ConsRankClass: Classification and Clustering of Preference Rankings
Tree-based classification and soft-clustering method for preference rankings, with tools for external validation of fuzzy clustering, and Kemeny-equivalent augmented unfolding.
It contains the recursive partitioning algorithm for preference rankings, non-parametric tree-based method for a matrix of preference rankings as a response variable. It contains also the distribution-free soft clustering method for preference rankings, namely the K-median cluster component analysis (CCA).
The package depends on the 'ConsRank' R package.
Options for validate the tree-based method are both test-set procedure and V-fold cross validation.
The package contains the routines to compute the adjusted concordance index (a fuzzy version of the adjusted rand index) and the normalized degree of concordance (the corresponding fuzzy version of the rand index).
The package also contains routines to perform the Kemeny-equivalent augmented unfolding. The mds endine is the function 'sacofSym' from the package 'smacof'.
Essential references:
D'Ambrosio, A., Vera, J.F., and Heiser, W.J. (2021) <doi:10.1080/00273171.2021.1899892>;
D'Ambrosio, A., Amodio, S., Iorio, C., Pandolfo, G., and Siciliano, R. (2021) <doi:10.1007/s00357-020-09367-0>;
D'Ambrosio, A., and Heiser, W.J. (2019) <doi:10.1007/s41237-018-0069-5>;
D'Ambrosio, A., and Heiser W.J. (2016) <doi:10.1007/s11336-016-9505-1>;
Hullermeier, E., Rifqi, M., Henzgen, S., and Senge, R. (2012) <doi:10.1109/TFUZZ.2011.2179303>;
Marden, J.J. <ISBN:0412995212>.
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=ConsRankClass
to link to this page.