = FALSE, ...)

Arguments

setms A data frame or a single vector of (calibrated) set memberships, or an expression
written in sum of products form.

outcome The name of the outcome column from a calibrated data frame, or the actual
numerical column from the data frame, representing the outcome.

data A calibrated data frame.

conditions A single string containing the conditions’ (columns) names separated by com-
mas, or a character vector of conditions’ names.

relation The set relation to outcome, either "necessity" or "sufficiency", partial
words like "suf" being accepted (see examples).

use.labels Logical, use category labels if present.

inf.test Specifies the statistical inference test to be performed (currently only "binom")
and the critical significance level. It can be either a vector of length 2, or a single
string containing both, separated by a comma.

incl.cut The inclusion cutoff(s): either a single value for the presence of the output, or
a vector of length 2, the second for the absence of the output. Used only in
conjunction with the argument inf.test

32 Parameters of fit

add A function, or a list containing functions, to add more parameters of fit.

... Other arguments to be passed to the main function.

Details

The function pof() is one of the most flexible functions in the QCA package. Depending on
particular situations, its arguments can be provided in various formats which are automatically
recognized and treated accordingly.

When specified as a data frame, the argument setms contains any kind of set membership scores:

- calibrated causal conditions from the original data,

- membership scores from the resulting combinations (component coms) of function superSubset(),

- prime implicant membership scores (component pims) from function minimize(),

- any other, custom created combinations of set memberships.

When specified as a matrix, setms contains the crisp causal combinations similar to those found in
the truth table. The number of columns in the matrix should be equal to the number of causal con-
ditions in the original data. If some of them are minimized, they can be replaced by the numerical
value -1 (see examples section).

More generally, setms can be a numerical vector of line numbers from the implicant matrix (see
function createMatrix()), which are automatically transformed into their corresponding set mem-
bership scores.

The argument setms can also be a string expression, written in SOP - sum of products form.

For all other situations when setms is something else than a data frame, it requires the original data
to generate the set memberships.

If character, the argument outcome is the name of the column from the original data, to be explained
(it is a good practice advice to specify it using upper case letters, although it will nevertheless be
converted to upper case, by default).

If the outcome column is multi-value, the argument outcome should use the standard curly-bracket
notation X{value}. Multiple values are allowed, separated by a comma (for example X{1,2}).
Negation of the outcome can also be performed using the tilde ~ operator, for example ~X{1,2},
which is interpreted as: "all values in X except 1 and 2" and it becomes the new outcome to be
explained.

The argument outcome can also be a numerical vector of set membership values, either directly
from the original data frame, or a recoded version (if originally multi-value).

The argument inf.test provides the possibility to perform statistical inference tests, comparing
the calculated inclusion score with a pair of thresholds (ic1 and ic0) specified in the argument
incl.cut. Currently, it can only perform binomial tests ("binom"), which means that data should
only be provided as binary crisp (not multivalue, not fuzzy).

If the critical significance level is not provided, the default level of 0.05 is taken.

The resulting object will contain the calculated p-values (pval1 and pval0) from two separate, one-
tailed tests with the alternative hypothesis that the true inclusion score is:
- greater than ic1 (the inclusion cut-off for an output value of 1)
- greater than ic0 (the inclusion cut-off for an output value of 0)

It should be noted that statistical tests are performing well only when the number of cases is large,
otherwise they are usually not significant.

Parameters of fit 33

For the necessity relation, the standard measures of inclusion and coverage are supplemented with
the RoN (Relevance of Necessity) measure, as suggested by Schneider & Wagemann’s (2012).

The negation of both setms and outcome is accepted and recognized using the Boolean subtraction
from 1. If the names of the conditions are provided via an optional (undocumented) argument
conditions, the column names of the setms object are negated using the function negate().

The logical argument neg.out is deprecated, but backwards compatible. neg.out = TRUE and a
tilde ~ in the outcome name don’t cancel each other out, either one (or even both) signaling if the
outcome should be negated.

The arguments from function pofind() are passed to the main function pof() to calculate param-
eters of fit.

Author(s)

Adrian Dusa

References

Cebotari, V.; Vink, M.P. (2013) “A Configurational Analysis of Ethnic Protest in Europe”. Interna-
tional Journal of Comparative Sociology vol.54, no.4, pp.298-324, doi:10.1177/0020715213508567

Schneider, C. and Wagemann, C. (2012) Set-Theoretic Metods for the Social Sciences. A Guide to
Qualitative Comparative Analysis. Cambridge: Cambridge University Press.

See Also

minimize, superSubset

Examples

Not run:

Cebotari & Vink (2013) fuzzy data

conds <- CVF[, 1:5]
PROTEST <- CVF$PROTEST

parameters of fit (default is necessity)
pof(conds, PROTEST)

parameters of fit negating the conditions
pof(1 - conds, PROTEST)

negating the outcome
pof(conds, 1 - PROTEST)

parameters of fit for sufficiency
pof(conds, PROTEST, relation = "suf")

also negating the outcome
pof(conds, 1 - PROTEST, relation = "suf")

https://doi.org/10.1177/0020715213508567

34 PI chart functions: makeChart, findmin, solveChart

standard analysis of necessity
using the "coms" component from superSubset()
nCVF <- superSubset(CVF, outcome = PROTEST, incl.cut = 0.90, cov.cut = 0.6)

also checking their necessity inclusion score in the negated outcome
pof(nCVF$coms, 1 - PROTEST)

standard analysis of sufficiency
using the "pims" component from minimize()

conservative solution
cCVF <- minimize(truthTable(CVF, outcome = PROTEST, incl.cut = 0.8))

verify if their negations are also sufficient for the outcome
pof(1 - cCVF$pims, PROTEST, relation = "sufficiency")

using a SOP expression, translated using the function translate()

pof(~NATPRIDE + GEOCON -> PROTEST, data = CVF)

same for the negation of the outcome
pof(~NATPRIDE + GEOCON -> ~PROTEST, data = CVF)

necessity is indicated by the reverse arrow
pof(~NATPRIDE + GEOCON <- PROTEST, data = CVF)

more parameters of fit, for instance Haesebrouck' consistency

inclH <- function(x, y) {
sum(fuzzyand(x, y)) /
sum(fuzzyand(x, y) + sqrt(fuzzyor(x - y, 0) * x))

}

pof(~NATPRIDE + GEOCON -> ~PROTEST, data = CVF, add = inclH)

End(Not run)

PI chart functions: makeChart, findmin, solveChart

Create and solve a prime implicants chart

PI chart functions: makeChart, findmin, solveChart 35

Description

These functions help creating a demo for a prime implicant chart, and also show how to solve it
using a minimum number of prime implicants.

Usage

makeChart(primes = "", configs = "", snames = "", mv = FALSE, collapse = "*", ...)

findmin(chart, ...)

solveChart(chart, row.dom = FALSE, all.sol = FALSE, depth = NULL, max.comb = 0,
first.min = FALSE, ...)

Arguments

primes A string containing prime implicants, separated by commas, or a matrix of im-
plicants.

configs A string containing causal configurations, separated by commas, or a matrix of
causal configurations in the implicants space.

snames A string containing the sets’ names, separated by commas.

mv Logical, row and column names in multi-value notation.

collapse Scalar character, how to collapse different parts of the row or column names.

chart An object of class "QCA_pic" or a logical matrix.

row.dom Logical, apply row dominance to eliminate redundant prime implicants.

all.sol Derive all possible solutions, irrespective if the disjunctive number of prime
implicants is minimal or not.

depth A maximum number of prime implicants for any disjunctive solution.

max.comb Numeric, to stop searching for solutions (see Details).

first.min Logical, to return only the very first minimal solution (see Details).

... Other arguments (mainly for backwards compatibility).

Details

A PI chart, in this package, is a logical matrix (with TRUE/FALSE values), containing the prime
implicants on the rows and the observed positive output configurations on the columns. Such a
chart is produced by makeChart(), and it is useful to visually determine which prime implicants (if
any) are essential.

When primes and configs are character, the individual sets are identified using the function
translate() from package admisc, using the SOP - Sum Of Products form, which needs the set
names in the absence of any other information. If products are formed using the standard * operator,
specifying the set names is not mandatory.

When primes and configs are matrices, they have to be specified at implicants level, where the
value 0 is interpreted as a minimized literal.

36 PI chart functions: makeChart, findmin, solveChart

The chart is subsequently processed algorithmically by solveChart() to find the absolute minimal
number M of rows (prime implicants) necessary to cover all columns, then searches through all
possible combinations of M rows, to find those which actually cover the columns.

The number of all possible combinations of M rows increases exponentially with the number of
prime implicants generated by the Quine-McCluskey minimization procedure, and the solving time
quickly grows towards infinity for large PI charts.

To solve the chart in a minimal time, the redundant prime implicants need to first be eliminated.
This is the purpose of the argument row.dom. When activated, it eliminates the dominated rows
(those which cover a smaller number of columns than another, dominant prime implicant).

The identification of the full model space (including the non-minimal solutions) requires the entire
PI chart and is guaranteed to consume a lot of time (towards infinity for very large PI charts). This is
done by activating the argument all.sol, which automatically deactivates the argument row.dom.

The argument depth is relevant only when the argument all.sol is activated, and it is automati-
cally increased if the minimal number of rows M needed to cover all columns is larger. By default,
it bounds the disjunctive solutions to at most 5 prime implicants, but this number can be increased
to widen the search space, with a cost of increasing the search time.

The argument max.comb sets a maximum number of combinations to find solutions. It is counted in
(fractions of) billions, defaulted at zero to signal searching to the maximum possible extent. If too
complex, the search is stopped and the algorithm returns all found solutions up to that point.

For extremly difficult PI charts, the argument first.min controls returning only one (the very first
found) solution.

Value

For makeChart: a logical matrix of class "QCA_pic".

For findmin: a numerical scalar.

For solveChart: a matrix containing all possible combinations of PI chart rows necessary to cover
all its columns.

Author(s)

Adrian Dusa

References

Quine, W.V. (1952) The Problem of Simplifying Truth Functions, The American Mathematical
Monthly, vol.59, no.8. (Oct., 1952), pp.521-531.

Ragin, Charles C. (1987) The Comparative Method. Moving beyond qualitative and quantitative
strategies, Berkeley: University of California Press

Examples

non-standard products, it needs the set names
chart <- makeChart("a, b, ~c", "abc, a~b~c, a~bc, ~ab~c")

same with unquoted expressions
chart <- makeChart(c(a, b, ~c), c(abc, a~b~c, a~bc, ~ab~c))

PI chart functions: makeChart, findmin, solveChart 37

chart
abc a~b~c a~bc ~ab~c
a x x x -
b x - - x
~c - x - x

findmin(chart)
2

solveChart(chart)
first and second rows (a + b)
and first and third rows (a + ~c)
a is an essential prime implicant
a + b a + ~c
[,1] [,2]
[1,] 1 1
[2,] 2 3

using SOP standard product sign
rows <- "EF, ~GH, IJ"
cols <- "~EF*~GH*IJ, EF*GH*~IJ, ~EF*GH*IJ, EF*~GH*~IJ"
chart <- makeChart(rows, cols)
chart
~EF*~GH*IJ EF*GH*~IJ ~EF*GH*IJ EF*~GH*~IJ
EF - x - x
~GH x - - x
IJ x - x -

solveChart(chart)
~GH is redundant
EF + IJ
[,1]
[1,] 1
[2,] 3

using implicant matrices
primes <- matrix(c(2,2,1,0,2,2,0,2,2,2), nrow = 2)
configs <- matrix(c(2,2,2,1,1,2,2,2,2,1,2,2,2,2,2), nrow = 3)
colnames(primes) <- colnames(configs) <- letters[1:5]

the prime implicants: a~bce and acde
primes
a b c d e
[1,] 2 1 2 0 2
[2,] 2 0 2 2 2

the initial causal combinations: a~bc~de, a~bcde and abcde
configs
a b c d e
[1,] 2 1 2 1 2
[2,] 2 1 2 2 2

38 retention

[3,] 2 2 2 2 2

chartLC <- makeChart(primes, configs, collapse = "")
chartLC
a~bc~de a~bcde abcde
a~bce x x -
acde - x x

retention Compute the retention probability of a csQCA solution

Description

This function computes the retention probability for a csQCA solution, under various perturbation
scenarios. It only works with bivalent crisp-set data, containing the binary values 0 or 1.

Usage

retention(data, outcome = "", conditions = "", incl.cut = 1, n.cut = 1,
type = "corruption", dependent = TRUE, p.pert = 0.5, n.pert = 1, ...)

Arguments

data A dataset of bivalent crisp-set factors.

outcome The name of the outcome.

conditions A string containing the condition variables’ names, separated by commas.

incl.cut The minimum sufficiency inclusion score for an output function value of "1".

n.cut The minimum number of cases for a causal combination with a set membership
score above 0.5, for an output function value of "0" or "1".

type Simulate corruptions of values in the conditions ("corruption"), or cases deleted
entirely ("deletion").

dependent Logical, if TRUE indicating DPA - Dependent Perturbations Assumption and if
FALSE indicating IPA - Independent Perturbations Assumption.

p.pert Probability of perturbation under independent (IPA) assumption.

n.pert Number of perturbations under dependent (DPA) assumption.

... Other arguments, mainly for internal use.

Details

The argument data requires a suitable data set, in the form of a data frame. with the following
structure: values of 0 and 1 for bivalent crisp-set variables.

The argument outcome specifies the outcome to be explained, in upper-case notation (e.g. X).

The argument conditions specifies the names of the condition variables. If omitted, all variables
in data are used except outcome.

retention 39

The argument type controls which type of perturbations should be simulated to calculate the re-
tention probability. When type = "corruption", it simulates changes of values in the conditions
(values of 0 become 1, and values of 1 become 0). When type = "deletion", it calculates the
probability of retaining the same solution if a number of cases are deleted from the original data.

The argument dependent is a logical which choses between two categories of assumptions. If
dependent = TRUE (the default) it indicates DPA - Dependent Perturbations Assumption, when per-
turbations depend on each other and are tied to a fixed number of cases, ex-ante (see Thiem, Spohel
and Dusa, 2016). If dependent = FALSE, it indicates IPA - Independent Perturbations Assumption,
when perturbations are assumed to occur independently of each other.

The argument n.cut is one of the factors that decide which configurations are coded as logical
remainders or not, in conjunction with argument incl.cut. Those configurations that contain
fewer than n.cut cases with membership scores above 0.5 are coded as logical remainders (OUT
= "?"). If the number of such cases is at least n.cut, configurations with an inclusion score of at
least incl.cut are coded positive (OUT = "1"), while configurations with an inclusion score below
incl.cut are coded negative (OUT = "0").

The argument p.pert specifies the probability of perturbation under the IPA - independent pertur-
bations assumption (when dependent = FALSE).

The argument n.pert specifies the number of perturbations under the DPA - dependent perturba-
tions assumption (when dependent = TRUE). At least one perturbation is needed to possibly change
a csQCA solution, otherwise the solution will remain the same (retention equal to 100%) if zero
perturbations occur under this argument.

Author(s)

Adrian Dusa

References

Thiem, A.; Spoehel, R.; Dusa, A. (2015) “Replication Package for: Enhancing Sensitivity Diagnos-
tics for Qualitative Comparative Analysis: A Combinatorial Approach”, Harvard Dataverse, V1.
doi:10.7910/DVN/QE27H9

Thiem, A.; Spoehel, R.; Dusa, A. (2016) “Enhancing Sensitivity Diagnostics for Qualitative Com-
parative Analysis: A Combinatorial Approach.” Political Analysis vol.24, no.1, pp.104-120.

Examples

the replication data, see Thiem, Spohel and Dusa (2015)
dat <- data.frame(matrix(c(

rep(1, 25), rep(0, 20), rep(c(0, 0, 1, 0, 0), 3),
0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, rep(1, 7), 0, 1),
nrow = 16, byrow = TRUE, dimnames = list(
c("AT", "DK", "FI", "NO", "SE", "AU", "CA", "FR",

"US", "DE", "NL", "CH", "JP", "NZ", "IE", "BE"),
c("P", "U", "C", "S", "W"))

))

calculate the retention probability, for 2.5% probability of data corruption
under the IPA - independent perturbation assuption

https://doi.org/10.7910/DVN/QE27H9

40 superSubset, findSubsets, findSupersets

retention(dat, outcome = "W", incl.cut = 1, type = "corruption",
dependent = FALSE, p.pert = 0.025)

the probability that a csQCA solution will change
1 - retention(dat, outcome = "W", incl.cut = 1, type = "corruption",

dependent = FALSE, p.pert = 0.025)

runGUI run the GUI shiny app for the QCA package

Description

Runs the graphical user interface app based on the shiny package.

Usage

runGUI(x)

Arguments

x Path to the shiny app.

Details

This function is a wrapper to the runApp() function in package shiny. If x is not provided, it
automatically locates the gui directory in the path where the QCA package has been installed, and
runs it.

The user interface has an interactive R console in the webpage. Commands are parsed and evaluated
into a dedicated environment, with efforts to capture errors and warnings.

Author(s)

Adrian Dusa

superSubset, findSubsets, findSupersets

Functions to find subsets or supersets

Description

Functions to find a list of implicants that satisfy some restrictions (see details), or to find the corre-
sponding row numbers in the implicant matrix, for all subsets, or supersets, of a (prime) implicant
or an initial causal configuration.

superSubset, findSubsets, findSupersets 41

Usage

superSubset(data, outcome = "", conditions = "", relation = "necessity",
incl.cut = 1, cov.cut = 0, ron.cut = 0, pri.cut = 0, depth = NULL,
use.letters = FALSE, use.labels = FALSE, add = NULL, ...)

findSubsets(input, noflevels = NULL, stop = NULL, ...)

findSupersets(input, noflevels = NULL, ...)

Arguments

data A data frame with crisp (binary and multi-value) or fuzzy causal conditions

outcome The name of the outcome.

conditions A string containing the conditions’ names, separated by commas.

relation The set relation to outcome, either "necessity", "sufficiency", "necsuf"
or "sufnec". Partial words like "suf" are accepted.

incl.cut The minimal inclusion score of the set relation.

cov.cut The minimal coverage score of the set relation.

ron.cut The minimal score for the RoN - relevance of necessity.

pri.cut The minimal score for the PRI - proportional reduction in inconsistency.

use.letters Logical, use simple letters instead of original conditions’ names.

use.labels Logical, use category labels if present.

noflevels A vector containing the number of levels for each causal condition plus 1 (all
subsets are located in the higher dimension, implicant matrix)

input A vector of row numbers where the (prime) implicants are located, or a matrix
of configurations (only for supersets).

stop The maximum line number (subset) to stop at, and return

depth Integer, an upper number of causal conditions to form expressions with.

add A function, or a list containing functions, to add more parameters of fit.

... Other arguments, mainly for backward compatibility.

Details

The function superSubset() finds a list of implicants that satisfy some restrictions referring to the
inclusion and coverage with respect to the outcome, under given assumptions of necessity and/or
sufficiency.

Ragin (2000) posits that under the necessity relation, instances of the outcome constitute a subset
of the instances of the cause(s). Conversely, under the sufficiency relation, instances of the outcome
constitute a superset of the instances of the cause(s).

When relation = "necessity" the function finds all implicants which are supersets of the out-
come, then eliminates the redundant ones and returns the surviving (minimal) supersets, provided
they pass the inclusion and coverage thresholds. If none of the surviving supersets pass these thresh-
olds, the function will find disjunctions of causal conditions, instead of conjunctions.

42 superSubset, findSubsets, findSupersets

When relation = "sufficiency" it finds all implicants which are subsets of the outcome, and
similarly eliminates the redundant ones and return the surviving (minimal) subsets.

When relation = "necsuf", the relation is interpreted as necessity, and cov.cut is automatically
set equal to the inclusion cutoff incl.cut. The same automatic equality is made for relation =
"sufnec", when relation is interpreted as sufficiency.

The argument outcome specifies the name of the outcome, and if multi-value the argument can also
specify the level to explain, using square brackets notation.

Outcomes can be negated using a tilde operator ~X. The logical argument neg.out is now depre-
cated, but still backwards compatible. Replaced by the tilde in front of the outcome name, it controls
whether outcome is to be explained or its negation. If outcome is from a multivalent variable, it has
the effect that the disjunction of all remaining values becomes the new outcome to be explained.
neg.out = TRUE and a tilde ~ in the outcome name don’t cancel each other out, either one (or even
both) signaling if the outcome should be negated.

If the argument conditions is not specified, all other columns in data are used.

Along with the standard measures of inclusion and coverage, the function also returns PRI for
sufficiency and RoN (relevance of necessity, see Schneider & Wagemann, 2012) for the necessity
relation.

A subset is a conjunction (an intersection) of causal conditions, with respect to a larger (super)set,
which is another (but more parsimonious) conjunction of causal conditions.

All subsets of a given set can be found in the so called “implicant matrix”, which is a nk space, un-
derstood as all possible combinations of values in any combination of bases n, each causal condition
having three or more levels (Dusa, 2007, 2010).

For every two levels of a binary causal conditions (values 0 and 1), there are three levels in the
implicants matrix:

0 to mark a minimized literal
1 to replace the value of 0 in the original binary condition

-1 to replace the value of 1 in the original binary condition

A prime implicant is a superset of an initial combination of causal conditions, and the reverse is
also true: the initial combination is a subset of a prime implicant.

Any normal implicant (not prime) is a subset of a prime implicant, and in the same time a superset
of some initial causal combinations.

Functions findSubsets() and findSupersets() find:

- all possible such subsets for a given (prime) implicant, or
- all possible supersets of an implicant or initial causal combination

in the implicant matrix.

The argument depth can be used to impose an upper number of causal conditions to form expres-
sions with, it is the complexity level where the search is stopped. Depth is set to a maximum by
default, and the algorithm will always stop at the maximum complexity level where no new, non-
redundant prime implicants are found. Reducing the depth below that maximum will also reduce
computation time.

For examples on how to add more parameters of fit via argument add, see the function pof().

superSubset, findSubsets, findSupersets 43

Value

The result of the superSubset() function is an object of class "ss", which is a list with the following
components:

incl.cov A data frame with the parameters of fit.

coms A data frame with the (m)embersip (s)cores of the resulting (co)mbinations.

For findSubsets() and findSupersets(), a vector with the row numbers corresponding to all
possible subsets, or supersets, of a (prime) implicant.

Author(s)

Adrian Dusa

References

Cebotari, V.; Vink, M.P. (2013) “A Configurational Analysis of Ethnic Protest in Europe”. Interna-
tional Journal of Comparative Sociology vol.54, no.4, pp.298-324, doi:10.1177/0020715213508567.

Cebotari, Victor; Vink, Maarten Peter (2015) Replication Data for: A configurational analysis of
ethnic protest in Europe, Harvard Dataverse, V2, doi:10.7910/DVN/PT2IB9.

Dusa, A. (2007b) Enhancing Quine-McCluskey. WP 2007-49, COMPASSS Working Papers series.

Dusa, Adrian (2010) “A Mathematical Approach to the Boolean Minimization Problem.” Quality
& Quantity vol.44, no.1, pp.99-113, doi:10.1007/s111350089183x.

Lipset, S. M. (1959) “Some Social Requisites of Democracy: Economic Development and Political
Legitimacy”, American Political Science Review vol.53, pp.69-105.

Schneider, Carsten Q.; Wagemann, Claudius (2012) Set-Theoretic Methods for the Social Sciences:
A Guide to Qualitative Comparative Analysis (QCA). Cambridge: Cambridge University Press.

See Also

createMatrix, getRow

Examples

Lipset binary crisp sets
ssLC <- superSubset(LC, "SURV")

library(venn)
x = list("SURV" = which(LC$SURV == 1),

"STB" = which(ssLC$coms[, 1] == 1),
"LIT" = which(ssLC$coms[, 2] == 1))

venn(x, cexil = 0.7)

Lipset multi-value sets
superSubset(LM, "SURV")

Cebotari & Vink (2013) fuzzy data
all necessary combinations with at least 0.9 inclusion and 0.6 coverage cut-offs

https://doi.org/10.1177/0020715213508567
https://doi.org/10.7910/DVN/PT2IB9
https://compasss.org/working-papers-series/
https://doi.org/10.1007/s11135-008-9183-x

44 superSubset, findSubsets, findSupersets

ssCVF <- superSubset(CVF, outcome = "PROTEST", incl.cut = 0.90, cov.cut = 0.6)
ssCVF

the membership scores for the first minimal combination (GEOCON)
ssCVF$coms$GEOCON

same restrictions, for the negation of the outcome
superSubset(CVF, outcome = "~PROTEST", incl.cut = 0.90, cov.cut = 0.6)

to find supersets or supersets, a hypothetical example using
three binary causal conditions, having two levels each: 0 and 1
noflevels <- c(2, 2, 2)

second row of the implicant matrix: 0 0 1
which in the "normal" base is: - - 0
the prime implicant being: ~C
(sub <- findSubsets(input = 2, noflevels + 1))
5 8 11 14 17 20 23 26

getRow(sub, noflevels + 1)

implicant matrix normal values
a b c | a b c
5 0 1 1 | 5 - 0 0 ~b~c
8 0 2 1 | 8 - 1 0 b~c
11 1 0 1 | 11 0 - 0 ~a~c
14 1 1 1 | 14 0 0 0 ~a~b~c
17 1 2 1 | 17 0 1 0 ~ab~c
20 2 0 1 | 20 1 - 0 a~c
23 2 1 1 | 23 1 0 0 a~b~c
26 2 2 1 | 26 1 1 0 ab~c

stopping at maximum row number 20
findSubsets(input = 2, noflevels + 1, stop = 20)
5 8 11 14 17 20

for supersets
findSupersets(input = 14, noflevels + 1)
2 4 5 10 11 13 14

findSupersets(input = 17, noflevels + 1)
2 7 8 10 11 16 17

input as a matrix
(im <- getRow(c(14, 17), noflevels + 1))

implicant matrix normal values
14 1 1 1 | 14 0 0 0 ~a~b~c
17 1 2 1 | 17 0 1 0 ~ab~c

truthTable 45

sup <- findSupersets(input = im, noflevels + 1)
sup
2 4 5 7 8 10 11 13 14 16 17

getRow(sup, noflevels + 1)

implicant matrix normal values
a b c | a b c
2 0 0 1 | 2 - - 0 ~c
4 0 1 0 | 4 - 0 - ~b
5 0 1 1 | 5 - 0 0 ~b~c
7 0 2 0 | 7 - 1 - b
8 0 2 1 | 8 - 1 0 b~c
10 1 0 0 | 10 0 - - ~a
11 1 0 1 | 11 0 - 0 ~a~c
13 1 1 0 | 13 0 0 - ~a~b
14 1 1 1 | 14 0 0 0 ~a~b~c
16 1 2 0 | 16 0 1 - ~ab
17 1 2 1 | 17 0 1 0 ~ab~c

truthTable Create a truth table

Description

Function to create a truth table from all types of calibrated data (binary crisp, multi-value crisp and
fuzzy). For fuzzy data, an improved verson of Ragin’s (2008) procedure is applied to assign cases
to the vector space corners (the truth table rows).

Usage

truthTable(data, outcome = "", conditions = "", incl.cut = 1, n.cut = 1, pri.cut = 0,
exclude = NULL, complete = FALSE, use.letters = FALSE, use.labels = FALSE,

show.cases = FALSE, dcc = FALSE, sort.by = "", inf.test = "", ...)

Arguments

data A data frame containing calibrated causal conditions and an outcome.

outcome String, the name of the outcome.

conditions A single string containing the conditions’ (columns) names separated by com-
mas, or a character vector of conditions’ names.

incl.cut The inclusion cut-off(s): either a single value for the presence of the output, or
a vector of length 2, the second for the absence of the output.

46 truthTable

n.cut The minimum number of cases under which a truth table row is declared as a
remainder.

pri.cut The minimal score for the PRI - proportional reduction in inconsistency, under
which a truth table row is declared as negative.

exclude A vector of (remainder) row numbers from the truth table, to code as negative
output configurations.

complete Logical, print complete truth table.

use.letters Logical, use letters instead of causal conditions’ names.

use.labels Logical, use category labels if present.

show.cases Logical, print case names.

dcc Logical, if show.cases = TRUE, the cases being displayed are the deviant cases
consistency in kind.

sort.by Sort the truth table according to various columns.

inf.test Specifies the statistical inference test to be performed (currently only "binom")
and the critical significance level. It can be either a vector of length 2, or a single
string containing both, separated by a comma.

... Other arguments (mainly for backward compatibility).

Details

The data should always be provided as a data frame, with calibrated columns.

Calibration can be either crisp, with 2 or more values starting from 0, or fuzzy with continous scores
from 0 to 1. Raw data containing relative frequencies can also be continous between 0 and 1, but
these are not calibrated, fuzzy data.

Some columns can contain the placeholder "-" indicating a “don’t care”, which is used to indicate
the temporal order between other columns in tQCA. These special columns are not causal condi-
tions, hence no parameters of fit will be calculated for them.

The argument outcome specifies the column name to be explained. If the outcome is a multivalue
column, it can be specified in curly bracket notation, indicating the value to be explained (the others
being automatically converted to zero).

The outcome can be negated using a tilde operator ~X. The logical argument neg.out is now dep-
recated, but still backwards compatible. Replaced by the tilde in front of the outcome name, it
controls whether outcome is to be explained or its negation. Note that using both neg.out = TRUE
and a tilde ~ in the outcome name cancel each other out.

If the outcome column is multi-value, the argument outcome should use the standard curly-bracket
notation X{value}. Multiple values are allowed, separated by a comma (for example X{1,2}).
Negation of the outcome can also be performed using the tilde ~ operator, for example ~X{1,2},
which is interpreted as: "all values in X except 1 and 2" and it becomes the new outcome to be
explained.

The argument conditions specifies the causal conditions’ names among the other columns in the
data. When this argument is not specified, all other columns except for the outcome are taken as
causal conditions.

truthTable 47

A good practice advice is to specify both outcome and conditions as upper case letters. It is
possible, in a next version, to negate outcomes using lower case letters, a situation where it really
does matter how the outcome and/or conditions are specified.

The argument incl.cut replaces both (deprecated, but still backwards compatible) former argu-
ments incl.cut1 and incl.cut0. Most of the analyses use the inclusion cutoff for the presence
of the output (code "1"). When users need both inclusion cutoffs (see below), incl.cut can be
specified as a vector of length 2, in the form: c(ic1, ic0) where:

ic1 is the inclusion cutoff for the presence of the output,
a minimum sufficiency inclusion score above which the output value is coded with "1".

ic0 is the inclusion cutoff for the absence of the output,
a maximum sufficiency inclusion score below which the output value is coded with "0".

If not specifically declared, the argument ic0 is automatically set equal to ic1, but otherwise ic0
should always be lower than ic1.

Using these two cutoffs, as well as pri.cut the observed combinations are coded with:

"1" if they have an inclusion score of at least ic1
and a PRI score of at least pri.cut

"C" if they have an inclusion score below ic1 and at least ic0 (contradiction)

"0" if they have an inclusion score below ic0 or
a PRI score below pri.cut

The argument n.cut specifies the frequency threshold under which a truth table row is coded as a
remainder, irrespective of its inclusion score.

When argument show.cases is set to TRUE, the case names will be printed at their corresponding
row in the truth table. The resulting object always contains the cases for each causal combination,
even if not printed on the screen (the print function can later be used to print them).

The sort.by argument orders all configurations by any of the columns present in the truth table.
Typically, sorting occurs by their outcome value, and/or by their inclusion score, and/or by their
frequency, in any order.

Sorting decreasingly (the default) or increasingly can be specified adding the signs - or +, next after
the column name in argument sort.by (see examples). Note that - is redundant because it is the
default anyways.

The order specified in this vector is the order in which the configurations will be sorted. When
sorting based on the OUTput column, remainders will always be sorted last.

The argument use.letters controls using the original names of the causal conditions, or replace
them by single letters in alphabetical order. If the causal conditions are already named with single
letters, the original letters will be used.

The argument inf.test combines the inclusion score with a statistical inference test, in order
to assign values in the output column OUT. For the moment, it is only the binomial test, which

48 truthTable

needs crisp data (it doesn’t work with fuzzy sets). Following a similar logic as above, for a given
(specified) critical significance level, the output for a truth table row will be coded as:

"1" if the true inclusion score is significanly higher than ic1,

"C" contradiction, if the true inclusion score is not significantly higher than ic1
but significantly higher than ic0,

"0" if the true inclusion score is not significantly higher than ic0.

It should be noted that statistical tests perform well only when the number of cases is large, oth-
erwise they are usually not significant. For a low number of cases, depending on the inclusion
cutoff value(s), it will be harder to code a value of "1" in the output, and also harder to obtain
contradictions if the true inclusion is not signficantly higher than ic0.

The argument exclude is used to exclude truth table rows from the minimization process, from the
positive configurations and/or from the remainders. This is achieved by coding those configurations
with a value of 0 in the OUTput column (thus treating them as if they were observed as negative
output configurations).

The argument complete controls how to print the table on the screen, either complete (when set to
TRUE), or just the observed combinations (default). For up to 7 causal conditions, the resulting object
will always contain the complete truth table, even if it’s not printed on the screen. This is useful for
multiple reasons: researchers like to manually change output values in the truth table (sometimes
including in this way a remainder, for example), and it is also useful to plot Venn diagrams, each
truth table row having a correspondent intersection in the diagram.

Value

An object of class "tt", a list containing the following components:

tt The truth table itself.
indexes The line numbers for the observed causal configurations.

noflevels A vector with the number of values for each causal condition.
initial.data The initial data.

recoded.data The crisp version of the initial.data, if fuzzy.
cases The cases for each observed causal configuration.
DCC Deviant cases for consistency.

minmat The membership scores matrix of cases in the observed truth table combinations.
categories Category labels, if present in the data.

multivalue Logical flag, if either conditions or the outcome are multivalue.
options The command options used.

Author(s)

Adrian Dusa

truthTable 49

References

Cronqvist, L.; Berg-Schlosser, D. (2009) “Multi-Value QCA (mvQCA)”, in Rihoux, B.; Ragin,
C. (eds.) Configurational Comparative Methods. Qualitative Comparative Analysis (QCA) and
Related Techniques, SAGE.

Dusa, A. (2019) QCA with R. A Comprehensive Resource. Springer International Publishing,
doi:10.1007/9783319756684.

Lipset, S.M. (1959) “Some Social Requisites of Democracy: Economic Development and Political
Legitimacy”, American Political Science Review vol.53, pp.69-105.

Ragin, C.C. (1987) The Comparative Method: Moving beyond Qualitative and Quantitative Strate-
gies. Berkeley: University of California Press.

Ragin, C.C. (2008) Redesigning Social Inquiry: Fuzzy Sets and Beyond. Chicago: University of
Chicago Press.

Ragin, C.C.; Strand, S.I. (2008) “Using Qualitative Comparative Analysis to Study Causal Order:
Comment on Caren and Panofsky (2005).” Sociological Methods & Research vol.36, no.4, pp.431-
441.

Schneider, C.Q.; Wagemann, C. (2012) Set-Theoretic Methods for the Social Sciences: A Guide to
Qualitative Comparative Analysis (QCA). Cambridge: Cambridge University Press.

See Also

minimize

Examples

Lipset binary crisp data
ttLC <- truthTable(LC, "SURV")

inspect the truth table
ttLC

print the cases too, even if not specifically asked for
print(ttLC, show.cases = TRUE)

the printing function also supports the complete version
print(ttLC, show.cases = TRUE, complete = TRUE)

formally asking the complete version
truthTable(LC, "SURV", complete = TRUE)

sorting by multiple columns, decreasing by default
truthTable(LC, "SURV", complete = TRUE, sort.by = "incl, n")

sort the truth table decreasing for inclusion, and increasing for n
note that "-" is redundant, sorting is decreasing by default
truthTable(LC, "SURV", complete = TRUE, sort.by = "incl-, n+")

https://doi.org/10.1007/978-3-319-75668-4

50 Xplot

Lipset multi-value crisp data (Cronqvist & Berg-Schlosser 2009, p.80)
truthTable(LM, "SURV", sort.by = "incl")

using a frequency cutoff equal to 2 cases
ttLM <- truthTable(LM, "SURV", n.cut = 2, sort.by = "incl")
ttLM

the observed combinations coded as remainders
ttLM$removed

Cebotari & Vink fuzzy data
ttCVF <- truthTable(CVF, "PROTEST", incl.cut = 0.8, sort.by = "incl")

view the Venn diagram for this truth table
library(venn)
venn(ttCVF)

each intersection transparent by its inclusion score
venn(ttCVF, transparency = ttCVFttincl)

the truth table negating the outcome
truthTable(CVF, "~PROTEST", incl.cut = 0.8, sort.by = "incl")

allow contradictions
truthTable(CVF, "PROTEST", incl.cut = c(0.8, 0.75), sort.by = "incl")

Ragin and Strand data with temporal QCA
truth table containing the "-" placeholder as a "don't care"
truthTable(RS, "REC")

Xplot Display the distribution of points for a single condition

Description

This function creates a plot for a single vector of numerical values, arranging them horizontally on
the X axis from minimum to maximum.

Usage

Xplot(x, jitter = FALSE, at = pretty(x), ...)

Xplot 51

Arguments

x A numeric vector.

jitter Logical, vertically jitter the points.

at The points at which tick-marks are to be drawn. Non-finite (infinite, NaN or NA)
values are omitted. By default, tickmark locations are automatically computed,
see the help file for ?pretty.

... Other graphical parameters from ?par

Details

This is a special type of (scatter)plot, with points being arranged only on the horizontal axis (it
has no vertical axis). Useful when inspecting if points are grouped into naturally occuring clusters,
mainly for crisp calibration purposes.

The argument ... is used to pass arguments to the various graphical parameters from ?par, and
also to the settings from ?jitter.

The points have a default cex (character expansion) value of 1, and a default pch value of 1 (empty
points), which can be modified accordingly (for instance value 21 for filled points). When pch = 21,
the color for the margins of the points can be specified via the argument col, while the argument
bg will determine the fill color of the points.

The axis labels have a default cex.axis value of 0.8, which affects both the tickmarks labels and
the axis labels.

When jittering the points, default values of 0.5 are used for the parameters factor and amount, on
the horizontal axis. More details can be found in the base function jitter().

Although the points are displayed in a single dimension, on the horizontal axis, the R graphical
window will still have the default squared shape, with a lot of empty space on the vertical axis.
Users are free to create their custom code to determine the size of the graphics window, or simply
resize it to a suitable height.

Author(s)

Adrian Dusa

See Also

par, text, jitter

Examples

Lipset's raw data
plot the DEV (level of developent) causal condition
Xplot(LR$DEV)

jitter the points vertically
Xplot(LR$DEV, jitter = TRUE)

clip plotting between the range of min and max
Xplot(LR$DEV, jitter = TRUE, at = range(LR$DEV))

52 XYplot

XYplot Create an XY plot

Description

This function creates an XY plot from the first two columns of a dataframe/matrix, or from two
separate vectors of numeric values.

Usage

XYplot(x, y, data, relation = "sufficiency", mguides = TRUE,
jitter = FALSE, clabels, enhance = FALSE, model = FALSE, ...)

Arguments

x Character, the name of the column from the data for the X axis, or the coordi-
nates of points in the plot (either a matrix/dataframe with at least two columns,
or a vector of numerical values for the X axis), or a valid SOP expression.

y Character, the name of the column from the data for the Y axis, or the Y coor-
dinates of points in the plot, optional if x is a matrix/dataframe.

data A calibrated dataset, only if x and y are names.

relation The set relation to Y, either "sufficiency" (default) or "necessity".

mguides Logical, print the middle guides.

jitter Logical, jitter the points.

clabels A vector of case labels with the same length as x and y, or a logical vector of the
same length as the number of rows in the data (if provided).

enhance Logical, if TRUE print the points using different characters for each of the five
significant regions for process tracing.

model Logical, for an enhanced plot specify if the SOP expression in argument x is a
solution model.

... Other graphical parameters from ?par

Details

If x is a dataframe or a matrix, the axes labels will be taken from the column names of x, otherwise
they will be inferred from the names of the x and y objects that are passed to this function.

x can also be a string containing either the name of the column for the X axis, or two column names
separated by a comma, referring to the X and Y axis respectively. When x contains both X and Y
column names, the next argument will be considered as the data.

If data is provided, and the names of the X and Y columns are valid R statements, quoting them is
not even necessary and they can be negated using either a tilde "~" or "1 - ".

The numeric values should be restricted between 0 and 1, otherwise an error is generated.

XYplot 53

The XY plot will also provide inclusion and coverage scores for a sufficiency (along with PRI) or a
necessity relation (along with RoN).

The argument x can also be a SOP - sum of products expression, in which case the relation is
determined by the usual forward arrow "=>" for sufficiency and backward arrow "<=" for necessity.

The argument ... is used to pass arguments to the various graphical parameters from ?par, and
also to the settings from ?jitter.

The points have a default cex (character expansion) value of 0.8, and a default pch value of 21
(filled points), which can be modified accordingly (for example with value 1 of empty points).
When pch = 21, the color for the margins of the points can be specified via the argument col, while
the argument bg will determine the fill color of the points.

The axes’ labels have a default cex.axis value of 0.8, which affects both the tickmarks labels and
the axis labels.

When jittering the points, default values of 0.01 are used for the parameters factor and amount, on
both horizontal and vertical axes.

The argument enhance does all the work for the shape of the points and their colors, acording to
the five regions specified by Schneider & Rohlfing (2016), who augmented the classical XY plot
with process tracing.

The default enhanced XY plot has even more settings when the input SOP expression is a minimiza-
tion model (different colors, different regions where to place the labels etc.), available by activating
the argument model. The model is automatically detected if the input for x is a minimization object.

Value

A list of x and y values, especially useful when the points are jittered.

Author(s)

Adrian Dusa

References

Schneider, C.; Wagemann, C. (2012) Set-Theoretic Metods for the Social Sciences. A Guide to
Qualitative Comparative Analysis. Cambridge: Cambridge University Press.

Cebotari, V.; Vink, M.P. (2013) “A Configurational Analysis of Ethnic Protest in Europe”. Interna-
tional Journal of Comparative Sociology vol.54, no.4, pp.298-324.

Schneider, C.; Rohlfing, I. (2016) “Case Studies Nested in Fuzzy-set QCA on Sufficiency. For-
malizing Case Selection and Causal Inference”. Sociological Methods and Research vol.45, no.3,
pp.536-568, doi:10.1177/0049124114532446

See Also

par, text, jitter

https://doi.org/10.1177/0049124114532446

54 XYplot

Examples

Cebotari & Vink (2013)
necessity relation between NATPRIDE and PROTEST
XYplot(CVF[, 5:6])

same using two numeric vectors
XYplot(CVF$NATPRIDE, CVF$PROTEST)

same using two column names
XYplot(NATPRIDE, PROTEST, data = CVF)

since they are valid R statements, it works even without quotes
(this only works in normal R console, not in the GUI version)
XYplot(NATPRIDE, PROTEST, data = CVF)

negating the X axis, using numeric vectors
XYplot(1 - CVF$NATPRIDE, CVF$PROTEST)

same thing using quotes
XYplot(1 - NATPRIDE, PROTEST, data = CVF)

using tilde for negation
XYplot(~NATPRIDE, PROTEST, data = CVF)

different color for the points
XYplot(~NATPRIDE, PROTEST, data = CVF, col = "blue")

using a different character expansion for the axes
XYplot(~NATPRIDE, PROTEST , data = CVF, cex.axis = 0.9)

custom axis labels
XYplot(~NATPRIDE, PROTEST, data = CVF, xlab = "Negation of NATPRIDE",

ylab = "Outcome: PROTEST")

necessity relation
XYplot(~NATPRIDE, PROTEST, data = CVF, relation = "necessity")

jitter the points
XYplot(~NATPRIDE, PROTEST, data = CVF, jitter = TRUE)

jitter with more amount
XYplot(~NATPRIDE, PROTEST, data = CVF, jitter = TRUE, amount = 0.02)

adding labels to points
XYplot(~NATPRIDE, PROTEST, data = CVF, jitter = TRUE, cex = 0.8,

clabels = rownames(CVF))

or just the row numbers, since the row names are too long
XYplot(~NATPRIDE, PROTEST, data = CVF, jitter = TRUE, cex = 0.8,

clabels = seq(nrow(CVF)))

_Cebotari and Vink 55

using a SOP expression (necessity relation)
XYplot(NATPRIDE <- ~PROTEST, data = CVF, jitter = TRUE, cex = 0.8,

clabels = seq(nrow(CVF)))

#-----
enhanced XY plot for process tracing
XYplot(~NATPRIDE, PROTEST, data = CVF, enhance = TRUE, jitter = TRUE)

enhanced XY plot for a solution model
ttCVF <- truthTable(CVF, outcome = PROTEST, incl.cut = 0.85)
pCVF <- minimize(ttCVF, include = "?")
XYplot(pCVF$solution[[1]], PROTEST, data = CVF, enhance = TRUE)

same plot, using the solution as a SOP expression
XYplot(~NATPRIDE + DEMOC*GEOCON*POLDIS + DEMOC*ETHFRACT*GEOCON,

PROTEST, data = CVF, enhance = TRUE, model = TRUE)

_Cebotari and Vink Ethnic protest in Europe

Description

This data set was used by Cebotari and Vink (2013), and it was taken here from the associated
replication file Cebotari and Vink (2015).

Usage

data(CVR)
data(CVF)

Format

A data frame containing 29 cases (ethnic minorities) and the following 6 columns:

DEMOC Level of democracy: (contextual factor), based on a democracy index ranking countries
on a scale from strong autocracies (0) to strong democracies (10). The fuzzy scores were
calibrated using an exclusion threshold of 2, a crossover of 7 and an inclusion
threshold of 9.5.

ETHFRACT Degree of ethnic fractionalization: (contextual factor), with raw scores ranging from a
homogenous society (0) to a highly fragmented country (1). The fuzzy scores were
calibrated using an exclusion threshold of 0, a crossover of 0.495 and an inclusion
threshold of 0.8.

GEOCON Territorial concentration: (group-related factor) with raw data coded as: widely
dispersed (0) and primarily urban minorities (1) considered territorially dispersed

56 _Hino

minorities, and ethnic comunities majoritary in a region (2) and entirely concentrated
in one region (3) considered as territorially concentrated minorities. The fuzzy scores
were calibrated using an exclusion threshold of 0, a crossover of 1.25 and an inclusion
threshold of 3.

POLDIS Political discrimination: (group-related factor) captures discrimination practices
toward minority groups that vary from no discrimination (0) to exclusive and repressive
policies toward a minority group (4). The fuzzy scores were calibrated using an exclusion
threshold of 0, a crossover of 0.75 and an inclusion threshold of 3.

NATPRIDE National pride: (group-related factor) with raw scores ranging from
‘not at all proud’ (0) to ‘very proud’ (3). The fuzzy scores were calibrated using
an exclusion threshold of 0.5, a crossover of 1.5 and an inclusion threshold of 2.5.

PROTEST Outcome, ethnopolitical protest: measured on a range from 0 to 5 with higher values
indicating more intense protest actions. The fuzzy scores were calibrated using an
exclusion threshold of 0.5, a crossover of 1.5 and an inclusion threshold of 3.

Details

There are two different versions of the Cebotari and Vink data: CVR contains the raw data, and CVF
contains the data calibrated to fuzzy-sets.

References

Cebotari, V.; Vink, M.P. (2013) “A Configurational Analysis of Ethnic Protest in Europe”. Interna-
tional Journal of Comparative Sociology vol.54, no.4, pp.298-324.

Cebotari, V.; Vink, M.P. (2015) “Replication Data for: A configurational analysis of ethnic protest
in Europe”, doi:10.7910/DVN/PT2IB9, Harvard Dataverse, V2

_Hino Time-Difference

Description

This data set was used by Hino (2009), to demonstrate the Time-Difference QCA.

Usage

data(HC)

Format

A data frame containing 15 cases (countries) and the following 5 columns:

FOREIGN Percentage of foreign population.
UNEMP Percentage of unemployed population.
CONV Party system convergence.

PRES80 Presence of extreme-right parties in 1980s.

https://doi.org/10.7910/DVN/PT2IB9

_Legacy datasets 57

VOTE Outcome, vote share of extreme-right parties.

Details

For all columns in the data, a value of 1 means a positive difference between 1990 and 1980, and a
value of 0 means negative or zero difference, except for the condition CONV, which is the inverse
of the condition DIVERT in the raw data. The condition PRES80 does not have a time difference,
it represents a simple presence / absence of extreme-right parties in the 1980s.

References

Hiro, A. (2009) “Time-Series QCA. Studying Temporal Change through Boolean Analysis”. Soci-
ological Theory and Methods, vol.24, no.2, pp.247-265.

_Legacy datasets Legacy datasets

Description

The following datasets are no longer part of this package in the formal documentation, but have
been added to ensure backwards compatibility with prior publications.

Usage

data(d.AS)
data(d.Bas)
data(d.biodiversity)
data(d.BWB)
data(d.CS)
data(d.CZH)
data(d.education)
data(d.Emm)
data(d.graduate)
data(d.health)
data(d.HK)
data(d.HMN)
data(d.homeless)
data(d.jobsecurity)
data(d.Kil)
data(d.Kro)
data(d.napoleon)
data(d.partybans)
data(d.represent)
data(d.RS)
data(d.SA)
data(d.socialsecurity)

58 _Lipset

data(d.SS)
data(d.stakeholder)
data(d.transport)
data(d.urban)
data(Emme)
data(HarKem)
data(Krook)
data(RagStr)
data(Rokkan)

_Lipset Lipset’s indicators for the survival of democracy during the inter-war
period.

Description

This dataset is taken from Lipset (1959), as used by Rihoux and De Meur (2009), Cronqvist and
Berg-Schlosser (2009) and Ragin (2009).

Usage

data(LR)
data(LC)
data(LM)
data(LF)

Format

A data frame containing 18 rows and the following 6 columns:

DEV Level of development: it is the GDP per capita (USD) in the raw data, calibrated in the
binary crisp version to 0 if below 550 USD and 1 otherwise. For the multi-value crisp
version, two thresholds were used: 550 and 850 USD.

URB Level of urbanization: percent of the population in towns with 20000 or more
inhabitants, calibrated in the crisp versions to 0 if below 50% and 1 if above.

LIT Level of literacy: percent of the literate population, calibrated in the crisp versions
to 0 if below 75% and 1 if above.

IND Level of industrialization: percent of the industrial labor force, calibrated in the
crisp versions to 0 if below 30% and 1 if above.

STB Government stability: a “political-institutional” condition added to the previous
four “socioeconomic” ones. The raw data has the number of cabinets which governed
in the period under study, calibrated in the crisp versions to 0 if 10 or above and to 1
if below 10.

SURV Outcome: survival of democracy during the inter-war period: calibrated to 0 if negative,
and 1 if positive raw data.

_Nieuwbeerta 59

Details

There are four different versions of the Lipset data:

LR contains the raw data
LC is the same data calibrated to binary crisp sets
LM is calibrated to multi-value sets
LF is calibrated to fuzzy-sets

References

Lipset, S. M. (1959) “Some Social Requisites of Democracy: Economic Development and Political
Legitimacy”, American Political Science Review vol.53, pp.69-105.

Cronqvist, L.; Berg-Schlosser, D. (2009) “Multi-Value QCA (mvQCA)”, in Rihoux, B.; Ragin,
C. (eds.) Configurational Comparative Methods. Qualitative Comparative Analysis (QCA) and
Related Techniques, SAGE.

Rihoux, B.; De Meur, G. (2009) “Crisp Sets Qualitative Comparative Analysis (mvQCA)”, in Ri-
houx, B.; Ragin, C. (eds.) Configurational Comparative Methods. Qualitative Comparative Analy-
sis (QCA) and Related Techniques, SAGE.

Ragin, C. (2009) “Qualitative Comparative Analysis Using Fuzzy-Sets (fsQCA)”, in Rihoux, B.;
Ragin, C. (eds.) Configurational Comparative Methods. Qualitative Comparative Analysis (QCA)
and Related Techniques, SAGE.

_Nieuwbeerta Class voting in post-World War era

Description

This fuzzy dataset is an adaptation from Ragin (2005, 2008), the data itself being attributed to
Nieuwbeerta (1995).

Usage

data(NF)

Format

A data frame containing 12 cases (countries) and the following 5 columns:

A degree of membership in the set of highly affluent countries
I degree of membership in the set of countries with substantial levels of income inequality
M degree of membership in the set of countries with a high percentage of workers employed

in manufacturing
U degree of membership in the set of countries with strong unions
W outcome: degree of membership in the set of countries with weak class voting

60 _Ragin and Strand

Details

All fuzzy sets in this data are constructed on a six-values scale, for demonstrative purposes.

In the original dataset, the outcome W is presented as the first column.

References

Nieuwbeerta, P. (1995) The Democratic Class Struggle in Twenty Countries: 1945:1990. Amster-
dam: Thesis Publishers.

Ragin, C.C. (2005) “From fuzzy sets to crisp truth tables”. WP 2004-28, COMPASSS Working
Papers series.

Ragin, C.C. (2008) Redesigning Social Inquiry: Fuzzy Sets and Beyond. Chicago: University of
Chicago Press.

_Ragin and Strand University recognition of a graduate student union

Description

Original data used by Caren and Panofsky (2005), and reanalysed by Ragin and Strand (2008).

Usage

data(RS)

Format

A data frame containing 17 cases and the following 6 columns:

P Public university
E Support of elite allies
A National union affiliation
S Strike or a strike threat

EBA E happens before A
REC Union recognition

Details

The causal conditions are P, E, A and S. All of them are binary crisp with two values: 0 = No and 1
= Yes.

The column EBA is not a causal condition, specifying in which case the causal condition E happens
before the causal condition A. It has two values (0 = No and 1 = Yes) plus the placeholder "-" to
signal a “don’t care”.

The outcome is the union recognition EBA, also binary crisp with two values: 0 = No and 1 = Yes.

https://compasss.org/working-papers-series/
https://compasss.org/working-papers-series/

_Ragin and Strand 61

Source

Caren, N; Panofsky, A. (2005) “TQCA: A Technique for Adding Temporality to Qualitative Com-
parative Analysis.” Sociological Methods & Research vol. 34, no.2, pp.147-172,
doi:10.1177/0049124105277197.

Ragin, C.C.; Strand, S.I. (2008) “Using Qualitative Comparative Analysis to Study Causal Order:
Comment on Caren and Panofsky (2005).” Sociological Methods & Research vol.36, no.4, pp.431-
441, doi:10.1177/0049124107313903.

https://doi.org/10.1177/0049124105277197
https://doi.org/10.1177/0049124107313903

Index

∗ datasets
_Cebotari and Vink, 55
_Hino, 56
_Legacy datasets, 57
_Lipset, 58
_Nieuwbeerta, 59
_Ragin and Strand, 60

∗ functions
calibrate, 4
causalChain, 9
complexity, 13
findRows, 14
findTh, 16
fuzzyand, fuzzyor, 17
generate, 19
Implicant matrix functions:

allExpressions, createMatrix,
getRow, 20

minimize, 23
modelFit, 29
Parameters of fit, 31
PI chart functions: makeChart,

findmin, solveChart, 34
retention, 38
runGUI, 40
superSubset, findSubsets,

findSupersets, 40
truthTable, 45
Xplot, 50
XYplot, 52

∗ package
About the QCA package, 2

_Cebotari and Vink, 55
_Hino, 56
_Legacy datasets, 57
_Lipset, 58
_Nieuwbeerta, 59
_Ragin and Strand, 60

About the QCA package, 2

allExpressions (Implicant matrix
functions: allExpressions,
createMatrix, getRow), 20

calibrate, 4
causalChain, 9
complexity, 13
createMatrix, 32, 43
createMatrix (Implicant matrix

functions: allExpressions,
createMatrix, getRow), 20

cutree, 17
CVF (_Cebotari and Vink), 55
CVR (_Cebotari and Vink), 55

dist, 17

eqmcc (minimize), 23
expand.grid, 22

factorize, 27
findmin (PI chart functions: makeChart,

findmin, solveChart), 34
findRows, 14
findSubsets, 42, 43
findSubsets (superSubset, findSubsets,

findSupersets), 40
findSupersets, 42, 43
findSupersets (superSubset,

findSubsets, findSupersets), 40
findTh, 16
fuzzyand (fuzzyand, fuzzyor), 17
fuzzyand, fuzzyor, 17
fuzzyor (fuzzyand, fuzzyor), 17

generate, 19
getRow, 43
getRow (Implicant matrix functions:

allExpressions, createMatrix,
getRow), 20

62

INDEX 63

HC (_Hino), 56
hclust, 17

Implicant matrix functions:
allExpressions, createMatrix,
getRow, 20

intersection, 30

jitter, 51, 53

LC (_Lipset), 58
LF (_Lipset), 58
LM (_Lipset), 58
LR (_Lipset), 58

makeChart (PI chart functions:
makeChart, findmin,
solveChart), 34

minimize, 9, 10, 12, 15, 23, 29, 32, 33, 49
modelFit, 29

negate, 30, 33
NF (_Nieuwbeerta), 59

par, 51, 53
Parameters of fit, 31
PI chart functions: makeChart,

findmin, solveChart, 34
pof, 30, 42
pof (Parameters of fit), 31
pofind (Parameters of fit), 31

QCA-package (About the QCA package), 2

retention, 38
RS (_Ragin and Strand), 60
runApp, 40
runGUI, 40

solveChart (PI chart functions:
makeChart, findmin,
solveChart), 34

superSubset, 32, 33, 41, 43
superSubset (superSubset, findSubsets,

findSupersets), 40
superSubset, findSubsets,

findSupersets, 40

text, 51, 53
truthTable, 9, 12, 14, 15, 24, 27, 45

Xplot, 50
XYplot, 52

	About the QCA package
	calibrate
	causalChain
	complexity
	findRows
	findTh
	fuzzyand, fuzzyor
	generate
	Implicant matrix functions: allExpressions, createMatrix, getRow
	minimize
	modelFit
	Parameters of fit
	PI chart functions: makeChart, findmin, solveChart
	retention
	runGUI
	superSubset, findSubsets, findSupersets
	truthTable
	Xplot
	XYplot
	_Cebotari and Vink
	_Hino
	_Legacy datasets
	_Lipset
	_Nieuwbeerta
	_Ragin and Strand
	Index

