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Abstract

Hidden structure behind asset returns is a complex research area with relevant implications for
modern portfolio theory and investment management. Going further in this direction, we intro-
duce a dataset, hereafter informative set, which characterizes the left tail of financial series. The
related INFOSET package computes this informative set via an adaptive clustering algorithm iden-
tifying sub-groups of gross returns at each iteration by approximating their distribution with a
sequence of two-component log-normal mixtures. The package allows for assessing the reliability
of the informative set while detecting common tail behaviors for clustering and predictive pur-
poses. An endogenous tail risk measure is defined and tested for asset classification and portfolio
construction. Finally, an illustration with ETF financial time series is provided to show its usage.
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1 Introduction

In recent years dealing with unobserved patterns
behind the distribution of financial returns has
become a predominant topic in many research
areas (see among others West (1993), Vlassis and
Likas (1999) and MacDonald et al (2011)). More-
over, extreme events, despite their low probability,
significantly contribute to market volatility (Gkil-
las and Longin (2018); Kapadia and Du (2011);
Rossi and De Magistris (2013)). The 2008 finan-
cial crisis and COVID-19 recession have shown the
limitations of traditional financial tools to manage
these catastrophes (Agarwalla et al (2021); Gao
et al (2019); Orlowski (2012)).

To address this issue, we propose a dataset,
called the informative set, which allows for the
identification of distinct dynamics in the left tail
of time series data. We also introduce an endoge-
nous risk metric, the Left Change Point Risk,
denoted as LR, defined by considering structural
breakpoints in the left-hand tail of the time series
distribution.

Specifically, the procedure to compute the
informative set adjusts the method proposed by
Mariani et al (2022a) to gross returns of financial
assets. This is accomplished through an adap-
tive algorithm that identifies sub-groups of gross
returns in each iteration by approximating their
distribution with a sequence of two-component
log-normal mixtures. These sub-groups emerge
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when a significant change in the distribution
occurs below the median of the financial returns,
with their boundary termed as the “change point”
of the mixture. The process concludes when no
further change points are detected. The outcome
encompasses parameters of the leftmost mixture
distributions and change points of the analyzed
financial time series.

The left change point risk, LR, is a risk

measurement based on the assumption that the
existence of a change point below the median
implies a structural breakpoint in the left-side of
return distribution, so denoting the presence of
turbulence and risk. Thus, the left change point
risk, LR, represents the expected loss below the
change point threshold, making it endogenously
defined.
This allows the association of binary or multilevel
classification of the ETFs to be used in supervised
machine learning techniques which are suitable for
predicting financial time series data. Moreover, we
propose to embed this risk into the Markowitz
asset allocation following the work of Giudici et al
(2022). Specifically, we modify the objective func-
tion of the Markowitz minimum variance portfolio
taking into account not only the volatility of indi-
vidual assets but also their left tail risk, expressed
in terms of the LR.,. Empirical results show
that the resulting portfolios are less volatile and
better performing than the classical Markowitz’
portfolios.

The paper summarizes the adaptive procedure
proposed by Mariani et al (2022a) and illustrates
the INFOSET package in R for computing the left
tail informative set of asset returns while illustrat-
ing properties and applications of the risk measure
LR.p. Specifically, we describe a 2-step procedure
applied on asset returns through the main function
infoset and its routine tail_mixture. Several useful
packages have been developed in R to evaluate the
risk of extreme market movements looking at the
tails of the assets (see among others evir, qrmtools
and extRemes packages). Differently from these
tools, the INFOSET package is designed not to
manage tail risk, but to identify characteristics of
financial series by focusing on left tail behavior.

The informative set is then applied to asset
classification via a standard clustering procedure
mainly to test its ability to identify asset classes as
in Mariani et al (2022b). The clustering approach
deals with the specific features which describe

the left tail distribution of financial returns. To
the best of our knowledge, this use is an addi-
tional contribution of the informative set. In fact,
the challenging task of clustering time series data
tends to neglect these aspects. Far from being
exhaustive, we cite the correlation-based cluster-
ing techniques of Mantegna (1999), Basalto et al
(2007) and Giudici and Polinesi (2021). We also
refer to Liao (2005) and Esling and Agon (2012)
who provide a detailed discussion of time series
clustering in the data mining literature.

The informative set deals with different pur-
poses which are not limited to those we list here.
Specifically, the functionalities of the INFOSET
package include: (i) modelling asset distribution
detecting the parameters which describe left tail
behaviour, (ii) clustering, (iii) labeling of the
financial series for predictive and classification
purposes (iv) portfolio construction. Two datasets
(sample.data and asset.label) are included in the
R package INFOSET. The former involves daily
observations of prices for the 44 ETFs considered.
The latter includes the asset class of ETF's accord-
ing to the classification provided by the Exchange
where they are traded.

An outline of our paper is as follows. Section
2 provides a review of the informative set, while
Section 3 illustrates how to compute it through the
INFOSET R package. Section 4 presents an empir-
ical application to ETF's time series which shows
the effect of including the change point risk in well
known portfolio optimization problems. Finally,
Section 5 draws some conclusions.

2 Methodology

2.1 Left tail informative set

The gross return (or simply return) of the i-th
asset, for i = 1,..., N4, at time ¢ is defined as:

Pt
Yt,i = €Xp {log <> }
Pt—At,i

— P19, Na, (1)

DPt—At,i

where p, ; is the daily price and At is the time step
at which the prices are observed.

Under the assumption that the return dis-
tribution can be approximated by a bivariate
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log-normal mixture, we apply the iterative strat-
ification procedure introduced by Mariani et al
(2022a). In the first iteration, the stratification
procedure identifies the so-called change point and
divides the gross returns into two distinct groups:
returns that are smaller than or equal to the
change point and returns that are larger than
the change point. The change point is the thresh-
old where the leftmost component of the mixture
dominates the rightmost component to its left
and is dominated by it to its right. This indi-
cates that a structural change in the distribution
occurs. In each subsequent iteration, the proce-
dure approximates with a log-normal mixture the
right group of returns from the previous itera-
tion, appropriately shifted. It identifies the change
point associated with this right group and, then,
it splits this group into two sub-groups. The pro-
cedure stops when it fails to find a new change
point or when the new change point is larger than
the median of the returns.

Bearing in mind that the stratification pro-
cedure works similarly for each financial asset i,
we drop the subscript i and, in the remainder of
this section, we denote the gross return at time
t = t; = jAt, with the simplified notation y;,
i=1,2,...,n.

In its first iteration, the procedure identifies
the first change point a' to split the set of all
returns S, = {y1,Y2,...,Yn} into two disjoint
groups: the left group K1 = {y € S, Ay € (0,a']},
composed of returns smaller than or equal to the
threshold value, and a right group R; = S,\Kq,
composed of returns larger than the threshold
value.

In the second iteration, the procedure consid-
ers the subset R, obtained in the first iteration.
It identifies a new threshold value a® > a!, and
splits R into two disjoint groups: the left group
Ke ={y € S, Ny € (a*,a?]} and the right
group Ro = {y € S, N y € (a®,+o0)}. In
the k-th iteration, the algorithm proceeds simi-
larly to the first two iterations, by identifying the
threshold a* and dividing the set Ri_1 into two
groups: K, = {y € S, A y € (a*71,a*]} and
Rr={y €S, N ye(a¥ +)}.

The vector of unknown parameters for the
density functions associated with the two mix-
ture components O, = (7, 1.k, 2k, 01k, O2.k)
is estimated using the return in the set Ry_1

through the expectation maximization (EM) algo-
rithm (see Dempster et al (1977)). Note that 7 €
[0, 1] is the mixing weight representing the a priori
probability that the point & = y—a*~!, y € Ki_1,
for kK = 1,2, ..., belongs to the first component.
Hereafter we assume a’ = 0.

The change point a® of the mixture is determined
using the following rule:

ak = min{y € Ry—1 A mf1e(y — ak_l)

=1 —m)farly—a" ) (2)

where fix(x) and for(z), z € Ry, are the log-
normal densities of parameters pq i, f2k, 01k,
02,1 € R associated with the two mixture compo-
nents.

An explicit formula for the change points is

a* = exp {min{log(a" ), log(a®)}}, (3)

where log(a® ), log(a® ) are given by

2 2
o5 .0
log(ak ) = A2k ﬂ;k _ Mg,k + VAL
O3k — 91k 01k 92k
(4)

with Ay defined as

2
09 1T,
Ay = Mé,k _ Mz,k n 2log( 2,kTk )
olr O3y o151 — )
M1,k 2 W2k 2 Ug,k - Uik
) ) e )
I1,k 02,k 91,692,k

k

The change point a” is the frontier of the
two groups Ky and Ry at the k-th iteration and,
broadly speaking, a* divides the sample into two
subsamples with non-homogeneous distributions.
The procedure stops when a new a® cannot be
determined (i.e., Eq. (2) does not admit any solu-
tion) or the change point is larger than the median
of returns.

The informative set for the left tail is identified
by applying the stratification procedure up to the
second iteration.

At time ¢, for i = 1,2,..., N4 each asset i is
identified by the following twelve parameters:



Springer Nature 2021 ETEX template

1. The parameters (drift and volatility) of the left-
hand component of the log-normal mixture:
U%,t,i’ M%,t,i’ Of,t,iv M%,t,i'

2. The change points of the asset return distribu-
tion: a%yi and af,i.

3. The complement of the cumulative distribution
functions, 1 — Fllymv7 1- F12,t,7:7 associated with
the leftmost component of the mixture (first
type error).

4. The cumulative distribution functions associ-
ated with the rightmost component of the
mixture, F217t,i’ FQQH (second type error).

5. The a priori probabilities: wtl’i, 77?2

The twelve parameters of each asset are collected
into the matrix X; € RV4*12 the left tail infor-
mative set at time t. For simplicity, we consider
the information coming from the first two itera-
tions (i.e., k = 1,2).

It is worth noting that the informative set can
be computed when two main assumptions are
satisfied: a) the gross return distribution can be
approximated with a non-trivial two-component
log-normal mixture with a change point; and
b) the expectation maximization algorithm con-
verges. The first assumption can be tested using,
for example, the results in Chen and Li (2009)
and Chauveau et al (2019). The assumptions for
the EM approach to converge are no time interval
with constant prices, no extreme outliers, and a
sufficiently large sample size, as detailed in Yang
and Chen (1998).

In the context of mixture distribution, the EM
algorithm works in the usual way, maximizing the
log-likelihood function associated with the obser-
vation vector y = (y1y2 ...,yn) via a two-step
procedure. This procedure initializes the unknown
mixture parameters m, w1, pe, 01, 02, and, at
any step, first evaluates the posterior probabili-
ties (E-step) and next estimates the new mixture
parameters 7, fi1, fi2, 61, 02 (M-step).

2.2 Left tail risk measure and
portfolio strategies

In this section we compute the LR, risk mea-
sure! based on the first change point. Specifically,

L1t satisfies the following properties: (i) weakly monotonic-
ity, (ii) positive homogeneity and (iii) translation invariance.
For more details about properties for measures of risk we refer
to Artzner et al (1999).

it aims to estimate the expected loss given that
the loss has not exceeded the first change point
threshold. Therefore, LR., can be represented as:

LR, =E[-X|X < ¢p]

1 P
= ~ o) /_OO xf(x)dx, (6)

where X and cp are, respectively, the logarithm of
the gross return and the logarithm of the change
point, while f is the probability density function
(PDF) of X and F'(cp) represents the cumulative
distribution function (CDF) of X evaluated at cp.

Note that the left change point risk, LR.p,
coincides with the Tail Value at Risk (T'VaR) at
level o, where @ = F(cp). Unlike TVaR, where
the level is predetermined, in this case, the level
is found endogenously through the stratification
procedure.

Moreover, the informative set can potentially
be used to compose portfolios with specific degrees
of risk. Specifically, we solve the following asset
allocation problem:

Na
minw' COVw + A Z LRipwi,

i=1

NA NA
Zwixi =z, Zwi =1, w; >0, (7)
=1 =1

where z; = log(y;) is the logarithm of the gross
return associated with the i—th ETF for ¢ =
1,2,...,N4 and N4 is the number of ETFs, T
is chosen to be the average of the returns over
the time period considered and LRf:p is the left
risk associated with the ETF 4. The coefficient A
allows investors to choose a risk profile by suitably
weighting the two risks: asset covariance risk and
left change point risk.

We compare four different asset allocation
strategies. The first two are the classical and com-
bined Markowitz selections, obtained by setting
the matrix COV in Eq. (7) to the sample variance-
covariance matrix with A = 0 and A = 1074,
respectively.? The last two are the classical and
combined extreme downside correlation (EDC)

2The value A = 10~% ensures that the two risks are
comparable in magnitude.
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selections, obtained by setting COV in Eq. (7)
to the extreme downside covariance matrix, as
defined in Harris et al (2019) and Ahelegbey et al
(2021), with A = 0 and A = 10~*, respectively.

The portfolio analysis is conducted on consec-
utive overlapping time windows of F'T' consecutive
trading days, with two consecutive windows dif-
fering by ov consecutive trading days, for a total
of tw time windows. We use 7,1 =1+ ov(j — 1)
and 7, = FT + ov(j — 1) to denote the first
and last observation times of the j-th window,
i=1,2,..., tw.

For any strategy, we solve tw different allo-
cation problems in the form (7) using the asset
returns observed in the above-mentioned time
windows, and w; ; represents the weight of the
i-th asset in the portfolio, i = 1,2,..., N4, com-
puted using the asset returns observed over the
j-th window.

We compare the portfolio variability measures
looking at the portfolio return up to ov days
ahead. Specifically, for j = 1,2,...,tw, we define
the portfolio return as

Na
(Zi:l wi,jpt,z') —Dpj
Tt = )
pj

t=71+1,7,+2,...,7 + ov, (8)

where p; is the value of the portfolio on the last
date of the j-th window.

3 The infoset function and its
routine

In the R package INFOSET, the leftmost infor-
mative set X; € RN4X12 can be obtained by
applying the 2-step stratification procedure on
the gross returns as defined in Eq. (1). In the
first step, the function infoset calls the routine
tail_mixture, which computes the the log-normal
mixture applied on the gross returns (y) and iden-
tifies the first change point a' solving Eq. (2).
In the second step, the original gross returns are
shifted by the value of change point a' and the
change point ,a?, of the log-normal mixture asso-
ciated with the shifted gross returns (y — a') is
identified. The change points together with the
mean, the volatility, the a priori probabilities, the

first and second type errors of the log-normal mix-
tures found at the first and second iterations are
collected in the informative set.

The function tail_mixture is the routine for
the infoset function and it takes the following
arguments:

® y: a data.frame or matrix containing the obser-
vations at time ¢ for the N4 time series;

® shift: the starting change point which is initial-
ized to zero.

® 1_it: the number of iterations.

The function tail_ mixture considers the values y
larger than the starting change point shift (i.e.
the threshold value mentioned above) and shifts
these values in a way such that the shifted val-
ues range in the interval (0, +00). Then, starting
from the shifted values, the function computes
through the EM algorithm the corresponding log-
normal mixture and the corresponding change
point according to Eq. (3). The function returns
a list object with a class attribute “tail_mixture”
with ten elements: the change point, a flag vari-
able, the mean and the standard deviation of the
two mixture components, the value of the log-
normal mixture components in the change point
and a plot. A flag variable equal to zero indicates
success (i.e., Eq. (2) admits solution), a flag vari-
able equal to one indicates failure (i.e., Eq. (2)
does not admit any solution).

tail_mixture <- function(y, shift, n_it){
vec = which(y > shift)
y = ylvec] - shift
set.seed(600)
GMModel = normalmixEM(log(y),
lambda = NULL,
mu = NULL, sigma = NULL, k = 2,
mean.constr = NULL,
sd.constr = NULL, epsilon =
1e-08, maxit = 1000,
maxrestarts = 500,
verb = FALSE, fast = FALSE,
ECM = FALSE, arbmean
= TRUE, arbvar = TRUE)
zsol = numeric()
zsol[1] = GMModel$mu[1]

zs0l1[3] = GMModel$mu[2]
zsol[2] = GMModel$sigmal[1]
zsol[4] = GMModel$sigma[2]

pa = GMModel$lambda[1]
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h1l = pa*dlnorm(min(log(y)),
zsol[1], zsol[2])
h2 = (1 - pa)*dlnorm(min(log(y)),
zsol[3], zsol[4])
indec = as.numeric(which.max(c(hl,
h2)))
if (indec == 2){

mul = zsol[3]

sigmal = zsol[4]

ppa = (1 - pa)

mu2 = zsol[1]

sigma2 = zsol[2]

}
else{
mul = zsol[1]
sigmal = zsol[2]
ppa = pa
mu2 = zsol[3]
sigma2 = zsol[4]
}

delta=(mu2*sigmal”2 - mul*sigma2~2)°2

+ (mu2~2*sigmal~2 -
mul~2*sigma2”2 +
2xsigmal”2*sigma2”2x*
log(sigma2+*ppa/(sigmal*(1 - pa))))*
(sigma2”2 - sigmal~2)
if (delta <= 0){
if(n_it==1){

flag = 1

a=20

inters =1

intersl =1

ppa = 1

stop(’no

subpopulations’,

)\ n))

elseq{
flag = 1
a=20
inters = 1
intersl =1

ppa = 1
stop(’only one
subpopulation
exists’, ’\n’)
}
}
else{

aa = min(exp((-(mu2*sigmal~2
- mul*sigma2°2) -

sqrt(delta))/(sigma2~2
- sigmal~2)),
exp ((-(mu2*sigmal~2 -
mul*sigma2~2)
sqrt(delta))/(sigma2”2 -
sigmal~2)))
}
flag = 0
inters = plnorm(aa, mu2, sigma2)
intersl = (1-plnorm(aa, mul,
sigmal))
a = aa + shift
x1 = seq(from = min(y), to = max(y),
by = (max(y) - min(y))/1000)
mixl = dlnorm(x1l, mul, sigmal)
mix2 = dlnorm(xl, mu2, sigma?2)
kern <- density(y, n = 1001)
f = kern$y
ff1 = ppa*mixl + (1 - ppa)*mix2
plot = plot(xl, £)
hist(y, freq = FALSE)
lines(x1l, ff1l, col = ’red’)
lines(x1, mixl*ppa)
lines(x1l, mix2*(1 - ppa))
points(aa, ppa*dlnorm(aa,
mul, sigmal),
col = red’)
Sys.sleep(5)
return (c(a, flag, mul,
sigmal, mu2,
sigma2, ppa,
inters, intersl, plot))
}
The function infoset is the main function and
it takes in input y, which is a data.frame or
a matrix object containing the observations at
time t for the N4 time series. It computes the
left tail informative set at time ¢ associated with
the input data y. Specifically, the function infoset
performs the two iterations of the stratification
procedure, explained above. The function initial-
izes the change point to zero and, starting from
the input data y, it calls the routine tail_mixture
to determine the first change point a! and the
parameters of the log-normal mixture associated
with y. This is the first iteration of the stratifi-
cation procedure. Then, it calls again the routine
tail_mixture using as input y and the first change
point a' to determine the second change point
a® and the parameters of the log-normal mix-
ture associated with the values of y larger than
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the first change point (i.e., the right group men-
tioned above). Finally, the elements of the left tail
informative set are collected in a list.

We highlight that the aforementioned func-
tions have a few exceptions associated with spe-
cific situations:

(i) Eq. (2) does not have solutions at all when
the gross returns are drawn from a log-normal
distribution.

(ii) Only the first iteration works. The latter
can result from two different scenarios:

ii.a) Only one subpopulation exists because
A <= 0 for the second iteration.

ii.b) The first change point is larger than
or equal to the median value (an unacceptable
solution), indicating that the time series is too
short.
infoset <- function(y){

shift = NULL

shift[1] = 0

k=1

flag = 0

meant = NULL

dev = NULL

meanr = NULL

devr = NULL

pa = NULL

cum = NULL

cuml = NULL

out = NULL

shift = NULL

shiftt = 0

while(flag == 0 & shiftt < median(y)

& k<3){

out <- tail_mixture(y,
shiftt, k)
k = k+1
shiftt = out[1]
if (shiftt>=median(y)){
print (’Not valid
change point:
time series too short’)
}
shift[(k-1)] <- out[1]
flag <- out[2]
meant [(k-1)] <- out[3]
dev[(k-1)] <- out[4]
meanr [(k-1)] <- out[5]
devr[(k-1)] <- out[6]
pal(x-1)] <- out[7]
cum[(k-1)] <- out[8]

cuml [(k-1)] <- out[9]
}
if(flag == 1){
shift = shift[1:(length(shift)

- ]

cum = cum[1: (length(cum)

- ]

cuml = cuml[1:(length(cuml)
- ]

meant = meant[1:(length(meant)
- ]

dev = dev[1:(length(dev)

- ]

pa = pall:(length(pa)

- ]

3

list(’change point’ = shift,
’prior probability’ pa,
’first type error’ = cum,
’second type error’ = cuml,
‘mean’ = meant, ’sd’ = dev)

4 Example

To illustrate how the R package INFOSET works
in practical situations, we present an empirical
application with multivariate time series of ETFs.
Starting from daily prices of Ny = 44 ETFs,
available in the dataset sample.data, we define the
informative set which includes, among others, the
parameters of the leftmost mixture distributions
and the change points of all the asset time series
analyzed. The informative set is then applied to
asset classification via a standard clustering pro-
cedure mainly to test its ability to identify asset
classes (included in the dataset asset.label). Next,
it is used to compute a risk measure based on the
change points for labeling assets, which is particu-
larly useful when their classification is not readily
available, as well as for improving the performance
of well-known portfolio optimization formulation.
The dataset used to compute the informative
set includes the closing prices of ETFs from Jan-
uary 2006 to February 2018, for a total of 3,174
observations per series. The dataset can be loaded
in the R workspace using:
data("sample.data", package = "INFOSET")
where sample.data is a 3,174 x 44 data.frame
object containing the daily prices. As a first step,
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we calculate the N4 —1 daily series of gross returns

through the g_ret function:

gross.ret<-as.data.frame(lapply(

sample.data, g_ret))

where gross.ret is a 3,173 x 44 data.frame object

containing the daily returns. Second, we estimate

the mostleft information set for each ETF by using

the following code?:

result <- NULL

for(i in 1:ncol(gross.ret)){

result[[i]] <- infoset(gross.retl[,i],

plot_cp = "F")
3
output <- matrix(unlist(result), 12,
ncol = ncol(gross.ret))

output <- t(output)

rownames (output) <- colnames(gross.ret)

colnames (output) <- c(’ch_1’, ’ch_2’,
’priori_1’, ’priori_2’,
first_1’, ’first_2’,
’second_1’, ’second_2’,
‘mean_1’, ’mean_2’,
’dev_1’, ’dev_2’)

output <- as.data.frame(output)

where output is a 44 x 12 data.frame object

containing the estimated parameters.

head (round (output,4))

ch_1 ch_2 priori_1

ETF_1 0.9972 0.9985 0.2313
ETF_2 0.9943 0.9968 0.8068
ETF_3 0.9986 0.9992 0.3943
ETF_4 0.9943 0.9967 0.8068
ETF_5 0.9851 0.9912 0.7411
ETF_6 0.9831 0.9900 0.7875
priori_2 first_1 first_2
ETF_1 0.8289 0.0145 0.5777
ETF_2 0.1381 0.1443 0.0084
ETF_3 0.1947 0.0538 0.0163
ETF_4 0.8674 0.1439 0.5630
ETF_5 0.15635 0.1938 0.0095
ETF_6 0.1435 0.2126 0.0078
second_1 second_2 mean_1
ETF_1 0.8119 0.9884 -1e-04
ETF_2 0.9910 0.4359 1e-04
ETF_3 0.7462 0.4237 -1e-04
ETF_4 0.9910 0.9924 1e-04
ETF_5 0.9817 0.3952 3e-04

3 After the execution of the code, a counter with the num-
ber of the iteration in the estimation function is shown until
convergence or the maximum number of iterations is reached.

ETF_6 0.9875 0.4319 4e-04

mean_2 dev_1 dev_2
ETF_1 -5.7152 0.0031 0.3918

ETF_2 -6.1732 0.0025 1.0537

ETF_3 -7.5187 0.0020 1.1611

ETF_4 -5.0884 0.0025 0.3850

ETF_5 -5.4050 0.0073 1.1515

ETF_6 -5.1838 0.0078 1.2373

If the optional argument plot_cp is set to TRUE,
a plot of the kernel density and a plot comparing
the empirical distribution with the underlying log-
normal mixture (and the change point) are gener-
ated for each gross return computed according to
Eq. (1) (see, Fig. 1).
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20 40 60
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y

Fig. 1 Plots of results from infoset estimation for a single
time series of gross returns. The top panel shows the ker-
nel density of the time series. The bottom panel shows the
empirical distribution and its underlying log-normal mix-
ture highlighting the change point (red point).

4.1 Potential usages of INFOSET

Potential usages of the data object output involve
clustering, labeling and portfolio modeling. In the
following subsections, we provide details about
these three applications available in the list of
functions associated with the INFOSET package.
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4.2 Clustering

According to the clustering purpose, Fig. 2 shows
the dendrogram associated with the complete link-
age algorithm applied to the Euclidean distance
computed from the informative set:

8t,i,j = @t,z‘ - Qt,j)/@t,i - it,j)a
i?j:]‘727"'7NA7 (9)

where
Ly = (a;iv aizﬁ 77151,1’7 7Tt27i7 1- Fll,t,z‘7 F12,t7i’ F21,t,i7
F22,t,i7 ﬂ%,t,iv H’it,iv Jit,iv U%,t,i)/

and, analogously,
Ly = (a%:j’ a?7j’7"t17j,7rt27j> 1- Fll,t7j7F12,t F21,t

2J7 0

2 1 2 1 2 ’
F3 b o Bt g BT 0,55 01,50 01 t.5)

Complete inkage (the labels give the true ETF class)

Fig. 2 Dendrogram associated with complete linkage clus-
tering based on distance (9).

Fig. 2 shows the result obtained by the clus-
tering procedure with dissimilarity matrix (9),
which can be reproduced by running the following
instructions:

library(dendextend)

library(colorspace)

data(’asset.label’, package = ’INFOSET’)
group_label <- as.factor(
asset.label$label)
d <- dist(output, method = ’euclidean’)
hc_SIMS <- hclust(d, method = ’complete’)
dend_SIMS <- as.dendrogram(hc_SIMS)
dend_SIMS <- color_branches(dend_SIMS,

k = 4, col = c(1:4))
labels_colors(dend_SIMS) <-

rainbow_hcl(5)
[sort_levels_values(
as.numeric(group_label)
[order.dendrogram(
dend_SIMS)1)]

labels(dend_SIMS) <-
paste(as.character
(group_label) [order.dendrogram(
dend_SIMS)],

>(’, labels(dend_SIMS), ’)’,

sep = 7;)

dend_SIMS <- hang.dendrogram(
dend_SIMS,

hang_height = 0.001)
dend_SIMS <-

assign_values_to_leaves_nodePar
(dend_SIMS, 0.5, ’lab.cex’)
dev.new()
par(mar = c(1.8, 1.8, 1.8, 1))
plot(dend_SIMS, main = ’Complete linkage
(the labels give the true ETF class)’,
horiz = TRUE, nodePar = list(cex
= 0.007))
labels_colors(dend_SIMS)
legend(’topleft’, legend = c(’emerging
equity Asia’,
’emerging equity
America’, ’corporate bond’,
’commodities’,
’aggregate bond’), fill = c(’#E495A5’,

’#BDAB66’ ,

’#55B8D0’, ’#65BC8C”’,

>#C29DDE’) ,

border = ’white’)
Despite its sensitivity to outliers, complete link-
age clustering avoids the chaining effect suffered
by single linkage clustering, thereby, it is usu-
ally preferred to single linkage. Table 1 presents
the findings related to the analysis’s accuracy. To
streamline the data, the emerging classes (Asia
and America) were combined into a single cate-
gory labeled as “emerging”.

4.3 Classification and asset
allocation
In this example, we use a rolling time windows

of length F'T = 1290 consecutive days (approx-
imately 5 trading years) and two consecutive
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Table 1 Classification resulting from the
complete linkage clustering based on distance
(9) (rows and columns represent the true asset
classes and the predicted ones by cluster
groups, respectively).

Actual/Predicted aggr. comm. corp. em.
aggr. 2 1 1 0

comm. 0 7
corp. 2 0
em. 0 1

o © o
o

20

windows differ by ov = 125 (approximately 6
trading months)*.

Specifically, to classify assets and then to incor-
porate the measure LR, into the portfolio model,
we compute its values over the time windows.
This approach enables a dynamic perspective on
risk assessment, as LR, values are updated and
adapted to evolving market conditions. The calcu-
lated LR, values across these windows are stored
for each asset, forming a panel data frame that
is essential for further portfolio analysis and risk
classification.

Here, LR, values are computed for each asset
over each specified time window, producing a list
object, LR, of length tw. This structure is instru-
mental in tracking changes in LR, over time, thus
facilitating time-sensitive asset classification and
risk management.

LR <- LR_cp(sample.data, FT= 1290,
ov = 125)
df <- as.data.frame(matrix(unlist(LR),
nrow = length(LR),
ncol = ncol(sample.data),
byrow = T))
df<-t(df)
colnames(df) <- c(paste("tw",
rep(1:16)))

head (df)

tw 1 tw 2 tw 3
1 0.004115554 0.004122932 0.004134215
2 0.008701516 0.008763616 0.008753123
3 0.002539979 0.002580082 0.002596818
4 0.008711204 0.008772693 0.008762419
5 0.022961792 0.023126742 0.023292736
6 0.026571584 0.027158223 0.027269359

tw 4 tw 5 tw 6
1 0.004173533 0.004228381 0.004220162

2 0.008704115 0.008723058 0.008777091

4Note that, the function create_overlapping-windows, called
by the functions LR_cp and ptf_construction and also available
for own use, allows user to analyze different periods by setting
values for the arguments FT and ov.

3 0.002625040 0.002608169 0.002529951
4 0.008714391 0.008732963 0.008773772
5 0.023250445 0.023270412 0.023008188
6 0.027266553 0.027212254 0.027192315
tw 7 tw 8 tw 9
1 0.004166170 0.003986231 0.003963061
2 0.008834624 0.008103924 0.007892905
3 0.002428290 0.002409038 0.002350246
4 0.008840285 0.008111546 0.007886221
5 0.021672476 0.021033909 0.021293727
6 0.025415436 0.023289728 0.023276834
tw 10 tw 11 tw 12
1 0.003990029 0.004260559 0.004337454
2 0.007707857 0.007836256 0.007724300
3 0.002393488 0.002481345 0.002472332
4 0.007712620 0.007834515 0.007769396
5 0.021741879 0.021031284 0.020499805
6 0.023778444 0.023871416 0.023351993
tw 13 tw 14 tw 15
1 0.004358483 0.004340635 0.004322432
2 0.008290197 0.008509243 0.008478295
3 0.002445175 0.002487457 0.002488479
4 0.008308656 0.008617359 0.008582162
5 0.020145876 0.019997366 0.020072072
6 0.022291894 0.022133957 0.022091486
tw 16
1 0.004278957
2 0.008459254
3 0.002484978
4 0.008560500
5 0.020057752
6 0.022023856

Figure 3 shows the LR, (y-axis) for the first time
window as a function of the ETF index labeled
from 1 to 44 (z-axis), with different shapes corre-
sponding to the asset class: filled circle (aggregate
bond), square (commodities), triangle (corporate
bond), star (emerging equity Asia), and hollow
circle (emerging equity America).
plot(df[,1], pch=19,

col=asset.label$label,

ylab = ’LR_cp’, xlab = ’ETFs’)
The significance of LR, in the portfolio model
is underscored by its utility in labeling assets
based on empirical risk levels. This is particu-
larly valuable when asset classifications are either
unavailable or insufficient for risk modeling. For
example, Fig. 3 suggests three levels of risks (low,
middle and high) according to the values of LR,,:
(0; 0.01), (0.01; 0.03) and (0.03; +00).
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These categories are consistent with typi-
cal investment risk profiles, supporting the use
of LR., in supervised machine learning tech-
niques, such as classification or clustering, for
predictive modeling in portfolio optimization. The
rolling-window calculation of LR, thus not only
enhances asset labeling precision but also pro-
vides a foundation for adaptive risk management
strategies in dynamic market environments.

s

Fig. 3 LRcp as afunction of ETF index. Shapes corre-
spond to the asset class: filled circle (aggregate bond),
square (commodities), triangle (corporate bond), star
(emerging equity Asia) and hollow circle (emerging
equity America).

Once the LR, are computed, they can be
included into portfolio model. In the R package
INFOSET, the asset allocation strategy according
to Eq. (7) can be performed by using the func-
tion ptf_construction, which takes the following
arguments.

e Data: a (t x N4) matrix or data.frame contain-
ing the N4 time series over period t.

e FT: window length.

e ov: number of different days for two consecutive
time windows.

e ptf: type of portfolio to be computed: “M” is
the Markowitz portfolio, “C_M” is the combined
Markowitz portfolio, “EDC” uses the extreme
downside correlation and “C_EDC” is the com-
bined extreme downside correlation portfolio.

¢ LR_cp_-measure: object of class LR_cp (only for
“C.M’ and “C_EDC” asset allocation strate-
gies).

Code to implement classical and combined
Markowitz strategy® is as follows:
ptf_results_M <-

5See help(“ptf_construction”) for details about specifying
starting values for this function.

ptf_construction(sample.data,
FT = 1290, ov = 125, ptf = ’M’)
ptf_results_C_M <-
ptf_construction(sample.data,
FT = 1290, ov = 125,
LR_cp_measure = LR, ptf = C_M’)

The ptf_construction function returns two lists:
the weights (ptf.weights) of assets in the portfolio
by solving Eq. (7), along with the out of sample
returns (ptf.oos.values) according to Eq. (8), for
all the time windows considered in the analysis.
Here, the results for the first time window are
provided:
round (ptf_results_M$ptf.weights[[1]], 3)

[1] 0.000 0.000 0.000 0.134
[5] 0.000 0.000 0.000 0.000 0.000

[10] 0.000 0.000 0.000 0.132 0.000
[15] 0.000 0.000 0.000 0.222 0.000
[20] 0.000 0.222 0.000 0.000 0.000
[25] 0.000 0.000 0.000 0.225 0.000
[30] 0.000 0.000 0.000 0.000 0.000
[35] 0.000 0.000 0.066 0.000 0.000
[40] 0.000 0.000 0.000 0.000 0.000
head (round(

ptf_results_M$ptf.oos.valuel[[1]],
3

1289 1290 1291 1292
[1,] 0 -0.003 -0.019 -0.023

1293 1294 1295 1296
-0.017 -0.006 -0.011 -0.023

1297 1298 1299 1300
-0.031 -0.022 -0.032 -0.018
Figure 4 shows summary plots obtained by using
the available plot_ptf function for aggregated
portfolio returns which automatically include the
median (black line) and mean (red line) values.
plot_ptf (ptf.oos.values)

It is also possible to summarize the output
of the ptf_construction using the summary_ptf
function:
summary_ptf (ptf.oos.values =
ptf_results_M$ptf.oos.value)

Min. 1st Qu. Median
-0.108177 -0.026327 -0.001541
Mean 3rd Qu. Max.
-0.002449 0.015506 0.112578
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Fig. 4 Summary plots for aggregated portfolio returns.

Note that the combined portfolios show better
performance in terms of higher profits and less
volatility with respect to the portfolios obtained
by applying the Markowitz and EDC strategies
(Table 2).

Table 2 Summary statistics of aggregated portfolio
returns.

portiolio strategy Min. Tst Qu._ Median _Mean __ 3rd Qu._ Max.
Classical Markowitz _ -0.1082 _-0.0263 _-0.0015 _-0.0024 _ 0.0155 _ 0.1126

Combined Markowitz  -0.0953  -0.0129  0.0017 0.0016  0.0148 0.1026
Classical EDC -0.1770  -0.0295  0.0001 0.0009 0.0247 0.1389
Combined EDC -0.1878  -0.0416  -0.0059  -0.0023  0.0418 0.1540

Figure 5 shows out-of-sample portfolio returns
computed using the portfolio values out of the
windows used to compute the portfolio weights,
for different strategies and for each time window.
The code is as follows.
sample_M <- NULL ## Markowitz
sample_C <- NULL ## Combined Markowitz
sample_EDC <- NULL ## Combined EDC
sample_mod_EDC<- NULL ## Combined EDC
icont <- 0
count <- 1:15
for (t in count){

for(j in 1:125){

icont = icont + 1;

sample_M[icont] =
ptf_results_M$ptf.oos.valuel[[t]][1,
jl

sample_C[icont] =
ptf_results_C_M$ptf.oos.value[[t]][1,
jl

sample_EDC[icont] =
ptf_results_EDC$ptf.oos.value[[t]][1,
jl

sample_mod_EDC[icont] =
ptf_results_C_EDC$ptf.oos.valuel[[t]][1,
jl

}

date <- as.Date(sample.data.ts$Date,
format = ’%m/%d/%Y’)
date_parz = seq(from = 1291, to = 3165,
by = 64)
m <- length(date_parz)
date_parz[m] = 3165
date_1 <- date[1291:3165]
date_2 <- date[date_parz]
dev.new()
par(mfrow = c(2, 1))
matplot(date_1, cbind(sample_M,
sample_C),
type = ’1’, col = c(’red’, ’black’),
1ty = c(2, 3), ylab =
’profit & loss’,
xlab = ’’ xaxt=’n’,
ylim = ¢(-0.20, 0.20),
cex.lab = 1.2)
axis(1, date_2, format(date_2, ’%m/%Y’),
cex.axis = .9, las = 2)
legend(’bottomright’,
legend = c(’Classical Markowitz’,
’Combined Markowitz’),
col=c(’red’,’black’),lty = c(2, 3))
matplot(date_1, cbind(sample_EDC,
sample_mod_EDC), type = ’1°,
col = c(’brown’, ’blue’),
1ty = c(3,1), ylab =
’profit & loss’,
xlab = ’’, xaxt = ’'n’,
ylim = ¢(-0.20, 0.20),
cex.lab = 1.2)
axis(1, date_2,
format (date_2, ’%m/%Y’),

cex.axis = .9, las = 2)
legend(’bottomright’,
legend =

c(’Classical EDC’,
’Combined EDC’),

col = c(’brown’,’blue’),
1ty = c(3, 1))

The classical Markowitz strategy faces several
losses even when the combined one is able to make
a profit (Figure 5 upper panel). This is especially
evident during the negative peak in 2015, likely
related to the oil crisis. This situation does not
change when we compare classical and combined
EDC portfolio strategies (Figure 5 lower panel).
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Fig. 5 Profit and loss curve for different strategies:
Markowitz vs Combined Markowitz (upper panel) and
EDC vs Combined EDC (lower panel).

5 Conclusions

This paper introduces the R package INFOSET
for (i) modelling asset distribution detecting the
parameters which describe left tail behaviour, (ii)
clustering, (iii) labeling of the financial series for
predictive and classification purposes and (iv)
portfolio construction. We provide a review of
the informative set and illustrate the uses and
functionalities of the package. In particular, an
empirical analysis is conducted on financial series
that shows the effectiveness of this tool in carrying
out its tasks.

6 Availability

The here presented package is written using S4 classes
and provides methodology, summary and print to ana-
lyze the results. The R package INFOSET is available
from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=INFOSET.
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