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AA Average-of-awards rule

Description

This function returns the awards vector assigned by the average-of-awards rule (AA) to a claims
problem.

Usage

AA(E, d, name = FALSE)

Arguments

E The endowment.
d The vector of claims.
name A logical value.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

A vector x = (x1, . . . , xn) is an awards vector for the claims problem (E, d) if 0 ≤ x ≤ d and
satisfies the balance requirement, that is,

∑n
i=1 xi = E. Let X(E, d) be the set of awards vectors

for (E, d).

The average-of-awards rule (AA) assigns to each claims problem (E, d) the expectation of the
uniform distribution defined over the set of awards vectors, that is, the centroid of X(E, d).

Let µ be the (n − 1)-dimensional Lebesgue measure and V (E, d) = µ(X(E, d)) be the measure
(volume) of the set of awards X(E, d). The average-of-awards rule assigns to each claims problem
(E, d) the awards vector given by:

AA(E, d) =
1

V (E, d)

∫
X(E,d)

xdµ.

The average-of-awards rule corresponds to the core-center solution of the associated coalitional
(pessimistic) game.

The function AA is programmed with the algorithm of Mirás Calvo et al. (2024b), which is an
improved version of the algorithm of Mirás Calvo et al. (2024a).
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Value

The awards vector selected by the AA rule. If name = TRUE, the name of the function (AA) as a
character string.

References

Gonzalez-Díaz, J. and Sánchez-Rodríguez, E. (2007). A natural selection from the core of a TU
game: the core-center. International Journal of Game Theory 36(1), 27-46.

Mirás Calvo, M.A., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2024a). An algorithm to compute the average-of-awards rule for claims problems with an ap-
plication to the allocation of CO2 emissions. Annals of Operations Research 336, 1435-1459.

Mirás Calvo, M.A., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2024b). On properties of the set of awards vectors for a claims problem. TOP 32, 137-167.

Mirás Calvo, M.A., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E. (2022). The average-
of-awards rule for claims problems. Social Choice and Welfare 59, 863-888.

See Also

allrules, axioms, CD, coalitionalgame, setofawards, volume.

Examples

E=10
d=c(2,4,7,8)
AA(E,d)
#The average-of-awards rule is self-dual: AA(E,d)=d-AA(D-E,d)
D=sum(d)
d-AA(D-E,d)

allrules Summary of the division rules

Description

This function returns the awards vectors selected, for a given claims problem, by the rules: AA,
APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud, and RTalmud.

Usage

allrules(E, d, draw = TRUE, col = NULL)
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Arguments

E The endowment.

d The vector of claims.

draw A logical value.

col The colours (useful only if draw=TRUE). If col=NULL then the sequence of de-
fault colours is: c("red", "blue", "green", "yellow", "pink", "orange", "coral4",
"darkgray", "burlywood3", "black", "darkorange", "darkviolet","darkgreen").

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

A vector x = (x1, . . . , xn) is an awards vector for the claims problem (E, d) if 0 ≤ x ≤ d and
satisfies the balance requirement, that is,

∑n
i=1 xi = E.

A rule is a function that assigns to each claims problem (E, d) an awards vector. The formal
definitions of the main rules are given in the corresponding function help.

Value

A data-frame with the awards vectors selected by the main division rules. If draw = TRUE, it displays
a mosaic plot representing the data-frame.

References

Mirás Calvo, M.A., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E. (2022). The average-
of-awards rule for claims problems. Social Choice and Welfare 59, 863-888.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

AA, APRO, axioms, CD, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud, RTalmud, verti-
calruleplot.

Examples

E=10
d=c(2,4,7,8)
allrules(E,d)



6 APRO

APRO Adjusted proportional rule

Description

This function returns the awards vector assigned by the adjusted proportional rule (APRO) to a
claims problem.

Usage

APRO(E, d, name = FALSE)

Arguments

E The endowment.

d The vector of claims.

name A logical value.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E. For each coalition S ∈ 2N , let d(S) =
∑

j∈S dj and
N\S be the complementary coalition of S.

The minimal right of claimant i ∈ N in (E, d) is whatever is left after every other claimant has
received his claim, or 0 if that is not possible:

mi(E, d) = max{0, E − d(N\{i})}, i = 1, . . . , n.

Let m(E, d) = (m1(E, d), . . . ,mn(E, d)) be the vector of minimal rights.

The adjusted proportional rule (APRO) first assigns to each claimant its minimal right, and then
divides the remainder of the endowment E′ = E −

∑n
i=1 mi(E, d) proportionally with respect to

the new claims. The vector of the new claims d′ is determined by the minimum of the remainder
and the lowered claims, d′i = min{E −

∑n
j=1 mj(E, d), di −mi}, i = 1, . . . , n. Therefore,

APRO(E, d) = m(E, d) + PRO(E′, d′).

The adjusted proportional rule corresponds to the τ -value of the associated (pessimistic) coalitional
game.

Value

The awards vector selected by the APRO rule. If name = TRUE, the name of the function (APRO) as
a character string.
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References

Curiel, I. J., Maschler, M., and Tijs, S. H. (1987). Bankruptcy games. Zeitschrift für operations
research 31(5), A143-A159.

Mirás Calvo, M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2023). Refining the Lorenz-ranking of rules for claims problems on restricted domains. Inter-
national Journal of Economic Theory 19(3), 526-558.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, axioms, CD, coalitionalgame, PRO.

Examples

E=10
d=c(2,4,7,8)
APRO(E,d)
#The adjusted proportional rule is self-dual: APRO(E,d)=d-APRO(D-E,d)
D=sum(d)
d-APRO(D-E,d)

AV Average rule

Description

This function returns the awards vector assigned by the average rule (AV) to a claims problem.

Usage

AV(E, d, name = FALSE)

Arguments

E The endowment.

d The vector of claims.

name A logical value.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

The average rule (AV) is the average of constrained equal awards (CEA) and constrained equal
losses (CEL) rules. That is,

AV(E, d) =
CEA(E, d) + CEL(E, d)

2
.
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Value

The awards vector selected by the AV rule. If name = TRUE, the name of the function (AV) as a
character string.

References

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, axioms, CEA, CEL, Talmud, RTalmud.

Examples

E=10
d=c(2,4,7,8)
AV(E,d)

axioms Properties of the rules

Description

This function shows which of the main properties the rules satisfy.

Usage

axioms(Rules = "All", Properties = "All")

Arguments

Rules The rules: AA, APRO, CE, CEA, CEL, AV, MO, PIN, PRO, RA, Talmud. By
default, Rules = "All".

Properties The properties listed in the description section. By default, Properties = "All".

Details

Let N be the set of all finite nonempty subsets of the natural numbers N. Let N = {1, . . . , n} be
the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN

+ the vector of claims such
that D =

∑
i∈N di ≥ E. We denote the class of claims problems with set of claimants N by CN .

Given z ∈ RN , S ∈ 2N and N ′ ⊂ N ∈ N , let z(S) =
∑

j∈S zj , zN ′ = (zi)i∈N ′ and denote
z−i = zN\{i} ∈ RN\{i}. For simplicity, we will write z = (z−i, z).

The minimal right of claimant i ∈ N in (E, d) is defined by mi(E, d) = max{0, E − d(N\{i})}.
Let m(E, d) = (m1(E, d), . . . ,mn(E, d)) be the vector of minimal rights.

The truncated claim of claimant i ∈ N in (E, d) is defined by ti(E, d) = min{di, E}. Let
t(E, d) = (t1(E, d), . . . , tn(E, d)) be the vector of truncated claims.
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Given (E, d) ∈ CN and k ∈ N, we say that (E′, d′) is a k-replica of (E, d) if E′ = kE, N ′ ⊃ N ,
|N ′| = k|N |, and there is a partition (N i)i∈N of N ′ such that for each i ∈ N and each j ∈ N i,
|N i| = k and d′j = di.

A vector x = (x1, . . . , xn) is an awards vector for the claims problem (E, d) ∈ CN if 0 ≤ x ≤ d
and satisfies the balance requirement, that is, x(N) = E. Let X(E, d) be the set of awards vectors
for the problem (E, d). A rule is a function that assigns to each claims problem (E, d) an awards
vector.

A rule R satisfies:

1) Anonymity, if for each (E, d) ∈ CN , each bijection f from N into itself, and each i ∈ N , we
have that Ri(E, d) = Rf(i)(E, (df(i))i∈N ).

2) Continuity, if for each sequence {(Eℓ, dℓ)} of elements of CN and each (E, d) ∈ CN , if
(Eℓ, dℓ) → (E, d) then R(Eℓ, dℓ) → R(E, d).

3) Homogeneity, if for each (E, d) ∈ CN and each ρ > 0, then R(ρE, ρd) = ρR(E, d).

4) 1
|N| -truncated-claims lower bounds on awards, if for each (E, d) ∈ CN , then R(E, d) ≥

1
|N | t(E, d).

5) 1
|N| -min-of-claims-and-deficit lower bounds on losses, if for each (E, d) ∈ CN , then d −

R(E, d) ≥ 1
|N | t(D − E, d).

6) Equal treatment of equals, if for each (E, d) ∈ CN and each pair {i, j} ∈ N , if di = dj , then
Ri(E, d) = Rj(E, d).

7) Equal treatment of equal groups, if for each (E, d) ∈ CN and each pair {N ′, N ′′} of subsets
of N , if d(N ′) = d(N ′′), then

∑
i∈N ′ Ri(E, d) =

∑
i∈N ′′ Ri(E, d).

8) Order preservation, if for each (E, d) ∈ CN and each pair {i, j} ⊂ N , if di ≤ dj , then
Ri(E, d) ≤ Rj(E, d) (in awards) and di −Ri(E, d) ≤ dj −Rj(E, d) (in losses).

9) Group order preservation, if for each (E, d) ∈ CN and each pair {N ′, N ′′} of subsets of
N , if d(N ′) ≤ d(N ′′), then

∑
i∈N ′ Ri(E, d) ≤

∑
i∈N ′′ Ri(E, d) (in awards) and

∑
i∈N ′(di −

Ri(E, d)) ≤
∑

i∈N ′′(di −Ri(E, d)) (in losses).

10) Conditional null compensation, if for each (E, d) ∈ CN and each i ∈ N , if
∑

j∈N max{0, dj−
di} ≥ E, then Ri(E, d) = 0.

11) Conditional full compensation, if for each (E, d) ∈ CN and each i ∈ N , if
∑

j∈N min{dj , di} ≤
E, then Ri(E, d) = di.

12) Linked claim-endowment monotonicity, if for each (E, d) ∈ CN , each i ∈ N , and each
δ > 0, we have Ri(E + δ, (d−i, di + δ))−Ri(E, d) ≤ δ.

13) Claim monotonicity, if for each (E, d) ∈ CN , each i ∈ N , and each d′i ≥ di, Ri(E, (d−i, d
′
i)) ≥

Ri(E, d).

14) Population monotonicity, if for each pair N,N ′ of subsets of N such that N ′ ⊂ N , and each
(E, d) ∈ CN , we have RN ′(E, d) ≤ R(E, dN ′).

15) Linked endowment-population monotonicity, if for each pair N,N ′ of subsets of N such that
N ′ ⊂ N , and each (E, d) ∈ CN , if d(N ′) ≥ E, we have R(E, dN ′) ≤ RN ′(E + d(N\N ′), d).

16) Progressivity, if for each (E, d) ∈ CN and each pair {i, j} ⊂ N , if 0 < di ≤ dj , we have
Ri(E,d)

di
≤ Rj(E,d)

dj
.
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17) Regressivity, if for each (E, d) ∈ CN and each pair {i, j} ⊂ N , if 0 < di ≤ dj , we have
Ri(E,d)

di
≥ Rj(E,d)

dj
.

18) No transfer paradox, if for each (E, d) ∈ CN , each pair {i, j} ⊂ N , each d′i > di,
and each 0 ≤ d′j < dj , if d′i + d′j = di + dj , then Ri(E, (d′i, d

′
j , dN\{i,j})) ≥ Ri(E, d) and

Rj(E, (d′i, d
′
j , dN\{i,j})) ≤ Rj(E, d).

19) Bounded impact of claims transfer, if for each (E, d) ∈ CN , each pair {i, j} ⊂ N , each
d′i > di, and each 0 ≤ d′j < dj , if d′i + d′j = di + dj , then Ri(E, (d′i, d

′
j , dN\{i,j}))−Ri(E, d) ≤

d′i − di and Rj(E, d)−Rj(E, (d′i, d
′
j , dN\{i,j})) ≤ dj − d′j .

20) Concavity, if for each (E, d) ∈ CN , each triple {E,E′, E′′} ⊂ R+ such that 0 < E < E′ <

E′′ ≤ D, and each pair {i, j} ⊂ N , if 0 < di ≤ dj , then Rj(E
′,d)−Rj(E,d)

Ri(E′,d)−Ri(E,d) ≥ Rj(E
′′,d)−Rj(E

′,d)
Ri(E′′,d)−Ri(E′,d) ,

if these ratios are well defined.

21) Convexity, if for each (E, d) ∈ CN , each triple {E,E′, E′′} ⊂ R+ such that 0 < E < E′ <

E′′ ≤ D, and each pair {i, j} ⊂ N , if 0 < di ≤ dj , then Rj(E
′,d)−Rj(E,d)

Ri(E′,d)−Ri(E,d) ≤ Rj(E
′′,d)−Rj(E

′,d)
Ri(E′′,d)−Ri(E′,d) ,

if these ratios are well defined.

22) Endowment monotonicity, if for each (E, d) ∈ CN and each E′ > E, if D ≥ E′ then
R(E′, d) ≥ R(E, d).

23) Order preservation under endowment variations, if for each (E, d) ∈ CN , each pair
{i, j} ⊂ N and each E′ > E, if D ≥ E′ and di ≤ dj , then Ri(E

′, d)−Ri(E, d) ≤ Rj(E
′, d)−

Rj(E, d).

24) Order preservation under claims variations, if for each (E, d) ∈ CN with |N | ≥ 3, each i ∈
N , each d′i > di, and each pair {j, k} ⊂ N\{i}, if dj ≤ dk, then Rj(E, d)−Rj(E, (d−i, d

′
i)) ≤

Rk(E, d)−Rk(E, (d−i, d
′
i)).

25) Minimal rights first, if for each (E, d) ∈ CN , R(E, d) = m(E, d)+R
(
E−

∑
i∈N

mi(E, d), d−

m(E, d)
)
.

26) Claims truncation invariance, if for each (E, d) ∈ CN , R(E, d) = R(E, t(E, d)).

27) Composition down, if for each (E, d) ∈ CN and each E′ < E, we have R(E′, d) =
R(E′,R(E, d)).

28) Composition up, if for each (E, d) ∈ CN and each E′ > E such that D ≥ E′, we have
R(E′, d) = R(E, d) +R(E′ − E, d−R(E, d)).

29) Midpoint property, if for each (E, d) ∈ CN such that E = 1
2D, then R(E, d) = d

2 .

30) Self-duality, if for each (E, d) ∈ CN , R(E, d) = d−R
(
D − E, d

)
.

31) Claims separability, if for each pair (E, d), (E′, d′) ∈ CN and each N ′ ⊂ N , if dN ′ = d′N ′ ,
E = E′, and

∑
i∈N ′ Ri(E, d) =

∑
i∈N ′ Ri(E

′, d′), then RN ′(E, d) = RN ′(E′, d′).

32) Claims-and-endowment separability, if for each pair (E, d), (E′, d′) ∈ CN and each N ′ ⊂
N , if dN ′ = d′N ′ and

∑
i∈N ′ Ri(E, d) =

∑
i∈N ′ Ri(E

′, d′), then RN ′(E, d) = RN ′(E′, d′).

33) Endowment convexity, if for each d ∈ RN
+ , each pair {E,E′} ⊂ R+ such that D ≥

max{E,E′}, and each λ ∈ [0, 1], R(λE + (1− λ)E′, d) = λR(E, d) + (1− λ)R(E′, d).

34) Claims-and-endowment uniformity, if for each pair (E, d), (E′, d′) ∈ CN , and each N ′ ⊂
N , if dN ′ = d′N ′ , then either RN ′(E, d) ≥ RN ′(E′, d′) or RN ′(E, d) ≤ RN ′(E′, d′).

35) Endowment-and-population uniformity, if for each pair N,N ′ of subsets of N such that
N ′ ⊂ N , each (E, d) ∈ CN , and each (E′, d′) ∈ CN ′

, if dN ′ = d′, then either RN ′(E, d) ≥
R(E′, d′) or RN ′(E, d) ≤ R(E′, d′).
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36) No advantageous transfer, if for each (E, d) ∈ CN , each N ′ ⊂ N , and each (d′i)i∈N ′ , if
d′(N ′) = d(N ′), then

∑
i∈N ′ Ri(E, ((d′i)i∈N ′ , dN\N ′)) =

∑
i∈N ′ Ri(E, d).

37) Summation independence, if for each (E, d) ∈ CN , each i ∈ N , and N ′ = N\{i}, for each
(d′j)j∈N ′ ∈ RN ′

+ , if d′(N ′) = d(N ′), then Ri(E, (di, (d
′
j)j∈N ′)) = Ri(E, d).

38) Consistency, if for each pair N,N ′ of subsets of N such that N ′ ⊂ N , and each (E, d) ∈ CN

if x = R(E, d), then xN ′ = R(x(N ′), dN ′).

39) Bilateral consistency, if for each pair N,N ′ of subsets of N such that N ′ ⊂ N and |N ′| = 2,
and each (E, d) ∈ CN if x = R(E, d), then xN ′ = R(x(N ′), dN ′).

40) Converse consistency, if for each pair N,N ′ of subsets of N such that N ′ ⊂ N and |N ′| = 2,
each (E, d) ∈ CN , and each x ∈ X(E, d), we have xN ′ = R(x(N ′), dN ′), then x = R(E, d).

41) Null claims consistency, if for each pair N,N ′ of subsets of N such that N ′ ⊂ N and each
(E, d) ∈ CN , if dN\N ′ = 0, then RN ′(E, d) = R(E, dN ′).

42) Null compensation consistency, if for each pair N,N ′ of subsets of N such that N ′ ⊂ N , and
each (E, d) ∈ CN , if RN\N ′(E, d) = 0, then RN ′(E, d) = R(E, dN ′).

43) Full compensation consistency, if for each pair N,N ′ of subsets of N such that N ′ ⊂ N , and
each (E, d) ∈ CN , if RN\N ′(E, d) = dN\N ′ , then RN ′(E, d) = R(E − d(N\N ′), dN ′).

44) No advantageous merging, if for each pair N,N ′ of subsets of N such that N ′ ⊂ N , each
(E, d) ∈ CN , and each d′ ∈ RN ′

+ , if there is i ∈ N ′ such that d′i = di + d(N\N ′) and for each
k ∈ N ′\{i}, d′k = dk, then Ri(E, d′) ≤ Ri(E, d) +

∑
j∈N\N ′ Rj(E, d).

45) No advantageous splitting, if for each pair N,N ′ of subsets of N such that N ′ ⊂ N , each
(E, d) ∈ CN , and each d′ ∈ RN ′

+ , if there is i ∈ N ′ such that d′i = di + d(N\N ′) and for each
k ∈ N ′\{i}, d′k = dk, then Ri(E, d′) ≥ Ri(E, d) +

∑
j∈N\N ′ Rj(E, d).

46) Order preservation under population variations, if for each pair N,N ′ of subsets of N such
that N ′ ⊂ N , each (E, d) ∈ CN , and each pair {i, j} ⊂ N ′, if d(N ′) ≥ E and di ≤ dj , then
Ri(E, dN ′)−Ri(E, d) ≤ Rj(E, dN ′)−Rj(E, d).

47) Division invariance, if for each pair N,N ′ of subsets of N such that N ′ ⊃ N , each (E, d) ∈
CN and each k ∈ N. Let (E′, d′) be a k-replica of (E, d) with associated partition (N i)i∈N , and
R(E′, d′) be a k-replica of some awards vector x ∈ X(E, d) associated with the same partition,
we have R(E, d) = x.

48) Replication invariance, if for each pair N,N ′ of subsets of N such that N ′ ⊃ N , each
(E, d) ∈ CN and each k ∈ N. Let (E′, d′) be a k-replica of (E, d) with associated partition
(N i)i∈N , then for each i ∈ N and each j ∈ N i we have Rj(E

′, d′) = Ri(E, d).

Value

A table with the rules and the properties. If a rule satisfies a property it returns 1, and 0 otherwise.
By default, it returns a table with all rules and properties.

References

Mirás Calvo, M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2023). Refining the Lorenz-ranking of rules for claims problems on restricted domains. Inter-
national Journal of Economic Theory 19(3), 526-558.
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Mirás Calvo, M.A., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2024). An algorithm to compute the average-of-awards rule for claims problems with an appli-
cation to the allocation of CO2 emissions. Annals of Operations Research 336, 1435-1459.

Mirás Calvo, M.A., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E. (2022). The average-
of-awards rule for claims problems. Social Choice and Welfare 59, 863-888.

Mirás Calvo,M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez Rodríguez,E. (2025).
On how the rules that extend the concede-and-divide principle differ for pairs of claimants. Preprint.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

Examples

Rules=c(AA,Talmud)
Properties=c(1:10)
axioms(Rules,Properties)
axioms() #Table with all the rules and properties implemented.
# The minimal overlap rule does not satisfy linked endowment-population
# monotonicity (Mirás Calvo et al. (2024)):
E=1;d=c(1,2,9,10); d3= d[-3]
MOR=MO(E+d[3],d)
MOR3=MO(E,d3)
MOR3[1]>MOR[1]
# The adjusted proportional rule does not satisfy order preservation under
# population variations (Mirás Calvo et al. (2023)):
E=17; d=c(1,2,3,8,10); d3=d[-1]
APR=APRO(E,d)
APR3=APRO(E,d3)
APR3[1]-APR[1]>APR3[2]-APR[2]

Bankruptcy Bankruptcy data

Description

Bankruptcy data: creditors and claims

Usage

Bankruptcy

Format

A data frame with 8 rows and 2 variables:

[,1] Creditor categorical Creditor name
[,2] Claim numeric Claim (millions of euro)
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Source

The data were obtained from Fiestras et al (2016)

References

Fiestras-Janeiro, M.G., Sánchez-Rodríguez, E., and Schuster, M. (2016). A precedence constraint
value revisited. Top, 25, 156–179

Examples

data(Bankruptcy)
Bankruptcy
E= 230
allrules(E,Bankruptcy$Claim)

CD Concede-and-divide rule

Description

This function returns the awards vector assigned by the concede-and-divide (CD) rule to a two-
claimant problem.

Usage

CD(E, d, name = FALSE)

Arguments

E The endowment.

d The vector of two claims.

name A logical value.

Details

Let E ≥ 0 be the endowment to be divided and d = (d1, d2) ∈ R2
+ the vector of claims such that

d1 + d2 ≥ E.

The concede-and-divide rule (CD) first assigns to each of the two claimants the difference between
the endowment and the other agent’s claim (or 0 if this difference is negative), and divides the
remainder equally. That is, for each i ∈ {1, 2},

CDi(E, d) = max{E − dj , 0}+
E −max{E − di, 0} −max{E − dj , 0}

2
.

Several rules are extensions of the concede-and-divide rule to general populations: AA, APRO,
MO, RA, and Talmud.
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Value

The awards vector selected by the CD rule. If name = TRUE, the name of the function (CD) as a
character string.

References

Aumann, R. and Maschler, M., (1985). Game theoretic analysis of a bankruptcy problem from the
Talmud. Journal of Economic Theory 36, 195–213.

Mirás Calvo,M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez Rodríguez,E. (2025).
On how the rules that extend the concede-and-divide principle differ for pairs of claimants. Preprint.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, AA, APRO, MO, pathawards, RA, Talmud.

Examples

E=10
d=c(7,8)
CD(E,d)
# Talmud, RA, MO, APRO, and AA coincide with CD for two-claimant problems
Talmud(E,d)
RA(E,d)
MO(E,d)
APRO(E,d)
AA(E,d)

CE Constrained egalitarian rule

Description

This function returns the awards vector assigned by the constrained egalitarian rule (CE) rule to a
claims problem.

Usage

CE(E, d, name = FALSE)

Arguments

E The endowment.

d The vector of claims.

name A logical value.
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Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that D =
∑

i∈N di ≥ E.

Rearrange the claims from small to large, 0 ≤ d1 ≤ ... ≤ dn. The constrained egalitarian rule
(CE) coincides with the constrained equal awards rule (CEA) applied to the problem (E, d/2) if
the endowment is less or equal than the half-sum of the claims, D/2. Otherwise, any additional
unit is assigned to claimant 1 until she/he receives the minimum of the claim and half of d2. If
this minimun is d1, she/he stops there. If it is not, the next increment is divided equally between
claimants 1 and 2 until claimant 1 receives d1 (in this case she drops out) or they reach d3/2. If
claimant 1 leaves, claimant 2 receives any additional increment until she/he reaches d2 or d3/2. In
the case that claimant 1 and 2 reach d3/2, any additional unit is divided between claimants 1, 2, and
3 until the first one receives d1 or they reach d4/2, and so on. Therefore, for each i ∈ N ,

CEi(E, d) =

{
min{di

2 , λ} if E ≤ 1
2D

max
{

di

2 ,min{di, λ}
}

if E ≥ 1
2D

,

where λ ≥ 0 is chosen such that
∑
i∈N

CEi(E, d) = E.

Value

The awards vector selected by the CE rule. If name = TRUE, the name of the function (CE) as a
character string.

References

Chun, Y., Schummer, J., Thomson, W. (2001). Constrained egalitarianism: a new solution for
claims problems. Seoul Journal of Economics 14, 269–297.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, axioms, CEA, PIN, Talmud.

Examples

E=10
d=c(2,4,7,8)
CE(E,d)
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CEA Constrained equal awards rule

Description

This function returns the awards vector assigned by the constrained equal awards rule (CEA) to a
claims problem.

Usage

CEA(E, d, name = FALSE)

Arguments

E The endowment.

d The vector of claims.

name A logical value.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

The constrained equal awards rule (CEA) equalizes awards under the constraint that no individual’s
award exceeds his/her claim. Then, claimant i receives the minimum of the claim and a value λ ≥ 0
chosen so as to achieve balance. That is, for each i ∈ N ,

CEAi(E, d) = min{di, λ},

where λ ≥ 0 is chosen such that
∑

i∈N CEAi(E, d) = E.

The constrained equal awards rule corresponds to the Dutta-Ray solution to the associated (pes-
simistic) coalitional game. The CEA and CEL rules are dual.

Value

The awards vector selected by the CEA rule. If name = TRUE, the name of the function (CEA) as a
character string.

References

Maimonides, Moses, [1135-1204], Book of Judgements (translated by Rabbi Elihahu Touger, 2000),
New York and Jerusalem: Moznaim Publishing Corporation, 2000.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, axioms, CE, CEL, AV, PIN, Talmud, RTalmud.
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Examples

E=10
d=c(2,4,7,8)
CEA(E,d)
# CEA and CEL are dual: CEA(E,d)=d-CEL(D-E,d)
D=sum(d)
d-CEL(D-E,d)

CEL Constrained equal losses rule

Description

This function returns the awards vector assigned by the constrained equal losses rule (CEL) to a
claims problem.

Usage

CEL(E, d, name = FALSE)

Arguments

E The endowment.

d The vector of claims.

name A logical value.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

The constrained equal losses rule (CEL) equalizes losses under the constraint that no award is
negative. Then, claimant i receives the maximum of zero and the claim minus a number λ ≥ 0
chosen so as to achieve balance. That is, for each i ∈ N ,

CELi(E, d) = max{0, di − λ},

where λ ≥ 0 is chosen such that
∑

i∈N CELi(E, d) = E.

CEA and CEL are dual rules.

Value

The awards vector selected by the CEL rule. If name = TRUE, the name of the function (CEL) as a
character string.
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References

Maimonides, Moses, [1135-1204], Book of Judgements (translated by Rabbi Elihahu Touger, 2000),
New York and Jerusalem: Moznaim Publishing Corporation, 2000.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, axioms, CE, CEA, AV, PIN, Talmud, RTalmud.

Examples

E=10
d=c(2,4,7,8)
CEL(E,d)
# CEL and CEA are dual: CEL(E,d)=d-CEA(D-E,d)
D=sum(d)
d-CEA(D-E,d)

CO2emissions CO2 emissions (kt) data

Description

CO2 emissions (kt) data from different countries and regions in 2014

Usage

CO2emissions

Format

A data frame with 20 rows and 2 variables:

[,1] Region categorical Country or Region name
[,2] Emissions numeric CO2 emissions (kt)

Source

The data were obtained from Climate Change Data, World Bank Group https://climateknowledgeportal.
worldbank.org/

References

Mirás Calvo, M.A., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2024). An algorithm to compute the average-of-awards rule for claims problems with an appli-
cation to the allocation of CO2 emissions. Annals of Operations Research 336, 1435-1459.

https://climateknowledgeportal.worldbank.org/
https://climateknowledgeportal.worldbank.org/
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Examples

data(CO2emissions)
head(CO2emissions)
E=31284288 #Emissions for 2015
allrules(E,CO2emissions$Emissions)
par(mfrow = c(2, 3))
E0 <- 33857455
Rules=c(Talmud,CEA,CEL,PRO)
percentage = 0.076
times = 20
for (claimant in 1:6) {
dynamicplot(E0, CO2emissions$Emissions, Rules, claimant, percentage, times, legend=FALSE)
}

coalitionalgame Coalitional game associated with a claims problem

Description

This function returns the pessimistic and optimistic coalitional games associated with a claims prob-
lem.

Usage

coalitionalgame(E, d, opt = FALSE, lex = FALSE)

Arguments

E The endowment.

d The vector of claims.

opt Logical parameter. If opt = TRUE, both the pessimist and optimistic associated
coalitional games are given. By default, opt = FALSE, and only the associated
pessimistic coalitional game is computed.

lex Logical parameter. If lex = TRUE, coalitions of claimants are ordered lexico-
graphically. By default, lex = FALSE, and coalitions are ordered using their bi-
nary representations.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E. For each coalition S ∈ 2N , let d(S) =
∑

j∈S dj and
N\S be the complementary coalition of S.

Given a claims problem (E, d), its associated pessimistic coalitional game is the game vpes : 2N →
R assigning to each coalition S ∈ 2N ,

vpes(S) = max{0, E − d(N\S)}.
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Given a claims problem (E, d), its associated optimistic coalitional game is the game vopt : 2
N →

R assigning to each coalition S ∈ 2N ,

vopt(S) = min{E, d(S)}.

The optimistic and the pessimistic coalitional games are dual games, that is, for all S ∈ 2N ,

vopt(S) = E − vpes(N\S).

An efficient way to represent a nonempty coalition S ∈ 2N is by identifying it with the binary
sequence anan−1 . . . a1, where ai = 1 if i ∈ S and ai = 0 otherwise. Therefore, each coalition S
is represented by the number associated with its binary representation:

∑
i∈S 2i−1. Then coalitions

can be ordered by their associated numbers.

Alternatively, coalitions can be ordered lexicographically.

Given a claims problem (E, d), its associated coalitional game v can be represented by the vector
whose coordinates are the values assigned by v to all the nonempty coalitions. For instance. if
n = 3, the associated coalitional game can be represented by the vector of the values of all the 7
nonempty coalitions, ordered using the binary representation:

v = [v({1}), v({2}), v({1, 2}), v({3}), v({1, 3}), v({2, 3}), v({1, 2, 3})].

Alternatively, the coordinates can be ordered lexicographically:

v = [v({1}), v({2}), v({3}), v({1, 2}), v({1, 3}), v({2, 3}), v({1, 2, 3})].

When n = 4, the associated coalitional game can be represented by the vector of the values of all
the 15 nonempty coalitions, ordered using the binary representation:

v = [v({1}), v({2}), v({1, 2}), v({3}), v({1, 3}), v({2, 3}), v({1, 2, 3}), v({4}), . . .
. . . , v({1, 4}), v({2, 4}), v({1, 2, 4}), v({3, 4}), v({1, 3, 4}), v({2, 3, 4}), v({1, 2, 3, 4})].
Alternatively, the coordinates can be ordered lexicographically:

v = [v({1}), v({2}), v({3}), v({4}), v({1, 2}), v({1, 3}), v({1, 4}), v({2, 3}), . . .
. . . v({2, 4}), v({3, 4}), v({1, 2, 3}), v({1, 2, 4}), v({1, 3, 4}), v({2, 3, 4}), v({1, 2, 3, 4})].

Value

The pessimistic (and optimistic) associated coalitional game(s).

References

O’Neill, B. (1982) A problem of rights arbitration from the Talmud. Mathematical Social Sciences
2, 345–371.

See Also

setofawards.
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Examples

E=10
d=c(2,4,7,8)
v=coalitionalgame(E,d,opt=TRUE,lex=TRUE)
#The pessimistic and optimistic coalitional games are dual games
v_pes=v$v_pessimistic_lex
v_opt=v$v_optimistic_lex
v_opt[1:14]==10-v_pes[14:1]

cumawardscurve Cumulative awards curve

Description

The graphical representation of the cumulative curves of a rule (or several rules) with respect to a
given rule, for a claims problem.

Usage

cumawardscurve(E, d, Rule = PRO, Rules, col = NULL, legend = TRUE)

Arguments

E The endowment.

d The vector of claims.

Rule Principal Rule: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Tal-
mud, RTalmud. By default, Rule = PRO.

Rules The rules: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,
RTalmud.

col The colours. If col = NULL then the sequence of default colours is: c("red",
"blue", "green", "yellow", "pink","orange", "coral4", "darkgray", "burlywood3",
"black", "darkorange", "darkviolet").

legend A logical value. The colour legend is shown if legend = TRUE.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

Rearrange the claims from small to large, 0 ≤ d1 ≤ ... ≤ dn. The cumulative curve allows us to
compare the division recommended by a specific rule R with the division the division recommended
by another specific rule S.

The cumulative awards curve of a rule S with respect of a rule R for the claims problem (E, d) is
the polygonal path connecting the n+ 1 points

(0, 0),
(R1

E
,
S1

E

)
, . . . ,

(∑n−1
i=1 Ri

E
,

∑n−1
i=1 Si

E

)
, (1, 1).
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The cumulative awards curve fully captures the Lorenz ranking of rules: if a rule R Lorenz-
dominates a rule S then, for each claims problem, the cumulative curve of R lies above the cumu-
lative curve of S. If R = PRO, the cumulative curve coincides with the cumulative claims-awards
curve.

Value

The graphical representation of the cumulative curves of a rule (or several rules) for a claims prob-
lem.

References

Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. Publications of the
American statistical association 9(70), 209-219.

Mirás Calvo, M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez Rodríguez, E.
(2023). Deviation from proportionality and Lorenz-domination for claims problems. Review of
Economic Design 27, 439-467.

See Also

allrules, deviationindex, giniindex, indexgpath, lorenzcurve, lorenzdominance.

Examples

E=10
d=c(2,4,7,8)
Rule=PRO
Rules=c(AA,RA,Talmud,CEA,CEL)
cumawardscurve(E,d,Rule,Rules)

deviationindex Deviation index

Description

This function returns the deviation index and the signed deviation index for a rule with respect to
another rule.

Usage

deviationindex(E, d, R, S)
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Arguments

E The endowment.

d The vector of claims.

R A rule : AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,
RTalmud.

S A rule: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,
RTalmud.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

Rearrange the claims from small to large, 0 ≤ d1 ≤ ... ≤ dn. The signed deviation index of the rule
S with respect to the rule R for the problem (E, d), denoted by I(R(E, d),S(E, d)), is the ratio
of the area that lies between the identity line and the cumulative curve over the total area under the
identity line.

Let R0 = 0 and S0 = 0. For each k = 1, . . . , n define Xk = 1
E

∑k
j=0 Rj and Yk = 1

E

∑k
j=0 Sj .

Then,

I(R(E, d),S(E, d)) = 1−
n∑

k=1

(
Xk −Xk−1

)(
Yk + Yk−1

)
.

In general −1 ≤ I(R(E, d),S(E, d)) ≤ 1.

The deviation index of the rule S with respect to the rule R for the problem (E, d), denoted by
I+(R(E, d),S(E, d)), is the ratio of the area between the line of the cumulative sum of the distri-
bution proposed by the rule R and the cumulative curve over the area under the line x = y.

In general 0 ≤ I+(R(E, d),S(E, d)) ≤ 1.

The proportionality deviation index is the deviation index when R = PRO. The proportionality
deviation index of the proportional rule is zero for all claims problems. The signed proportionality
deviation index is the signed deviation index with R = PRO.

Value

The deviation index and the signed deviation index of a rule for a claims problem.

References

Ceriani, L. and Verme, P. (2012). The origins of the Gini index: extracts from Variabilitá e Muta-
bilitá (1912) by Corrado Gini. The Journal of Economic Inequality 10(3), 421-443.

Mirás Calvo, M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez Rodríguez, E.
(2023). Deviation from proportionality and Lorenz-domination for claims problems. Review of
Economic Design 27, 439-467.

See Also

allrules, cumawardscurve, giniindex, indexgpath, lorenzcurve, lorenzdominance.
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Examples

E=10
d=c(2,4,7,8)
R=CEA
S=AA
deviationindex(E,d,R,S)
#The deviation index of rule R with respect of the rule R is 0.
deviationindex(E,d,PRO,PRO)

DT Dominguez-Thomson rule

Description

This function returns the awards vector assigned by the Dominguez-Thomson rule (DT) to a claims
problem.

Usage

DT(E, d, name = FALSE)

Arguments

E The endowment.
d The vector of claims.
name A logical value.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

The truncated claim of claimant i ∈ N in (E, d) is the minimum of the claim and the endowment:

ti(E, d) = min{di, E}, i = 1, . . . , n.

Let t(E, d) = (t1(E, d), . . . , tn(E, d)) be the vector of truncated claims and b(E, d) = 1
n t(E, d).

Let (E1, d1) = (E, d). For each k ≥ 2 define:

(Ek, dk) =
(
Ek−1 −

n∑
i=1

bi(E
k−1, dk−1), dk−1 − b(Ek−1, dk−1)

)
.

In step 1, the endowment is E and the claims vector is d. For k ≥ 2, the endowment is the remainder
once all the claimants have received the amount of the previous steps and the new vector of claims is
readjusted accordingly. Observe that neither the endowment nor each agent’s claim ever increases
from one step to the next. This recursive process exhausts E in the limit.

For each (E, d), the Dominguez-Thomson rule (DT) assigns the awards vector:

DT(E, d) =

∞∑
k=1

b(Ek, dk).
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Value

The awards vector selected by the DT rule. If name = TRUE, the name of the function (DT) as a
character string.

References

Domínguez, D. and Thomson, W. (2006). A new solution to the problem of adjudicating conflicting
claims. Economic Theory 28(2), 283-307.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules.

Examples

E=10
d=c(2,4,7,8)
DT(E,d)

dynamicplot Dynamic plot

Description

For each claimaint, it plots the awards of the chosen rules for a dynamic model with t periods.

Usage

dynamicplot(
E,
d,
Rules,
claimant,
percentage,
times,
col = NULL,
legend = TRUE

)

Arguments

E The endowment.

d The vector of claims

Rules The rules: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,
RTalmud.
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claimant A claimant.

percentage A number in (0,1).

times Number of iterations.

col The colours. If col=NULL then the sequence of default colours is: c("red",
"blue", "green", "yellow", "pink", "orange", "coral4", "darkgray", "burlywood3",
"black", "darkorange", "darkviolet").

legend A logical value. The colour legend is shown if legend=TRUE.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

A vector x = (x1, . . . , xn) is an awards vector for the claims problem (E, d) if 0 ≤ x ≤ d and
satisfies the balance requirement, that is,

∑n
i=1 xi = E.

A rule is a function that assigns to each claims problem (E, d) an awards vector, that is, a division
between the claimants of the amount available.

The formal definitions of the main rules are given in the corresponding function help.

Given l a natural number, the function solves each claims problem in time t, which is (Et, d), with
Et = (1− p)tE, p ∈ (0, 1) and t = 1, . . . , l.

Value

This function represents the awards proposed by different rules for a claimant if the resource de-
creases in each iteration by a given percentage.

References

Mirás Calvo, M.A., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2023). An algorithm to compute the average-of-awards rule for claims problems with an appli-
cation to the allocation of CO2 emissions. Annals of Operations Research 336, 1435-1459.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, pathawards, pathawards3, schedrule, schedrules.

Examples

E=10
d=c(2,4,7,8)
Rules=c(Talmud,RA,AA,PRO)
claimant=1
percentage=0.076
times=10
dynamicplot(E,d,Rules,claimant,percentage,times)
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giniindex Gini index

Description

This function returns the Gini index of any rule for a claims problem.

Usage

giniindex(E, d, Rule)

Arguments

E The endowment.

d The vector of claims.

Rule A rule: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,
RTalmud.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

Rearrange the claims from small to large, 0 ≤ d1 ≤ ... ≤ dn. The Gini index is a number aimed at
measuring the degree of inequality in a distribution. The Gini index of the rule R for the problem
(E, d), denoted by G(R, E, d), is the ratio of the area that lies between the identity line and the
Lorenz curve of the rule over the total area under the identity line.

Let R0(E, d) = 0. For each k = 0, . . . , n define Xk = k
n and Yk = 1

E

∑k
j=0 Rj(E, d). Then,

G(R, E, d) = 1−
n∑

k=1

(
Xk −Xk−1

)(
Yk + Yk−1

)
.

In general 0 ≤ G(R, E, d) ≤ 1.

Value

The Gini index of a rule for a claims problem and the Gini index of the vector of claims.

References

Ceriani, L. and Verme, P. (2012). The origins of the Gini index: extracts from Variabilitá e Muta-
bilitá (1912) by Corrado Gini. The Journal of Economic Inequality 10(3), 421-443.

Mirás Calvo, M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez Rodríguez, E.
(2023). Deviation from proportionality and Lorenz-domination for claims problems. Review of
Economic Design 27, 439-467.
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See Also

cumawardscurve, deviationindex, indexgpath, lorenzcurve, lorenzdominance.

Examples

E=10
d=c(2,4,7,8)
Rule=AA
giniindex(E,d,Rule)
# The Gini index of the proportional awards coincides with the Gini index of the vector of claims
giniindex(E,d,PRO)

indexgpath Index path

Description

The function returns the deviation index path or the signed deviation index path for a rule with
respect to another rule for a vector of claims.

Usage

indexgpath(
d,
Rule = PRO,
Rules,
signed = TRUE,
col = NULL,
points = 201,
legend = TRUE

)

Arguments

d The vector of claims.
Rule Principal Rule: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Tal-

mud, RTalmud. By default, Rule = PRO.
Rules The rules: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,

RTalmud.
signed A logical value. If signed = FALSE, it draws the deviation index path and, if

signed = TRUE it draws the signed deviation index path. By default, signed =
TRUE.

col The colours. If col = NULL then the sequence of default colours is: c("red",
"blue", "green", "yellow", "pink", "orange", "coral4", "darkgray", "burlywood3",
"black", "darkorange", "darkviolet").

points The number of endowment values to be drawn.
legend A logical value. The legend is shown if legend = TRUE.
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Details

Let N = {1, . . . , n} be the set of claimants, d ∈ RN a vector of claims rearranged from small to
large, 0 ≤ d1 ≤ ... ≤ dn and D =

∑
i∈N di.

Given two rules R and S, consider the function J that assigns to each E ∈ (0, D] the value J(E) =

I
(
R(E, d),S(E, d)

)
, that is, the signed deviation index of the rules R and S for the problem

(E, d). The graph of J is the signed index path of S in function of the rule R for the vector of
claims d.

Given two rules R and S, consider the function J+ that assigns to each E ∈ (0, D] the value
J+(E) = I+

(
R(E, d),S(E, d)

)
, that is, the deviation index of the rules R and S for the problem

(E, d). The graph of J+ is the index path of S in function of the rule R for the vector of claims d.

The signed index path and the index path are simple tools to visualize the discrepancy of the divi-
sions recommended by a rule for a vector of claims with respect to the divisions recommended by
another rule. If R = PRO, the function draws the proportionality deviation index path or the signed
proportionality deviation index path.

Value

This function returns the deviation index path of a rule (or several rules) for a vector of claims.

References

Ceriani, L. and Verme, P. (2012). The origins of the Gini index: extracts from Variabilitá e Muta-
bilitá (1912) by Corrado Gini. The Journal of Economic Inequality 10(3), 421-443.

Mirás Calvo, M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez Rodríguez, E.
(2023). Deviation from proportionality and Lorenz-domination for claims problems. Review of
Economic Design 27, 439-467.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, cumawardscurve, deviationindex, giniindex, lorenzcurve, lorenzdominance.

Examples

d=c(2,4,7,8)
Rule=PRO
Rules=c(Talmud,RA,AA)
col=c("red","green","blue")
indexgpath(d,Rule,Rules,signed=TRUE,col)
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lorenzcurve The Lorenz curve

Description

This function returns the Lorenz curve of any rule for a claims problem.

Usage

lorenzcurve(E, d, Rules, col = NULL, legend = TRUE)

Arguments

E The endowment.

d The vector of claims.

Rules The rules: AA, APRO, CE, CEA, AV, DT, MO, PIN, PRO, RA, Talmud, RTal-
mud.

col The colours. If col=NULL then the sequence of default colors is: c("red", "blue",
"green", "yellow", "pink", "orange", "coral4", "darkgray", "burlywood3", "black",
"darkorange", "darkviolet").

legend A logical value. The colour legend is shown if legend=TRUE.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

Rearrange the claims from small to large, 0 ≤ d1 ≤ ... ≤ dn. The Lorenz curve represents the
proportion of the awards given to each subset of claimants by a specific rule R as a function of the
cumulative distribution of population.

The Lorenz curve of a rule R for the claims problem (E, d) is the polygonal path connecting the
n+ 1 points,

(0, 0),
( 1

n
,
R1(E, d)

E

)
, . . . ,

(n− 1

n
,

∑n−1
i=1 Ri(E, d)

E

)
, (1, 1).

Basically, it represents the cumulative percentage of the endowment assigned by the rule to each
cumulative percentage of claimants.

Value

The graphical representation of the Lorenz curve of a rule (or several rules) for a claims problem.
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References

Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. Publications of the
American statistical association 9(70), 209-219.

Mirás Calvo, M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez Rodríguez, E.
(2023a). Deviation from proportionality and Lorenz-domination for claims problems. Review of
Economic Design 27, 439-467.

Mirás Calvo, M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2023b). Refining the Lorenz-ranking of rules for claims problems on restricted domains. Inter-
national Journal of Economic Theory 19(3), 526-558.

See Also

cumawardscurve, deviationindex, giniindex, indexgpath, lorenzdominance.

Examples

E=10
d=c(2,4,7,8)
Rules=c(AA,RA,Talmud,CEA,CEL)
col=c("red","blue","green","yellow","pink")
lorenzcurve(E,d,Rules,col)

lorenzdominance Lorenz-dominance relation

Description

This function checks whether or not the awards assigned by two rules to a claims problem are
Lorenz-comparable.

Usage

lorenzdominance(E, d, Rules, Info = FALSE)

Arguments

E The endowment.

d The vector of claims.

Rules The two rules: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Tal-
mud, RTalmud.

Info A logical value.



32 lorenzdominance

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

A vector x = (x1, . . . , xn) is an awards vector for the claims problem (E, d) if 0 ≤ x ≤ d and
satisfies the balance requirement, that is,

∑n
i=1 xi = E. A rule is a function that assigns to each

claims problem (E, d) an awards vector.

Given a claims problem (E, d), in order to compare a pair of awards vectors x, y ∈ X(E, d)
with the Lorenz criterion, first one has to rearrange the coordinates of each allocation in a non-
decreasing order. Then we say that x Lorenz-dominates y (or, that y is Lorenz-dominated by x)
if all the cumulative sums of the rearranged coordinates are greater with x than with y. That is, x
Lorenz-dominates y if for each k = 1, . . . , n− 1,

k∑
j=1

xj ≥
k∑

j=1

yj .

Let R and S be two rules, we say that R Lorenz-dominates S if R(E, d) Lorenz-dominates S(E, d)
for all (E, d).

Value

If Info = FALSE, the Lorenz-dominance relation between the awards vectors selected by both rules.
If both awards vectors are equal then cod = 2. If the awards vectors are not Lorenz-comparable then
cod = 0. If the awards vector selected by the first rule Lorenz-dominates the awards vector selected
by the second rule then cod = 1; otherwise cod = -1. If Info = TRUE, it also gives the corresponding
cumulative sums.

References

Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. Publications of the
American statistical association 9(70), 209-219.

Mirás Calvo, M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez Rodríguez, E.
(2023a). Deviation from proportionality and Lorenz-domination for claims problems. Review of
Economic Design 27, 439-467.

Mirás Calvo, M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2023b). Refining the Lorenz-ranking of rules for claims problems on restricted domains. Inter-
national Journal of Economic Theory 19(3), 526-558

See Also

cumawardscurve, deviationindex, giniindex, indexgpath, lorenzcurve.

Examples

E=10
d=c(2,4,7,8)
Rules=c(AA,CEA)
lorenzdominance(E,d,Rules)
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MO Minimal overlap rule

Description

This function returns the awards vector assigned by the minimal overlap rule rule (MO) to a claims
problem.

Usage

MO(E, d, name = FALSE)

Arguments

E The endowment.

d The vector of claims.

name A logical value.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

The truncated claim of a claimant i ∈ N is the minimum of the claim and the endowment, that is,
ti(E, d) = ti = min{di, E}, i = 1, . . . , n.

Suppose that each agent claims specific parts of E equal to her/his claim. After arranging which
parts agents claim so as to “minimize conflict”, equal division prevails among all agents claiming a
specific part and the minimal overlap rule (MO) assigns the sum of the compensations she/he gets
from the various parts that he claimed.

Let d0 = 0. For each problem (E, d) and each claimant i ∈ N ,

1) If E ≤ dn then

MOi(E, d) =
t1
n

+
t2 − t1
n− 1

+ · · ·+ ti − ti−1

n− i+ 1
.

2) If E > dn, let s′ ∈ (dk′ , dk′+1], with k′ ∈ {0, 1, . . . , n − 2}, be the unique solution to the
equation

∑
j∈N

max{dj − s, 0} = E − s. Then,

MOi(E, d) =

{
d1

n + d2−d1

n−1 + · · ·+ di−di−1

n−i+1 if i ∈ {1, . . . , k′}

MOi(s
′, d) + di − s′ if i ∈ {k′ + 1, . . . , n}

.

Value

The awards vector selected by the MO rule. If name = TRUE, the name of the function (MO) as a
character string.
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References

Mirás Calvo, M.Á., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2023). Refining the Lorenz-ranking of rules for claims problems on restricted domains. Inter-
national Journal of Economic Theory 19(3), 526-558.

O’Neill, B. (1982). A problem of rights arbitration from the Talmud. Mathemathical Social Sci-
ences. 2, 345-371.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, CD.

Examples

E=10
d=c(2,4,7,8)
MO(E,d)

pathawards The path of awards for two claimants

Description

This function returns the graphical representation of the path of awards of any rule for a claims
vector and a pair of claimants.

Usage

pathawards(d, claimants, Rule, col = "red", points = 201)

Arguments

d The vector of claims.
claimants Two claimants.
Rule The rule: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,

RTalmud.
col The colour.
points The number of values of the endowment to draw the path.

Details

Let N = {1, . . . , n} be the set of claimants, d ∈ RN
+ a vector of claims and denote by D =

∑
i∈N di

the sum of claims.

The path of awards of a rule R for two claimants i, j ∈ N is the parametric curve:

p(E) =
{
(Ri(E, d),Rj(E, d)) ∈ R2 : E ∈ [0, D]

}
.



pathawards3 35

Value

The graphical representation of the path of awards of a rule for the given claims and a pair of
claimants.

References

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

pathawards3, schedrule, schedrules, verticalruleplot.

Examples

d=c(2,4,7,8)
claimants=c(1,2)
Rule=Talmud
pathawards(d,claimants,Rule)
# The path of awards of the concede-and-divide rule
pathawards(c(2,3),c(1,2),CD)
#The path of awards of the DT rule for d=(d1,d2) with d2<2d1
pathawards(c(1,1.5),c(1,2),DT,col="blue",points=1001)
#The path of awards of the DT rule for d=(d1,d2) with d2>2d1
pathawards(c(1,2.5),c(1,2),DT,col="blue",points=1001)

pathawards3 The path of awards for three claimants

Description

This function returns the graphical representation of the path of awards of any rule for a claims
vector and three claimants.

Usage

pathawards3(d, claimants, Rule, col = "red", points = 300)

Arguments

d The vector of claims.

claimants Three claimants.

Rule The rule: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,
RTalmud.

col The colour of the path, by default, col="red".

points The number of values of the endowment to draw the path.
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Details

Let N = {1, . . . , n} be the set of claimants, d ∈ RN
+ a vector of claims and denote by D =

∑
i∈N di

the sum of claims.

The path of awards of a rule R for three claimants i, j, k ∈ N is the parametric curve:

p(E) =
{
(Ri(E, d),Rj(E, d),Rk(E, d)) ∈ R3 : E ∈ [0, D]

}
.

Value

The graphical representation of the path of awards of a rule for the given claims and three claimants.

See Also

pathawards, schedrule, schedrules, verticalruleplot.

Examples

d=c(2,4,7,8)
claimants=c(1,3,4)
Rule=Talmud
pathawards3(d,claimants,Rule)

PIN Piniles’ rule

Description

This function returns the awards vector assigned by the Piniles’ rule (PIN) to a claims problem.

Usage

PIN(E, d, name = FALSE)

Arguments

E The endowment.

d The vector of claims.

name A logical value.
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Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that D =
∑

i∈N di ≥ E.

The Piniles’ rule (PIN) coincides with the constrained equal awards rule (CEA) applied to the
problem (E, d/2) if the endowment is less or equal than the half-sum of the claims, D/2. Otherwise
it assigns to each claimant i half of the claim, di/2, and, then, it distributes the remainder with the
CEA rule. Therefore, for each i ∈ N ,

PINi(E, d) =

{
min{di

2 , λ} if E ≤ 1
2D

di

2 +min{di

2 , λ} if E ≥ 1
2D

,

where λ ≥ 0 is chosen such that
∑
i∈N

PINi(E, d) = E.

Value

The awards vector selected by the PIN rule. If name = TRUE, the name of the function (PIN) as a
character string.

References

Piniles, H.M. (1861). Darkah shel Torah. Forester, Vienna.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, axioms, CEA, Talmud.

Examples

E=10
d=c(2,4,7,8)
PIN(E,d)

plotrule Plot of an awards vector

Description

This function plots an awards vector in the set of awards vectors for a claims problem.

Usage

plotrule(E, d, Rule = NULL, awards = NULL, set = TRUE, col = "blue")
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Arguments

E The endowment.

d The vector of claims.

Rule A rule: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,
RTalmud.

awards An awards vector.

set A logical value.

col The colour.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

A vector x = (x1, . . . , xn) is an awards vector for the claims problem (E, d) if 0 ≤ x ≤ d and
satisfies the balance requirement, that is,

∑n
i=1 xi = E. Let X(E, d) be the set of awards vectors

for the problem (E, d).

A rule is a function that assigns to each claims problem (E, d) an awards vector for (E, d), that is,
a division between the claimants of the amount available.

Value

If set = TRUE, the function creates a new figure plotting both the set of awards vectors for the
claims problem and the given awards vector. Otherwise, it just adds to the current picture the point
representing the given awards vector. The function only plots one awards vector at a time.

The awards vector can be introduced directly as a vector. Alternatively, we can provide a rule and
then the awards vector to be plotted is the one selected by the rule for the claims problem. Therefore,
if Rule = NULL it plots the given awards vector. Otherwise, it plots the awards vector selected by the
given rule for the claims problem. In order to plot two (or more) awards vectors, draw the first one
with the option set = TRUE and add the others, one by one, with the option set = FALSE.

See Also

allrules, setofawards.

Examples

E=10
d=c(2,4,7,8)
plotrule(E,d,Rule=AA,col="red")
# Plotting the awards vector (1,3,5,1) and the AA rule
# First, plot the awards vector (1,3,5,1) and the set of awards
plotrule(E,d,awards=c(1,3,5,1),col="green")
# Second, add the AA rule with the option set=FALSE
plotrule(E,d,Rule=AA,set=FALSE,col="red")



PRO 39

PRO Proportional rule

Description

This function returns the awards vector assigned by the proportional rule (PRO) to a claims problem.

Usage

PRO(E, d, name = FALSE)

Arguments

E The endowment.

d The vector of claims.

name A logical value.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that D =
∑

i∈N di ≥ E.

The proportional rule (PRO) distributes awards proportional to claims, that is,

PRO(E, d) =
E

D
d.

Value

The awards vector selected by the PRO rule. If name = TRUE, the name of the function (PRO) as a
character string.

References

Aristotle, Ethics, Thompson, J.A.K., tr. 1985. Harmondsworth: Penguin.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, APRO, axioms.

Examples

E=10
d=c(2,4,7,8)
PRO(E,d)
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problemdata Claims problem data

Description

The function returns which of the following subdomains the claims problem belongs to: the lower-
half, higher-half, and midpoint domains. In addittion, the function returns the minimal rights vector,
the truncated claims vector, the sum and the half-sum of claims.

Usage

problemdata(E, d, draw = FALSE)

Arguments

E The endowment.
d The vector of claims.
draw A logical value.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that D =
∑

i∈N di ≥ E.

The lower-half domain is the subdomain of claims problems for which the endowment is less or
equal than the half-sum of claims, E ≤ D/2.

The higher-half domain is the subdomain of claims problems for which the endowment is greater
or equal than the half-sum of claims, E ≥ D/2.

The midpoint domain is the subdomain of claims problems for which the endowment is equal to the
half-sum of claims, E = D/2.

The minimal right of claimant i ∈ N in (E, d) is whatever is left after every other claimant has
received his claim, or 0 if that is not possible:

mi(E, d) = max{0, E − d(N\{i})}.

Let m(E, d) =
(
m1(E, d), . . . ,mn(E, d)

)
be the vector of minimal rights.

The truncated claim of claimant i ∈ N in (E, d) is the minimum of the claim and the endowment:

ti(E, d) = min{di, E}.

Let t(E, d) =
(
t1(E, d), . . . , tn(E, d)

)
be the vector of truncated claims.

Value

The minimal rights vector; the truncated claims vector; the sum, the half-sum of the claims, and
the class (lower-half, higher-half, and midpoint domains) to which the claims problem belongs. It
returns cod = 1 if the claims problem belong to the lower-half domain, cod = -1 if it belongs to the
higher-half domain, and cod = 0 for the midpoint domain. Moreover, if draw = TRUE a plot of the
claims, from small to large in the interval [0,D], is given.
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See Also

allrules, setofawards.

Examples

E=10
d=c(2,4,7,8)
problemdata(E,d,draw=TRUE)

RA Random arrival rule

Description

This function returns the awards vector assigned by the random arrival rule (RA) to a claims prob-
lem.

Usage

RA(E, d, name = FALSE)

Arguments

E The endowment.
d The vector of claims.
name A logical value.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E. For each coalition S ∈ 2N , d(S) =
∑

j∈S dj .

The random arrival rule (RA) considers all the possible arrivals of the claimants and applies the
principle “first to arrive, first to be served". Then, for each order, the corresponding marginal worth
vector assigns to each claimant the minimum of her/his claim and what remains of the endowment.
The rule averages all the marginal worth vectors considering all the permutations of the elements of
N .

Let ΠN denote the set of permutations of the set of claimants N and |ΠN | its cardinality. Given a
permutation π ∈ Π and a claimant i ∈ N let π≤i be the set of claimants that precede i in the order
π, that is, π≤i = {j ∈ N : π(j) < π(i)}.

The random arrival rule assigns to each (E, d) and each i ∈ N ,

RAi(E, d) =
1

|ΠN |
∑

π∈ΠN

min
{
di,max{0, E − d(π≤i)}

}
.

The random arrival rule corresponds to the Shapley value of the associated (pessimistic) coalitional
game.

This function is programmed following the algorithm of Le Creurer et al. (2022).
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Value

The awards vector selected by the RA rule. If name = TRUE, the name of the function (RA) as a
character string.

References

Le Creurer, I.J, Mirás Calvo, M. A., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez Ro-
dríguez, E. (2022). On the computation of the Shapley value and the random arrival rule. Available
at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4293746.

O’Neill, B. (1982) A problem of rights arbitration from the Talmud. Mathematical Social Sciences
2, 345–371.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

AA, allrules, APRO, axioms, CD, setofawards, Talmud.

Examples

E=10
d=c(2,4,7,8)
RA(E,d)
D=sum(d)
#The random arrival rule is self-dual: RA(E,d)= d-RA(D-E,d)
d-RA(D-E,d)

RTalmud Reverse Talmud rule

Description

This function returns the awards vector assigned by the reverse Talmud rule to a claims problem.

Usage

RTalmud(E, d, name = FALSE)

Arguments

E The endowment.

d The vector of claims.

name A logical value.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4293746
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Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that D =
∑

i∈N di ≥ E.

The reverse Talmud rule (RTalmud) coincides with the constrained equal losses rule (CEL) applied
to the problem (E, d/2) if the endowment is less or equal than the half-sum of the claims, D/2.
Otherwise, the reverse Talmud rule assigns d/2 and the remainder, E −D/2, is awarded with the
constrained equal awards rule with claims d/2. Therefore, for each i ∈ N ,

RTalmudi(E, d) =

{
max{di

2 − λ, 0} if E ≤ 1
2D

di

2 +min{di

2 , λ} if E ≥ 1
2D

,

where λ ≥ 0 is chosen such that
∑
i∈N

RTalmudi(E, d) = E.

Value

The awards vector selected by the reverse Talmud rule. If name = TRUE, the name of the function
(RTalmud) as a character string.

References

Chun, Y., Schummer, J., and Thomson, W. (2001). Constrained egalitarianism: a new solution for
claims problems. Seoul Journal of Economics 14, 269-297.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

AA, allrules, APRO, Talmud, CEA, CEL, CD, RA.

Examples

E=10
d=c(2,4,7,8)
RTalmud(E,d)

schedrule Schedules of awards of a rule

Description

This function returns the graphical representation of the schedules of awards of any rule for a claims
vector.

Usage

schedrule(d, claimants, Rule, col = NULL, points = 201, legend = TRUE)



44 schedrule

Arguments

d A vector of claims.

claimants A subset of claimants.

Rule The rule: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,
RTalmud.

col The colours. If col = NULL then the sequence of default colours is chosen ran-
domly.

points The number of values of the endowment to draw the path.

legend A logical value. The colour legend is shown if legend = TRUE.

Details

Let N = {1, . . . , n} be the set of claimants, d ∈ RN
+ a vector of claims and denote by D =

∑
i∈N di

the sum of the claims.

The schedules of awards of a rule R for claimant i is the function S that assigns to each E ∈
[0, D] the value: S(E) = Ri(E, d) ∈ R. Therefore, the schedules of awards of a rule plots each
claimants’s award as a function of E.

Value

The graphical representation of the schedules of awards of a rule for a claims vector and a group of
claimants.

References

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

pathawards, pathawards3, schedrules, verticalruleplot.

Examples

d=c(2,4,7,8)
Rule=Talmud
claimants=c(1,2,3,4)
col=c("red","green","yellow","blue")
schedrule(d,claimants,Rule,col)
# The schedules of awards of the concede-and-divide rule.
schedrule(c(2,4),c(1,2),CD)
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schedrules Schedules of awards of several rules

Description

This function returns the graphical representation of the schedules of awards of different rules for a
claims vector and a given claimant.

Usage

schedrules(d, claimant, Rules, col = NULL, points = 201, legend = TRUE)

Arguments

d A vector of claims.

claimant A claimant.

Rules The rules: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,
RTalmud.

col The colours. If col = NULL then the sequence of default colours is: c("red",
"blue", "green", "yellow", "pink", "orange", "coral4", "darkgray", "burlywood3",
"black", "darkorange", "darkviolet").

points The number of endowment values to draw the path.

legend A logical value. The colour legend is shown if legend = TRUE.

Details

Let N = {1, . . . , n} be the set of claimants, d ∈ RN
+ a vector of claims and denote by D =

∑
i∈N di

the sum of the claims.

The schedules of awards of a rule R for claimant i is the function S that assigns to each E ∈
[0, D] the value: S(E) = Ri(E, d) ∈ R. Therefore, the schedules of awards of a rule plots each
claimants’s award as a function of E.

Value

The graphical representation of the schedules of awards of the rules for the claims vector and the
same claimant.

References

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

pathawards, pathawards3, schedrule, verticalruleplot.
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Examples

d=c(2,4,7,8)
claimant=2
Rules=c(Talmud,RA,AA)
col=c("red","green","blue")
schedrules(d,claimant,Rules,col)

setofawards Set of awards vectors for a claims problem

Description

This function plots the set of awards vectors for a claims problem with 2, 3, or 4 claimants and
returns its vertices for any problem.

Usage

setofawards(E, d, draw = TRUE, col = NULL)

Arguments

E The endowment.

d The vector of claims.

draw A logical value.

col The colour.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

A vector x = (x1, . . . , xn) is an awards vector for the claims problem (E, d) if 0 ≤ x ≤ d and
satisfies the balance requirement, that is,

∑n
i=1 xi = E. Let X(E, d) be the set of awards vectors

for the problem (E, d).

For each subset S of the set of claimants N , let d(S) =
∑

j∈S dj be the sum of claims of the
members of S and let N\S be the complementary coalition of S.

The minimal right of claimant i ∈ N in (E, d) is whatever is left after every other claimant has
received his claim, or 0 if that is not possible:

mi(E, d) = max{0, E − d(N\{i})}, i = 1, . . . , n.

Let m(E, d) =
(
m1(E, d), . . . ,mn(E, d)

)
be the vector of minimal rights.

The truncated claim of claimant i ∈ N in (E, d) is the minimum of the claim and the endowment:

ti(E, d) = min{di, E}, i = 1, . . . , n.
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Let t(E, d) =
(
t1(E, d), . . . , tn(E, d)

)
be the vector of truncated claims.

A vector x is efficient if the sum of its coordinates coincides with the endowment. The set of awards
is the the set of all efficient vectors bounded by the minimal right and trucated claim vectors.

The set of awards vectors for the claims problem (E, d) can be given in terms of the minimal rights
and truncated claims vectors:

X(E, d) =
{
x ∈ Rn : x(N) = E,m(E, d) ≤ x ≤ t(E, d)

}
.

The set of awards vectors for a problem coincides with the core of its associated coalitional (pes-
simistic) game.

The vertices of the set of awards are the marginal worth vectors. For each order of the claimants, the
marginal worth vectors are obtained applying the principle “first to arrive, first to be served". Then,
for each order, the corresponding marginal worth vector assigns to each claimant the minimum of
her/his claim and what remains of the endowment.

Value

The vertices of the set of awards vectors for any claims problem. For two-claimant and three-
claimant problems, if draw = TRUE it plots the set of awards vectors. For a four-claimant problem, if
draw = TRUE, it plots the projection of the set of awards vector over the euclidean space of the first
three coordinates. For a claims problem with more than four claimants, it only displays the vertices
of the set of awards. The default colours (col = NULL) are: red for two-claimant problems, beige
for three-claimant problems, and white for four-claimant problems.

References

Mirás Calvo, M.A., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2024). On properties of the set of awards vectors for a claims problem. TOP 32, 137-167.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

AA, plotrule, problemdata, RA, volume.

Examples

E=10
d=c(2,4,7,8)
setofawards(E,d,col="darkgreen")
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Talmud Talmud rule

Description

This function returns the awards vector assigned by the Talmud rule to a claims problem.

Usage

Talmud(E, d, name = FALSE)

Arguments

E The endowment.

d The vector of claims.

name A logical value.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that D =
∑

i∈N di ≥ E.

The Talmud rule (Talmud) coincides with the constrained equal awards rule (CEA) applied to the
problem (E, d/2) if the endowment is less or equal than the half-sum of the claims, D/2. Other-
wise, the Talmud rule assigns d/2 and the remainder, E − D/2, is awarded with the constrained
equal losses rule with claims d/2. Therefore, for each i ∈ N ,

Talmudi(E, d) =

{
min{di

2 , λ} if E ≤ 1
2D

di −min{di

2 , λ} if E ≥ 1
2D

,

where λ ≥ 0 is chosen such that
∑
i∈N

Talmudi(E, d) = E.

The Talmud rule when applied to a two-claimant problem is often referred to as the contested
garment rule and coincides with concede-and-divide rule. The Talmud rule corresponds to the
nucleolus of the associated (pessimistic) coalitional game.

Value

The awards vector selected by the Talmud rule. If name = TRUE, the name of the function (Talmud)
as a character string.

References

Aumann, R. and Maschler, M. (1985). Game theoretic analysis of a bankruptcy problem from the
Talmud. Journal of Economic Theory 36, 195-213.

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.
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See Also

AA, allrules, APRO, axioms, CEA, CEL, CD, RA, RTalmud.

Examples

E=10
d=c(2,4,7,8)
Talmud(E,d)
D=sum(d)
#The Talmud rule is self-dual
d-Talmud(D-E,d)

Universityfunds University funds data

Description

Data to distribute a certain amount of money to buy equipment for teaching laboratories among the
different degree courses in the Universidad Miguel Hernández of Elche (Spain)

Usage

Universityfunds

Format

A data frame with 27 rows and 3 variables:

[,1] Degree categorical Degree courses in a University
[,2] Entitlement numeric Objective entitlements based on number of students, experimental level, ... (euros)
[,3] Claim numeric Claim of each degree (euros)

Source

The data were obtained from Pulido et al (2002).

References

Pulido, M., Sánchez Soriano, J., and Llorca, N. (2002). Game Theory Techniques for University
Management: An Extended Bankruptcy Model. Annals of Operations Research, 109, 129-142.

Pulido, M., Borm, P, Hendricks, R, Llorca, N., and Sánchez Soriano, J. (2008). Compromise
solutions for bankruptcy situations with references. Annals of Operations Research, 158, 133-141.

Núñez Lugilde, I., Estévez Fernández, A., and Sánchez Rodríguez, E. (2024). Priority coalitional
games and claims problems. Mathematical Methods of Operations Research, 100, 669–701.



50 verticalruleplot

Examples

data(Universityfunds)
head(Universityfunds)

E = 717293.11
d <- Universityfunds$Claim-Universityfunds$Entitlement
E = E-sum(Universityfunds$Entitlement)
Universityfunds$Entitlement+CEA(E,d)
Universityfunds$Entitlement+PRO(E,d)

verticalruleplot Vertical rule plot

Description

For each claimant, it plots a vertical line with his claim and a point on the awards vector of the
chosen rules.

Usage

verticalruleplot(E, d, Rules, col = NULL, legend = TRUE)

Arguments

E The endowment.
d The vector of claims
Rules The rules: AA, APRO, CE, CEA, CEL, AV, DT, MO, PIN, PRO, RA, Talmud,

or RTalmud.
col The colours. If col=NULL then the sequence of default colours is: c("red",

"blue", "green", "yellow", "pink", "orange", "coral4", "darkgray", "burlywood3",
"black", "darkorange", "darkviolet").

legend A logical value. The colour legend is shown if legend=TRUE.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

A vector x = (x1, . . . , xn) is an awards vector for the claims problem (E, d) if 0 ≤ x ≤ d and
satisfies the balance requirement, that is,

∑n
i=1 xi = E.

A rule is a function that assigns to each claims problem (E, d) an awards vector, that is, a division
between the claimants of the amount available.

The formal definitions of the main rules are given in the corresponding function help.

Value

This function represents the claims vector and the awards vector assigned by several rules as vertical
segments.
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References

Thomson, W. (2019). How to divide when there isn’t enough. From Aristotle, the Talmud, and
Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, pathawards, pathawards3, schedrule, schedrules.

Examples

E=10
d=c(2,4,7,8)
Rules=c(Talmud,RA,AA)
col=c("red","green","blue")
verticalruleplot(E,d,Rules,col)

volume Volume of the set of awards vectors

Description

This function computes the volume of the set of award vectors of a claims problem and the projected
volume.

Usage

volume(E, d, real = TRUE)

Arguments

E The endowment.

d The vector of claims.

real Logical parameter. By default, real = TRUE.

Details

Let N = {1, . . . , n} be the set of claimants, E ≥ 0 the endowment to be divided and d ∈ RN
+ the

vector of claims such that
∑

i∈N di ≥ E.

A vector x = (x1, . . . , xn) is an awards vector for the claims problem (E, d) if 0 ≤ x ≤ d and
satisfies the balance requirement, that is,

∑n
i=1 xi = E. Let X(E, d) be the set of awards vectors

for (E, d).

Let µ be the (n − 1)-dimensional Lebesgue measure. We define by V (E, d) = µ(X(E, d)) the
measure (volume) of the set of awards X(E, d) and V̂ (E, d) the volume of the projection onto an
(n− 1)-dimensional space.

V (E, d) =
√
nV̂ (E, d).

The function is programmed following the procedure explained in Mirás Calvo et al. (2024b).
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Value

The volume of the set of awards vectors. If real = FALSE, it returns the volume of the projection
into the last coordinate.

References

Mirás Calvo, M.A., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2024a). An algorithm to compute the average-of-awards rule for claims problems with an ap-
plication to the allocation of CO2 emissions. Annals of Operations Research, 336: 1435-1459.

Mirás Calvo, M.A., Núñez Lugilde, I., Quinteiro Sandomingo, C., and Sánchez-Rodríguez, E.
(2024b). On properties of the set of awards vectors for a claims problem. TOP, 32: 137-167.

See Also

setofawards.

Examples

E=10
d=c(2,4,7,10)
volume(E,d)
#The volume function is a symmetric function.
D=sum(d)
volume(D-E,d)
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