CRAN Package Check Results for Package mlr3fairness

Last updated on 2025-06-23 03:51:14 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.3.2 15.91 183.16 199.07 ERROR
r-devel-linux-x86_64-debian-gcc 0.3.2 9.62 119.26 128.88 ERROR
r-devel-linux-x86_64-fedora-clang 0.3.2 292.20 ERROR
r-devel-linux-x86_64-fedora-gcc 0.3.2 265.83 ERROR
r-devel-windows-x86_64 0.3.2 15.00 155.00 170.00 ERROR
r-patched-linux-x86_64 0.3.2 13.03 278.37 291.40 ERROR
r-release-linux-x86_64 0.3.2 10.53 151.17 161.70 ERROR
r-release-macos-arm64 0.3.2 156.00 NOTE
r-release-macos-x86_64 0.3.2 277.00 NOTE
r-release-windows-x86_64 0.3.2 15.00 152.00 167.00 ERROR
r-oldrel-macos-arm64 0.3.2 137.00 NOTE
r-oldrel-macos-x86_64 0.3.2 214.00 NOTE
r-oldrel-windows-x86_64 0.3.2 21.00 209.00 230.00 ERROR

Additional issues

noSuggests

Check Details

Version: 0.3.2
Check: Rd files
Result: NOTE checkRd: (-1) groupdiff_tau.Rd:23: Lost braces 23 | \code{groupdiff_tau()} computes \eqn{min(x/y, y/x)}, i.e. the smallest symmetric ratio between \eqn{x} and eqn{y} | ^ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Version: 0.3.2
Check: Rd cross-references
Result: NOTE Found the following Rd file(s) with Rd \link{} targets missing package anchors: MeasureFairness.Rd: mlr_measures_classif.ce, mlr_measures_classif.fpr, mlr_measures, Task MeasureFairnessComposite.Rd: Task MeasureFairnessConstraint.Rd: Task MeasureSubgroup.Rd: mlr_measures_classif.fpr compas.Rd: TaskClassif compute_metrics.Rd: Task fairness_accuracy_tradeoff.Rd: PredictionClassif, BenchmarkResult, ResampleResult, Task, Measure, TaskClassif fairness_compare_metrics.Rd: PredictionClassif, BenchmarkResult, ResampleResult, Measure, TaskClassif, Task fairness_prediction_density.Rd: PredictionClassif, ResampleResult, BenchmarkResult, Task, TaskClassif fairness_tensor.Rd: data.table, PredictionClassif, ResampleResult, TaskClassif, Task groupdiff_tau.Rd: Task groupwise_metrics.Rd: Task mlr_learners_classif.fairfgrrm.Rd: Learner, mlr_learners, lrn mlr_learners_classif.fairzlrm.Rd: Learner, mlr_learners, lrn mlr_learners_fairness.Rd: Task mlr_learners_regr.fairfrrm.Rd: Learner, mlr_learners, lrn mlr_learners_regr.fairnclm.Rd: Learner, mlr_learners, lrn mlr_learners_regr.fairzlm.Rd: Learner, mlr_learners, lrn mlr_measures_fairness.Rd: Task mlr_pipeops_equalized_odds.Rd: R6Class, PipeOpTaskPreproc, PipeOp mlr_pipeops_explicit_pta.Rd: R6Class, PipeOpTaskPreproc, PipeOp mlr_pipeops_reweighing.Rd: R6Class, PipeOpTaskPreproc, PipeOp report_fairness.Rd: Task task_summary.Rd: Task Please provide package anchors for all Rd \link{} targets not in the package itself and the base packages. Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-windows-x86_64

Version: 0.3.2
Check: examples
Result: ERROR Running examples in ‘mlr3fairness-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: MeasureFairness > ### Title: Base Measure for Fairness > ### Aliases: MeasureFairness > > ### ** Examples > > library("mlr3") > # Create MeasureFairness to measure the Predictive Parity. > t = tsk("adult_train") > learner = lrn("classif.rpart", cp = .01) > learner$train(t) > measure = msr("fairness", base_measure = msr("classif.ppv")) > predictions = learner$predict(t) > predictions$score(measure, task = t) Error in prediction$clone()$filter(rws)$score(base_measure, task = task, : unused argument (weights = NULL) Calls: <Anonymous> ... score_groupwise -> map_dbl -> map_mold -> vapply -> FUN Execution halted Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-release-linux-x86_64

Version: 0.3.2
Check: tests
Result: ERROR Running ‘testthat.R’ [19s/22s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3") + library("mlr3pipelines") + library("mlr3fairness") + test_check("mlr3fairness") + } INFO [03:15:42.446] [mlr3] Running benchmark with 12 resampling iterations INFO [03:15:42.662] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [03:15:42.736] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [03:15:42.797] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [03:15:42.843] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [03:15:42.875] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [03:15:42.915] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [03:15:42.957] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [03:15:43.002] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [03:15:43.046] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [03:15:43.089] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [03:15:43.129] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [03:15:43.174] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [03:15:43.253] [mlr3] Finished benchmark INFO [03:15:43.650] [mlr3] Running benchmark with 12 resampling iterations INFO [03:15:43.698] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [03:15:43.750] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [03:15:43.806] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [03:15:43.852] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [03:15:43.891] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [03:15:43.962] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [03:15:44.031] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [03:15:44.095] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [03:15:44.140] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [03:15:44.183] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [03:15:44.216] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [03:15:44.252] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [03:15:44.287] [mlr3] Finished benchmark INFO [03:15:44.538] [mlr3] Running benchmark with 12 resampling iterations INFO [03:15:44.557] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [03:15:44.601] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [03:15:44.646] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [03:15:44.691] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [03:15:44.734] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [03:15:44.767] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [03:15:44.829] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [03:15:44.872] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [03:15:44.914] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [03:15:44.955] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [03:15:44.992] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [03:15:45.028] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [03:15:45.068] [mlr3] Finished benchmark [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] ══ Skipped tests (30) ══════════════════════════════════════════════════════════ • On CRAN (30): 'test_datasets.R:16:3', 'test_datasets.R:32:3', 'test_datasets.R:47:3', 'test_learners_fairml.R:2:5', 'test_learners_fairml.R:12:5', 'test_learners_fairml.R:25:5', 'test_learners_fairml.R:39:5', 'test_learners_fairml.R:51:5', 'test_learners_fairml_ptas.R:2:5', 'test_learners_fairml_ptas.R:17:5', 'test_measure_subgroup.R:47:3', 'test_measure_subgroup.R:66:3', 'test_pipeop_eod.R:2:3', 'test_pipeop_eod.R:17:3', 'test_pipeop_eod.R:57:3', 'test_pipeop_explicit_pta.R:3:5', 'test_pipeop_explicit_pta.R:17:5', 'test_pipeop_reweighing.R:2:3', 'test_pipeop_reweighing.R:15:3', 'test_pipeop_reweighing.R:25:3', 'test_pipeop_reweighing.R:34:3', 'test_pipeop_reweighing.R:51:3', 'test_pipeop_reweighing.R:61:3', 'test_report_modelcard_datasheet.R:2:3', 'test_report_modelcard_datasheet.R:18:3', 'test_report_modelcard_datasheet.R:34:3', 'test_use_modelcard_datasheet.R:2:3', 'test_use_modelcard_datasheet.R:17:3', 'test_use_modelcard_datasheet.R:31:3', 'test_write_files.R:2:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_measure_subgroup.R:20:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:20:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measure_subgroup.R:32:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:32:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measures.R:51:9'): fairness measures work as expcted ─────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:51:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:71:9'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:71:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:92:3'): fairness errors on missing pta, works with ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:92:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(prd$score(msr("fairness.acc"), task = task)) 5. └─prd$score(msr("fairness.acc"), task = task) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:111:3'): fairness works with non-binary pta ───────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:111:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:129:3'): fairness works on non-binary target ──────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:129:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:140:3'): fairness.fpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:140:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(round(predictions$score(msr_obj, test_data), 4)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:145:3'): fairness.acc can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:145:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:150:3'): fairness.fnr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:150:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:155:3'): fairness.tpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:155:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:160:3'): fairness.ppv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:160:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:165:3'): fairness.npv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:165:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:170:3'): fairness.fp can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:170:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:175:3'): fairness.fn can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:175:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:180:3'): fairness.pp (disparate impact score) can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:180:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:194:7'): fairness constraint measures - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_measures.R:192:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. └─mlr3misc::map_dbl(...) at test_measures.R:193:5 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3fairness (local) FUN(X[[i]], ...) 8. └─prd$score(measures = msr(m), task = tsk) at test_measures.R:194:7 9. └─mlr3:::.__Prediction__score(...) 10. └─mlr3misc::map_dbl(...) 11. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 12. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 13. └─mlr3 (local) FUN(X[[i]], ...) 14. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 15. └─mlr3:::.__Measure__score(...) 16. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 17. └─get_private(measure)$.score(...) 18. └─mlr3fairness:::.__MeasureFairness__.score(...) 19. └─mlr3fairness:::score_groupwise(...) 20. └─mlr3misc::map_dbl(...) 21. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 22. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 23. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:249:3'): Args are passed on correctly ─────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(mfa, task = t, train_set = 1:10) at test_measures.R:249:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:271:11'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:271:11 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:10:5'): fairness_accuracy_tradeoff ──────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_visualizations.R:9:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. ├─mlr3fairness:::check_plots(fairness_accuracy_tradeoff(bmr, fmsr)) at test_visualizations.R:10:5 5. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at tests/testthat/helper_test.R:4:3 6. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 7. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 8. │ └─ggplot2::is.ggplot(ggplot_obj) 9. │ └─ggplot2::is_ggplot(x) 10. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, fmsr) 11. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 12. └─object$aggregate(list(acc_measure, fairness_measure)) 13. └─mlr3:::.__BenchmarkResult__aggregate(...) 14. └─mlr3misc::map_dtr(...) 15. ├─data.table::rbindlist(...) 16. ├─base::unname(map(.x, .f, ...)) 17. └─mlr3misc::map(.x, .f, ...) 18. └─base::lapply(.x, .f, ...) 19. └─mlr3 (local) FUN(X[[i]], ...) 20. ├─base::as.list(resample_result_aggregate(rr, measures)) 21. └─mlr3:::resample_result_aggregate(rr, measures) 22. ├─... %??% set_names(numeric(), character()) 23. ├─base::unlist(...) 24. └─mlr3misc::map(...) 25. └─base::lapply(.x, .f, ...) 26. └─mlr3 (local) FUN(X[[i]], ...) 27. └─m$aggregate(rr) 28. └─mlr3:::.__Measure__aggregate(...) 29. └─mlr3:::score_measures(...) 30. └─mlr3misc::pmap_dbl(...) 31. └─mlr3misc:::mapply_list(.f, .x, list(...)) 32. └─base::.mapply(.f, .dots, .args) 33. └─mlr3 (local) `<fn>`(...) 34. └─mlr3:::score_single_measure(...) 35. └─get_private(measure)$.score(...) 36. └─mlr3fairness:::.__MeasureFairness__.score(...) 37. └─mlr3fairness:::score_groupwise(...) 38. └─mlr3misc::map_dbl(...) 39. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 40. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 41. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:33:3'): compare_metrics ─────────────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─mlr3fairness:::check_plots(compare_metrics(bmr, fairness_measures)) at test_visualizations.R:33:3 2. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at tests/testthat/helper_test.R:4:3 3. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─ggplot2::is.ggplot(ggplot_obj) 6. │ └─ggplot2::is_ggplot(x) 7. ├─mlr3fairness::compare_metrics(bmr, fairness_measures) 8. └─mlr3fairness:::compare_metrics.BenchmarkResult(bmr, fairness_measures) 9. └─object$aggregate(measures, ...) 10. └─mlr3:::.__BenchmarkResult__aggregate(...) 11. └─mlr3misc::map_dtr(...) 12. ├─data.table::rbindlist(...) 13. ├─base::unname(map(.x, .f, ...)) 14. └─mlr3misc::map(.x, .f, ...) 15. └─base::lapply(.x, .f, ...) 16. └─mlr3 (local) FUN(X[[i]], ...) 17. ├─base::as.list(resample_result_aggregate(rr, measures)) 18. └─mlr3:::resample_result_aggregate(rr, measures) 19. ├─... %??% set_names(numeric(), character()) 20. ├─base::unlist(...) 21. └─mlr3misc::map(...) 22. └─base::lapply(.x, .f, ...) 23. └─mlr3 (local) FUN(X[[i]], ...) 24. └─m$aggregate(rr) 25. └─mlr3:::.__Measure__aggregate(...) 26. └─mlr3:::score_measures(...) 27. └─mlr3misc::pmap_dbl(...) 28. └─mlr3misc:::mapply_list(.f, .x, list(...)) 29. └─base::.mapply(.f, .dots, .args) 30. └─mlr3 (local) `<fn>`(...) 31. └─mlr3:::score_single_measure(...) 32. └─get_private(measure)$.score(...) 33. └─mlr3fairness:::.__MeasureFairness__.score(...) 34. └─mlr3fairness:::score_groupwise(...) 35. └─mlr3misc::map_dbl(...) 36. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 37. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 38. └─mlr3fairness (local) FUN(X[[i]], ...) [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.3.2
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘debiasing-vignette.Rmd’ using rmarkdown Quitting from debiasing-vignette.Rmd:55-57 [unnamed-chunk-4] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `task_set_roles()`: ! Assertion on 'roles' failed: Must be a subset of {'feature','target','name','order','stratum','group','offset','weights_learner','weights_measure','pta'}, but has additional elements {'weight'}. This happened PipeOp reweighing_wts's $train() --- Backtrace: ▆ 1. ├─p1$train(list(task)) 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3fairness:::.__PipeOpReweighingWeights__.train_task(...) 8. │ └─task$set_col_roles(weightcolname, "weight") 9. │ └─mlr3:::.__Task__set_col_roles(...) 10. │ └─mlr3:::task_set_roles(...) 11. │ └─checkmate::assert_subset(roles, names(li)) 12. │ └─checkmate::makeAssertion(x, res, .var.name, add) 13. │ └─checkmate:::mstop(...) 14. │ └─base::stop(simpleError(sprintf(msg, ...), call.)) 15. └─mlr3pipelines (local) `<fn>`(`<smplErrr>`) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'debiasing-vignette.Rmd' failed with diagnostics: Assertion on 'roles' failed: Must be a subset of {'feature','target','name','order','stratum','group','offset','weights_learner','weights_measure','pta'}, but has additional elements {'weight'}. This happened PipeOp reweighing_wts's $train() --- failed re-building ‘debiasing-vignette.Rmd’ --- re-building ‘measures-vignette.Rmd’ using rmarkdown Quitting from measures-vignette.Rmd:88-90 [unnamed-chunk-6] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! unused argument (weights = NULL) --- Backtrace: ▆ 1. └─prd$score(msr("fairness.tpr"), task = test) 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'measures-vignette.Rmd' failed with diagnostics: unused argument (weights = NULL) --- failed re-building ‘measures-vignette.Rmd’ --- re-building ‘reports-vignette.Rmd’ using rmarkdown Quitting from reports-vignette.Rmd:51-54 [build_modelcard_example_for_vignette] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `loadNamespace()`: ! there is no package called 'posterdown' --- Backtrace: ▆ 1. ├─rmarkdown::render(rmdfile) 2. │ └─rmarkdown:::create_output_format(output_format$name, output_format$options) 3. │ └─rmarkdown:::create_output_format_function(name) 4. │ └─base::eval(xfun::parse_only(name)) 5. │ └─base::eval(xfun::parse_only(name)) 6. └─base::loadNamespace(x) 7. └─base::withRestarts(stop(cond), retry_loadNamespace = function() NULL) 8. └─base (local) withOneRestart(expr, restarts[[1L]]) 9. └─base (local) doWithOneRestart(return(expr), restart) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'reports-vignette.Rmd' failed with diagnostics: there is no package called 'posterdown' --- failed re-building ‘reports-vignette.Rmd’ --- re-building ‘visualization-vignette.Rmd’ using rmarkdown ** Processing: /home/hornik/tmp/R.check/r-devel-clang/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-6-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 15540 bytes Input file size = 15630 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12393 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12393 Output IDAT size = 12393 bytes (3147 bytes decrease) Output file size = 12471 bytes (3159 bytes = 20.21% decrease) ** Processing: /home/hornik/tmp/R.check/r-devel-clang/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-7-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 17272 bytes Input file size = 17374 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 13068 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 13068 Output IDAT size = 13068 bytes (4204 bytes decrease) Output file size = 13146 bytes (4228 bytes = 24.34% decrease) Quitting from visualization-vignette.Rmd:88-90 [unnamed-chunk-8] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! unused argument (weights = NULL) --- Backtrace: ▆ 1. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, msr("fairness.fpr")) 2. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 3. └─object$aggregate(list(acc_measure, fairness_measure)) 4. └─mlr3:::.__BenchmarkResult__aggregate(...) 5. └─mlr3misc::map_dtr(...) 6. ├─data.table::rbindlist(...) 7. ├─base::unname(map(.x, .f, ...)) 8. └─mlr3misc::map(.x, .f, ...) 9. └─base::lapply(.x, .f, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. ├─base::as.list(resample_result_aggregate(rr, measures)) 12. └─mlr3:::resample_result_aggregate(rr, measures) 13. ├─... %??% set_names(numeric(), character()) 14. ├─base::unlist(...) 15. └─mlr3misc::map(...) 16. └─base::lapply(.x, .f, ...) 17. └─mlr3 (local) FUN(X[[i]], ...) 18. └─m$aggregate(rr) 19. └─mlr3:::.__Measure__aggregate(...) 20. └─mlr3:::score_measures(...) 21. └─mlr3misc::pmap_dbl(...) 22. └─mlr3misc:::mapply_list(.f, .x, list(...)) 23. └─base::.mapply(.f, .dots, .args) 24. └─mlr3 (local) `<fn>`(...) 25. └─mlr3:::score_single_measure(...) 26. └─get_private(measure)$.score(...) 27. └─mlr3fairness:::.__MeasureFairness__.score(...) 28. └─mlr3fairness:::score_groupwise(...) 29. └─mlr3misc::map_dbl(...) 30. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 31. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 32. └─mlr3fairness (local) FUN(X[[i]], ...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'visualization-vignette.Rmd' failed with diagnostics: unused argument (weights = NULL) --- failed re-building ‘visualization-vignette.Rmd’ SUMMARY: processing the following files failed: ‘debiasing-vignette.Rmd’ ‘measures-vignette.Rmd’ ‘reports-vignette.Rmd’ ‘visualization-vignette.Rmd’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.3.2
Check: tests
Result: ERROR Running ‘testthat.R’ [12s/17s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3") + library("mlr3pipelines") + library("mlr3fairness") + test_check("mlr3fairness") + } INFO [16:52:05.595] [mlr3] Running benchmark with 12 resampling iterations INFO [16:52:05.819] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [16:52:06.024] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [16:52:06.078] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [16:52:06.119] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [16:52:06.194] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [16:52:06.269] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [16:52:06.342] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [16:52:06.364] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [16:52:06.387] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [16:52:06.412] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [16:52:06.481] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [16:52:06.562] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [16:52:06.633] [mlr3] Finished benchmark INFO [16:52:06.938] [mlr3] Running benchmark with 12 resampling iterations INFO [16:52:06.967] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [16:52:06.998] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [16:52:07.061] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [16:52:07.134] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [16:52:07.181] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [16:52:07.203] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [16:52:07.268] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [16:52:07.296] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [16:52:07.325] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [16:52:07.353] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [16:52:07.427] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [16:52:07.512] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [16:52:07.593] [mlr3] Finished benchmark INFO [16:52:07.757] [mlr3] Running benchmark with 12 resampling iterations INFO [16:52:07.769] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [16:52:07.805] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [16:52:07.839] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [16:52:07.869] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [16:52:07.948] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [16:52:08.057] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [16:52:08.152] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [16:52:08.212] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [16:52:08.383] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [16:52:08.557] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [16:52:08.657] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [16:52:08.750] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [16:52:08.863] [mlr3] Finished benchmark [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] ══ Skipped tests (30) ══════════════════════════════════════════════════════════ • On CRAN (30): 'test_datasets.R:16:3', 'test_datasets.R:32:3', 'test_datasets.R:47:3', 'test_learners_fairml.R:2:5', 'test_learners_fairml.R:12:5', 'test_learners_fairml.R:25:5', 'test_learners_fairml.R:39:5', 'test_learners_fairml.R:51:5', 'test_learners_fairml_ptas.R:2:5', 'test_learners_fairml_ptas.R:17:5', 'test_measure_subgroup.R:47:3', 'test_measure_subgroup.R:66:3', 'test_pipeop_eod.R:2:3', 'test_pipeop_eod.R:17:3', 'test_pipeop_eod.R:57:3', 'test_pipeop_explicit_pta.R:3:5', 'test_pipeop_explicit_pta.R:17:5', 'test_pipeop_reweighing.R:2:3', 'test_pipeop_reweighing.R:15:3', 'test_pipeop_reweighing.R:25:3', 'test_pipeop_reweighing.R:34:3', 'test_pipeop_reweighing.R:51:3', 'test_pipeop_reweighing.R:61:3', 'test_report_modelcard_datasheet.R:2:3', 'test_report_modelcard_datasheet.R:18:3', 'test_report_modelcard_datasheet.R:34:3', 'test_use_modelcard_datasheet.R:2:3', 'test_use_modelcard_datasheet.R:17:3', 'test_use_modelcard_datasheet.R:31:3', 'test_write_files.R:2:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_measure_subgroup.R:20:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:20:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measure_subgroup.R:32:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:32:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measures.R:51:9'): fairness measures work as expcted ─────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:51:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:71:9'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:71:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:92:3'): fairness errors on missing pta, works with ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:92:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(prd$score(msr("fairness.acc"), task = task)) 5. └─prd$score(msr("fairness.acc"), task = task) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:111:3'): fairness works with non-binary pta ───────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:111:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:129:3'): fairness works on non-binary target ──────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:129:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:140:3'): fairness.fpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:140:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(round(predictions$score(msr_obj, test_data), 4)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:145:3'): fairness.acc can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:145:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:150:3'): fairness.fnr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:150:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:155:3'): fairness.tpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:155:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:160:3'): fairness.ppv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:160:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:165:3'): fairness.npv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:165:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:170:3'): fairness.fp can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:170:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:175:3'): fairness.fn can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:175:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:180:3'): fairness.pp (disparate impact score) can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:180:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:194:7'): fairness constraint measures - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_measures.R:192:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. └─mlr3misc::map_dbl(...) at test_measures.R:193:5 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3fairness (local) FUN(X[[i]], ...) 8. └─prd$score(measures = msr(m), task = tsk) at test_measures.R:194:7 9. └─mlr3:::.__Prediction__score(...) 10. └─mlr3misc::map_dbl(...) 11. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 12. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 13. └─mlr3 (local) FUN(X[[i]], ...) 14. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 15. └─mlr3:::.__Measure__score(...) 16. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 17. └─get_private(measure)$.score(...) 18. └─mlr3fairness:::.__MeasureFairness__.score(...) 19. └─mlr3fairness:::score_groupwise(...) 20. └─mlr3misc::map_dbl(...) 21. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 22. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 23. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:249:3'): Args are passed on correctly ─────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(mfa, task = t, train_set = 1:10) at test_measures.R:249:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:271:11'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:271:11 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:10:5'): fairness_accuracy_tradeoff ──────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_visualizations.R:9:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. ├─mlr3fairness:::check_plots(fairness_accuracy_tradeoff(bmr, fmsr)) at test_visualizations.R:10:5 5. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at tests/testthat/helper_test.R:4:3 6. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 7. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 8. │ └─ggplot2::is.ggplot(ggplot_obj) 9. │ └─ggplot2::is_ggplot(x) 10. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, fmsr) 11. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 12. └─object$aggregate(list(acc_measure, fairness_measure)) 13. └─mlr3:::.__BenchmarkResult__aggregate(...) 14. └─mlr3misc::map_dtr(...) 15. ├─data.table::rbindlist(...) 16. ├─base::unname(map(.x, .f, ...)) 17. └─mlr3misc::map(.x, .f, ...) 18. └─base::lapply(.x, .f, ...) 19. └─mlr3 (local) FUN(X[[i]], ...) 20. ├─base::as.list(resample_result_aggregate(rr, measures)) 21. └─mlr3:::resample_result_aggregate(rr, measures) 22. ├─... %??% set_names(numeric(), character()) 23. ├─base::unlist(...) 24. └─mlr3misc::map(...) 25. └─base::lapply(.x, .f, ...) 26. └─mlr3 (local) FUN(X[[i]], ...) 27. └─m$aggregate(rr) 28. └─mlr3:::.__Measure__aggregate(...) 29. └─mlr3:::score_measures(...) 30. └─mlr3misc::pmap_dbl(...) 31. └─mlr3misc:::mapply_list(.f, .x, list(...)) 32. └─base::.mapply(.f, .dots, .args) 33. └─mlr3 (local) `<fn>`(...) 34. └─mlr3:::score_single_measure(...) 35. └─get_private(measure)$.score(...) 36. └─mlr3fairness:::.__MeasureFairness__.score(...) 37. └─mlr3fairness:::score_groupwise(...) 38. └─mlr3misc::map_dbl(...) 39. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 40. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 41. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:33:3'): compare_metrics ─────────────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─mlr3fairness:::check_plots(compare_metrics(bmr, fairness_measures)) at test_visualizations.R:33:3 2. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at tests/testthat/helper_test.R:4:3 3. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─ggplot2::is.ggplot(ggplot_obj) 6. │ └─ggplot2::is_ggplot(x) 7. ├─mlr3fairness::compare_metrics(bmr, fairness_measures) 8. └─mlr3fairness:::compare_metrics.BenchmarkResult(bmr, fairness_measures) 9. └─object$aggregate(measures, ...) 10. └─mlr3:::.__BenchmarkResult__aggregate(...) 11. └─mlr3misc::map_dtr(...) 12. ├─data.table::rbindlist(...) 13. ├─base::unname(map(.x, .f, ...)) 14. └─mlr3misc::map(.x, .f, ...) 15. └─base::lapply(.x, .f, ...) 16. └─mlr3 (local) FUN(X[[i]], ...) 17. ├─base::as.list(resample_result_aggregate(rr, measures)) 18. └─mlr3:::resample_result_aggregate(rr, measures) 19. ├─... %??% set_names(numeric(), character()) 20. ├─base::unlist(...) 21. └─mlr3misc::map(...) 22. └─base::lapply(.x, .f, ...) 23. └─mlr3 (local) FUN(X[[i]], ...) 24. └─m$aggregate(rr) 25. └─mlr3:::.__Measure__aggregate(...) 26. └─mlr3:::score_measures(...) 27. └─mlr3misc::pmap_dbl(...) 28. └─mlr3misc:::mapply_list(.f, .x, list(...)) 29. └─base::.mapply(.f, .dots, .args) 30. └─mlr3 (local) `<fn>`(...) 31. └─mlr3:::score_single_measure(...) 32. └─get_private(measure)$.score(...) 33. └─mlr3fairness:::.__MeasureFairness__.score(...) 34. └─mlr3fairness:::score_groupwise(...) 35. └─mlr3misc::map_dbl(...) 36. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 37. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 38. └─mlr3fairness (local) FUN(X[[i]], ...) [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.3.2
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘debiasing-vignette.Rmd’ using rmarkdown Quitting from debiasing-vignette.Rmd:55-57 [unnamed-chunk-4] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `task_set_roles()`: ! Assertion on 'roles' failed: Must be a subset of {'feature','target','name','order','stratum','group','offset','weights_learner','weights_measure','pta'}, but has additional elements {'weight'}. This happened PipeOp reweighing_wts's $train() --- Backtrace: ▆ 1. ├─p1$train(list(task)) 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3fairness:::.__PipeOpReweighingWeights__.train_task(...) 8. │ └─task$set_col_roles(weightcolname, "weight") 9. │ └─mlr3:::.__Task__set_col_roles(...) 10. │ └─mlr3:::task_set_roles(...) 11. │ └─checkmate::assert_subset(roles, names(li)) 12. │ └─checkmate::makeAssertion(x, res, .var.name, add) 13. │ └─checkmate:::mstop(...) 14. │ └─base::stop(simpleError(sprintf(msg, ...), call.)) 15. └─mlr3pipelines (local) `<fn>`(`<smplErrr>`) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'debiasing-vignette.Rmd' failed with diagnostics: Assertion on 'roles' failed: Must be a subset of {'feature','target','name','order','stratum','group','offset','weights_learner','weights_measure','pta'}, but has additional elements {'weight'}. This happened PipeOp reweighing_wts's $train() --- failed re-building ‘debiasing-vignette.Rmd’ --- re-building ‘measures-vignette.Rmd’ using rmarkdown Quitting from measures-vignette.Rmd:88-90 [unnamed-chunk-6] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! unused argument (weights = NULL) --- Backtrace: ▆ 1. └─prd$score(msr("fairness.tpr"), task = test) 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'measures-vignette.Rmd' failed with diagnostics: unused argument (weights = NULL) --- failed re-building ‘measures-vignette.Rmd’ --- re-building ‘reports-vignette.Rmd’ using rmarkdown Quitting from reports-vignette.Rmd:51-54 [build_modelcard_example_for_vignette] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `loadNamespace()`: ! there is no package called 'posterdown' --- Backtrace: ▆ 1. ├─rmarkdown::render(rmdfile) 2. │ └─rmarkdown:::create_output_format(output_format$name, output_format$options) 3. │ └─rmarkdown:::create_output_format_function(name) 4. │ └─base::eval(xfun::parse_only(name)) 5. │ └─base::eval(xfun::parse_only(name)) 6. └─base::loadNamespace(x) 7. └─base::withRestarts(stop(cond), retry_loadNamespace = function() NULL) 8. └─base (local) withOneRestart(expr, restarts[[1L]]) 9. └─base (local) doWithOneRestart(return(expr), restart) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'reports-vignette.Rmd' failed with diagnostics: there is no package called 'posterdown' --- failed re-building ‘reports-vignette.Rmd’ --- re-building ‘visualization-vignette.Rmd’ using rmarkdown ** Processing: /home/hornik/tmp/R.check/r-devel-gcc/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-6-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 15325 bytes Input file size = 15415 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12125 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12125 Output IDAT size = 12125 bytes (3200 bytes decrease) Output file size = 12203 bytes (3212 bytes = 20.84% decrease) ** Processing: /home/hornik/tmp/R.check/r-devel-gcc/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-7-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 17340 bytes Input file size = 17442 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12948 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12948 Output IDAT size = 12948 bytes (4392 bytes decrease) Output file size = 13026 bytes (4416 bytes = 25.32% decrease) Quitting from visualization-vignette.Rmd:88-90 [unnamed-chunk-8] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! unused argument (weights = NULL) --- Backtrace: ▆ 1. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, msr("fairness.fpr")) 2. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 3. └─object$aggregate(list(acc_measure, fairness_measure)) 4. └─mlr3:::.__BenchmarkResult__aggregate(...) 5. └─mlr3misc::map_dtr(...) 6. ├─data.table::rbindlist(...) 7. ├─base::unname(map(.x, .f, ...)) 8. └─mlr3misc::map(.x, .f, ...) 9. └─base::lapply(.x, .f, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. ├─base::as.list(resample_result_aggregate(rr, measures)) 12. └─mlr3:::resample_result_aggregate(rr, measures) 13. ├─... %??% set_names(numeric(), character()) 14. ├─base::unlist(...) 15. └─mlr3misc::map(...) 16. └─base::lapply(.x, .f, ...) 17. └─mlr3 (local) FUN(X[[i]], ...) 18. └─m$aggregate(rr) 19. └─mlr3:::.__Measure__aggregate(...) 20. └─mlr3:::score_measures(...) 21. └─mlr3misc::pmap_dbl(...) 22. └─mlr3misc:::mapply_list(.f, .x, list(...)) 23. └─base::.mapply(.f, .dots, .args) 24. └─mlr3 (local) `<fn>`(...) 25. └─mlr3:::score_single_measure(...) 26. └─get_private(measure)$.score(...) 27. └─mlr3fairness:::.__MeasureFairness__.score(...) 28. └─mlr3fairness:::score_groupwise(...) 29. └─mlr3misc::map_dbl(...) 30. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 31. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 32. └─mlr3fairness (local) FUN(X[[i]], ...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'visualization-vignette.Rmd' failed with diagnostics: unused argument (weights = NULL) --- failed re-building ‘visualization-vignette.Rmd’ SUMMARY: processing the following files failed: ‘debiasing-vignette.Rmd’ ‘measures-vignette.Rmd’ ‘reports-vignette.Rmd’ ‘visualization-vignette.Rmd’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.3.2
Check: examples
Result: ERROR Running examples in ‘mlr3fairness-Ex.R’ failed The error most likely occurred in: > ### Name: MeasureFairness > ### Title: Base Measure for Fairness > ### Aliases: MeasureFairness > > ### ** Examples > > library("mlr3") > # Create MeasureFairness to measure the Predictive Parity. > t = tsk("adult_train") > learner = lrn("classif.rpart", cp = .01) > learner$train(t) > measure = msr("fairness", base_measure = msr("classif.ppv")) > predictions = learner$predict(t) > predictions$score(measure, task = t) Error in prediction$clone()$filter(rws)$score(base_measure, task = task, : unused argument (weights = NULL) Calls: <Anonymous> ... score_groupwise -> map_dbl -> map_mold -> vapply -> FUN Execution halted Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-release-windows-x86_64, r-oldrel-windows-x86_64

Version: 0.3.2
Check: tests
Result: ERROR Running ‘testthat.R’ [26s/54s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3") + library("mlr3pipelines") + library("mlr3fairness") + test_check("mlr3fairness") + } INFO [12:15:07.047] [mlr3] Running benchmark with 12 resampling iterations INFO [12:15:08.137] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [12:15:08.508] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [12:15:08.738] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [12:15:08.956] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [12:15:09.111] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [12:15:09.340] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [12:15:09.495] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [12:15:09.728] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [12:15:09.901] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [12:15:10.086] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [12:15:10.224] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [12:15:10.330] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [12:15:10.462] [mlr3] Finished benchmark INFO [12:15:11.784] [mlr3] Running benchmark with 12 resampling iterations INFO [12:15:12.198] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [12:15:12.360] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [12:15:12.550] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [12:15:12.735] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [12:15:12.876] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [12:15:13.022] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [12:15:13.150] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [12:15:13.305] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [12:15:13.400] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [12:15:13.491] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [12:15:13.542] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [12:15:13.658] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [12:15:13.713] [mlr3] Finished benchmark INFO [12:15:14.190] [mlr3] Running benchmark with 12 resampling iterations INFO [12:15:14.220] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [12:15:14.382] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [12:15:14.449] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [12:15:14.516] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [12:15:14.574] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [12:15:14.623] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [12:15:14.711] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [12:15:15.040] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [12:15:15.198] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [12:15:15.329] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [12:15:15.500] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [12:15:15.630] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [12:15:15.764] [mlr3] Finished benchmark [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] ══ Skipped tests (30) ══════════════════════════════════════════════════════════ • On CRAN (30): 'test_datasets.R:16:3', 'test_datasets.R:32:3', 'test_datasets.R:47:3', 'test_learners_fairml.R:2:5', 'test_learners_fairml.R:12:5', 'test_learners_fairml.R:25:5', 'test_learners_fairml.R:39:5', 'test_learners_fairml.R:51:5', 'test_learners_fairml_ptas.R:2:5', 'test_learners_fairml_ptas.R:17:5', 'test_measure_subgroup.R:47:3', 'test_measure_subgroup.R:66:3', 'test_pipeop_eod.R:2:3', 'test_pipeop_eod.R:17:3', 'test_pipeop_eod.R:57:3', 'test_pipeop_explicit_pta.R:3:5', 'test_pipeop_explicit_pta.R:17:5', 'test_pipeop_reweighing.R:2:3', 'test_pipeop_reweighing.R:15:3', 'test_pipeop_reweighing.R:25:3', 'test_pipeop_reweighing.R:34:3', 'test_pipeop_reweighing.R:51:3', 'test_pipeop_reweighing.R:61:3', 'test_report_modelcard_datasheet.R:2:3', 'test_report_modelcard_datasheet.R:18:3', 'test_report_modelcard_datasheet.R:34:3', 'test_use_modelcard_datasheet.R:2:3', 'test_use_modelcard_datasheet.R:17:3', 'test_use_modelcard_datasheet.R:31:3', 'test_write_files.R:2:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_measure_subgroup.R:20:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:20:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measure_subgroup.R:32:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:32:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measures.R:51:9'): fairness measures work as expcted ─────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:51:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:71:9'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:71:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:92:3'): fairness errors on missing pta, works with ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:92:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(prd$score(msr("fairness.acc"), task = task)) 5. └─prd$score(msr("fairness.acc"), task = task) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:111:3'): fairness works with non-binary pta ───────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:111:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:129:3'): fairness works on non-binary target ──────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:129:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:140:3'): fairness.fpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:140:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(round(predictions$score(msr_obj, test_data), 4)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:145:3'): fairness.acc can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:145:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:150:3'): fairness.fnr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:150:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:155:3'): fairness.tpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:155:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:160:3'): fairness.ppv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:160:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:165:3'): fairness.npv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:165:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:170:3'): fairness.fp can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:170:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:175:3'): fairness.fn can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:175:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:180:3'): fairness.pp (disparate impact score) can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:180:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:194:7'): fairness constraint measures - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_measures.R:192:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. └─mlr3misc::map_dbl(...) at test_measures.R:193:5 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3fairness (local) FUN(X[[i]], ...) 8. └─prd$score(measures = msr(m), task = tsk) at test_measures.R:194:7 9. └─mlr3:::.__Prediction__score(...) 10. └─mlr3misc::map_dbl(...) 11. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 12. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 13. └─mlr3 (local) FUN(X[[i]], ...) 14. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 15. └─mlr3:::.__Measure__score(...) 16. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 17. └─get_private(measure)$.score(...) 18. └─mlr3fairness:::.__MeasureFairness__.score(...) 19. └─mlr3fairness:::score_groupwise(...) 20. └─mlr3misc::map_dbl(...) 21. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 22. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 23. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:249:3'): Args are passed on correctly ─────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(mfa, task = t, train_set = 1:10) at test_measures.R:249:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:271:11'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:271:11 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:10:5'): fairness_accuracy_tradeoff ──────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_visualizations.R:9:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. ├─mlr3fairness:::check_plots(fairness_accuracy_tradeoff(bmr, fmsr)) at test_visualizations.R:10:5 5. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at tests/testthat/helper_test.R:4:3 6. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 7. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 8. │ └─ggplot2::is.ggplot(ggplot_obj) 9. │ └─ggplot2::is_ggplot(x) 10. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, fmsr) 11. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 12. └─object$aggregate(list(acc_measure, fairness_measure)) 13. └─mlr3:::.__BenchmarkResult__aggregate(...) 14. └─mlr3misc::map_dtr(...) 15. ├─data.table::rbindlist(...) 16. ├─base::unname(map(.x, .f, ...)) 17. └─mlr3misc::map(.x, .f, ...) 18. └─base::lapply(.x, .f, ...) 19. └─mlr3 (local) FUN(X[[i]], ...) 20. ├─base::as.list(resample_result_aggregate(rr, measures)) 21. └─mlr3:::resample_result_aggregate(rr, measures) 22. ├─... %??% set_names(numeric(), character()) 23. ├─base::unlist(...) 24. └─mlr3misc::map(...) 25. └─base::lapply(.x, .f, ...) 26. └─mlr3 (local) FUN(X[[i]], ...) 27. └─m$aggregate(rr) 28. └─mlr3:::.__Measure__aggregate(...) 29. └─mlr3:::score_measures(...) 30. └─mlr3misc::pmap_dbl(...) 31. └─mlr3misc:::mapply_list(.f, .x, list(...)) 32. └─base::.mapply(.f, .dots, .args) 33. └─mlr3 (local) `<fn>`(...) 34. └─mlr3:::score_single_measure(...) 35. └─get_private(measure)$.score(...) 36. └─mlr3fairness:::.__MeasureFairness__.score(...) 37. └─mlr3fairness:::score_groupwise(...) 38. └─mlr3misc::map_dbl(...) 39. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 40. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 41. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:33:3'): compare_metrics ─────────────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─mlr3fairness:::check_plots(compare_metrics(bmr, fairness_measures)) at test_visualizations.R:33:3 2. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at tests/testthat/helper_test.R:4:3 3. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─ggplot2::is.ggplot(ggplot_obj) 6. │ └─ggplot2::is_ggplot(x) 7. ├─mlr3fairness::compare_metrics(bmr, fairness_measures) 8. └─mlr3fairness:::compare_metrics.BenchmarkResult(bmr, fairness_measures) 9. └─object$aggregate(measures, ...) 10. └─mlr3:::.__BenchmarkResult__aggregate(...) 11. └─mlr3misc::map_dtr(...) 12. ├─data.table::rbindlist(...) 13. ├─base::unname(map(.x, .f, ...)) 14. └─mlr3misc::map(.x, .f, ...) 15. └─base::lapply(.x, .f, ...) 16. └─mlr3 (local) FUN(X[[i]], ...) 17. ├─base::as.list(resample_result_aggregate(rr, measures)) 18. └─mlr3:::resample_result_aggregate(rr, measures) 19. ├─... %??% set_names(numeric(), character()) 20. ├─base::unlist(...) 21. └─mlr3misc::map(...) 22. └─base::lapply(.x, .f, ...) 23. └─mlr3 (local) FUN(X[[i]], ...) 24. └─m$aggregate(rr) 25. └─mlr3:::.__Measure__aggregate(...) 26. └─mlr3:::score_measures(...) 27. └─mlr3misc::pmap_dbl(...) 28. └─mlr3misc:::mapply_list(.f, .x, list(...)) 29. └─base::.mapply(.f, .dots, .args) 30. └─mlr3 (local) `<fn>`(...) 31. └─mlr3:::score_single_measure(...) 32. └─get_private(measure)$.score(...) 33. └─mlr3fairness:::.__MeasureFairness__.score(...) 34. └─mlr3fairness:::score_groupwise(...) 35. └─mlr3misc::map_dbl(...) 36. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 37. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 38. └─mlr3fairness (local) FUN(X[[i]], ...) [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.3.2
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building ‘debiasing-vignette.Rmd’ using rmarkdown Quitting from debiasing-vignette.Rmd:55-57 [unnamed-chunk-4] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `task_set_roles()`: ! Assertion on 'roles' failed: Must be a subset of {'feature','target','name','order','stratum','group','offset','weights_learner','weights_measure','pta'}, but has additional elements {'weight'}. This happened PipeOp reweighing_wts's $train() --- Backtrace: ▆ 1. ├─p1$train(list(task)) 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3fairness:::.__PipeOpReweighingWeights__.train_task(...) 8. │ └─task$set_col_roles(weightcolname, "weight") 9. │ └─mlr3:::.__Task__set_col_roles(...) 10. │ └─mlr3:::task_set_roles(...) 11. │ └─checkmate::assert_subset(roles, names(li)) 12. │ └─checkmate::makeAssertion(x, res, .var.name, add) 13. │ └─checkmate:::mstop(...) 14. │ └─base::stop(simpleError(sprintf(msg, ...), call.)) 15. └─mlr3pipelines (local) `<fn>`(`<smplErrr>`) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'debiasing-vignette.Rmd' failed with diagnostics: Assertion on 'roles' failed: Must be a subset of {'feature','target','name','order','stratum','group','offset','weights_learner','weights_measure','pta'}, but has additional elements {'weight'}. This happened PipeOp reweighing_wts's $train() --- failed re-building ‘debiasing-vignette.Rmd’ --- re-building ‘measures-vignette.Rmd’ using rmarkdown Quitting from measures-vignette.Rmd:88-90 [unnamed-chunk-6] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! unused argument (weights = NULL) --- Backtrace: ▆ 1. └─prd$score(msr("fairness.tpr"), task = test) 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'measures-vignette.Rmd' failed with diagnostics: unused argument (weights = NULL) --- failed re-building ‘measures-vignette.Rmd’ --- re-building ‘reports-vignette.Rmd’ using rmarkdown Quitting from reports-vignette.Rmd:51-54 [build_modelcard_example_for_vignette] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `loadNamespace()`: ! there is no package called 'posterdown' --- Backtrace: ▆ 1. ├─rmarkdown::render(rmdfile) 2. │ └─rmarkdown:::create_output_format(output_format$name, output_format$options) 3. │ └─rmarkdown:::create_output_format_function(name) 4. │ └─base::eval(xfun::parse_only(name)) 5. │ └─base::eval(xfun::parse_only(name)) 6. └─base::loadNamespace(x) 7. └─base::withRestarts(stop(cond), retry_loadNamespace = function() NULL) 8. └─base (local) withOneRestart(expr, restarts[[1L]]) 9. └─base (local) doWithOneRestart(return(expr), restart) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'reports-vignette.Rmd' failed with diagnostics: there is no package called 'posterdown' --- failed re-building ‘reports-vignette.Rmd’ --- re-building ‘visualization-vignette.Rmd’ using rmarkdown Quitting from visualization-vignette.Rmd:88-90 [unnamed-chunk-8] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! unused argument (weights = NULL) --- Backtrace: ▆ 1. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, msr("fairness.fpr")) 2. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 3. └─object$aggregate(list(acc_measure, fairness_measure)) 4. └─mlr3:::.__BenchmarkResult__aggregate(...) 5. └─mlr3misc::map_dtr(...) 6. ├─data.table::rbindlist(...) 7. ├─base::unname(map(.x, .f, ...)) 8. └─mlr3misc::map(.x, .f, ...) 9. └─base::lapply(.x, .f, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. ├─base::as.list(resample_result_aggregate(rr, measures)) 12. └─mlr3:::resample_result_aggregate(rr, measures) 13. ├─... %??% set_names(numeric(), character()) 14. ├─base::unlist(...) 15. └─mlr3misc::map(...) 16. └─base::lapply(.x, .f, ...) 17. └─mlr3 (local) FUN(X[[i]], ...) 18. └─m$aggregate(rr) 19. └─mlr3:::.__Measure__aggregate(...) 20. └─mlr3:::score_measures(...) 21. └─mlr3misc::pmap_dbl(...) 22. └─mlr3misc:::mapply_list(.f, .x, list(...)) 23. └─base::.mapply(.f, .dots, .args) 24. └─mlr3 (local) `<fn>`(...) 25. └─mlr3:::score_single_measure(...) 26. └─get_private(measure)$.score(...) 27. └─mlr3fairness:::.__MeasureFairness__.score(...) 28. └─mlr3fairness:::score_groupwise(...) 29. └─mlr3misc::map_dbl(...) 30. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 31. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 32. └─mlr3fairness (local) FUN(X[[i]], ...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'visualization-vignette.Rmd' failed with diagnostics: unused argument (weights = NULL) --- failed re-building ‘visualization-vignette.Rmd’ SUMMARY: processing the following files failed: ‘debiasing-vignette.Rmd’ ‘measures-vignette.Rmd’ ‘reports-vignette.Rmd’ ‘visualization-vignette.Rmd’ Error: Vignette re-building failed. Execution halted Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 0.3.2
Check: tests
Result: ERROR Running ‘testthat.R’ [22s/36s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3") + library("mlr3pipelines") + library("mlr3fairness") + test_check("mlr3fairness") + } INFO [08:56:32.384] [mlr3] Running benchmark with 12 resampling iterations INFO [08:56:32.953] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [08:56:33.094] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [08:56:33.234] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [08:56:33.383] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [08:56:33.441] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [08:56:33.541] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [08:56:33.640] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [08:56:33.810] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [08:56:33.935] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [08:56:34.070] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [08:56:34.172] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [08:56:34.268] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [08:56:34.382] [mlr3] Finished benchmark INFO [08:56:35.471] [mlr3] Running benchmark with 12 resampling iterations INFO [08:56:35.650] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [08:56:35.828] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [08:56:35.980] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [08:56:36.055] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [08:56:36.125] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [08:56:36.232] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [08:56:36.316] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [08:56:36.384] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [08:56:36.451] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [08:56:36.524] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [08:56:36.594] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [08:56:36.664] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [08:56:36.717] [mlr3] Finished benchmark INFO [08:56:37.111] [mlr3] Running benchmark with 12 resampling iterations INFO [08:56:37.143] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [08:56:37.215] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [08:56:37.279] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [08:56:37.343] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [08:56:37.429] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [08:56:37.492] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [08:56:37.562] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [08:56:37.674] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [08:56:37.816] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [08:56:37.951] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [08:56:38.051] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [08:56:38.121] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [08:56:38.197] [mlr3] Finished benchmark [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] ══ Skipped tests (30) ══════════════════════════════════════════════════════════ • On CRAN (30): 'test_datasets.R:16:3', 'test_datasets.R:32:3', 'test_datasets.R:47:3', 'test_learners_fairml.R:2:5', 'test_learners_fairml.R:12:5', 'test_learners_fairml.R:25:5', 'test_learners_fairml.R:39:5', 'test_learners_fairml.R:51:5', 'test_learners_fairml_ptas.R:2:5', 'test_learners_fairml_ptas.R:17:5', 'test_measure_subgroup.R:47:3', 'test_measure_subgroup.R:66:3', 'test_pipeop_eod.R:2:3', 'test_pipeop_eod.R:17:3', 'test_pipeop_eod.R:57:3', 'test_pipeop_explicit_pta.R:3:5', 'test_pipeop_explicit_pta.R:17:5', 'test_pipeop_reweighing.R:2:3', 'test_pipeop_reweighing.R:15:3', 'test_pipeop_reweighing.R:25:3', 'test_pipeop_reweighing.R:34:3', 'test_pipeop_reweighing.R:51:3', 'test_pipeop_reweighing.R:61:3', 'test_report_modelcard_datasheet.R:2:3', 'test_report_modelcard_datasheet.R:18:3', 'test_report_modelcard_datasheet.R:34:3', 'test_use_modelcard_datasheet.R:2:3', 'test_use_modelcard_datasheet.R:17:3', 'test_use_modelcard_datasheet.R:31:3', 'test_write_files.R:2:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_measure_subgroup.R:20:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:20:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measure_subgroup.R:32:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:32:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measures.R:51:9'): fairness measures work as expcted ─────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:51:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:71:9'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:71:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:92:3'): fairness errors on missing pta, works with ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:92:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(prd$score(msr("fairness.acc"), task = task)) 5. └─prd$score(msr("fairness.acc"), task = task) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:111:3'): fairness works with non-binary pta ───────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:111:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:129:3'): fairness works on non-binary target ──────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:129:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:140:3'): fairness.fpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:140:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(round(predictions$score(msr_obj, test_data), 4)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:145:3'): fairness.acc can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:145:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:150:3'): fairness.fnr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:150:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:155:3'): fairness.tpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:155:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:160:3'): fairness.ppv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:160:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:165:3'): fairness.npv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:165:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:170:3'): fairness.fp can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:170:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:175:3'): fairness.fn can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:175:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:180:3'): fairness.pp (disparate impact score) can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:180:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:194:7'): fairness constraint measures - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_measures.R:192:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. └─mlr3misc::map_dbl(...) at test_measures.R:193:5 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3fairness (local) FUN(X[[i]], ...) 8. └─prd$score(measures = msr(m), task = tsk) at test_measures.R:194:7 9. └─mlr3:::.__Prediction__score(...) 10. └─mlr3misc::map_dbl(...) 11. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 12. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 13. └─mlr3 (local) FUN(X[[i]], ...) 14. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 15. └─mlr3:::.__Measure__score(...) 16. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 17. └─get_private(measure)$.score(...) 18. └─mlr3fairness:::.__MeasureFairness__.score(...) 19. └─mlr3fairness:::score_groupwise(...) 20. └─mlr3misc::map_dbl(...) 21. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 22. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 23. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:249:3'): Args are passed on correctly ─────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(mfa, task = t, train_set = 1:10) at test_measures.R:249:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:271:11'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:271:11 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:10:5'): fairness_accuracy_tradeoff ──────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_visualizations.R:9:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. ├─mlr3fairness:::check_plots(fairness_accuracy_tradeoff(bmr, fmsr)) at test_visualizations.R:10:5 5. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at tests/testthat/helper_test.R:4:3 6. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 7. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 8. │ └─ggplot2::is.ggplot(ggplot_obj) 9. │ └─ggplot2::is_ggplot(x) 10. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, fmsr) 11. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 12. └─object$aggregate(list(acc_measure, fairness_measure)) 13. └─mlr3:::.__BenchmarkResult__aggregate(...) 14. └─mlr3misc::map_dtr(...) 15. ├─data.table::rbindlist(...) 16. ├─base::unname(map(.x, .f, ...)) 17. └─mlr3misc::map(.x, .f, ...) 18. └─base::lapply(.x, .f, ...) 19. └─mlr3 (local) FUN(X[[i]], ...) 20. ├─base::as.list(resample_result_aggregate(rr, measures)) 21. └─mlr3:::resample_result_aggregate(rr, measures) 22. ├─... %??% set_names(numeric(), character()) 23. ├─base::unlist(...) 24. └─mlr3misc::map(...) 25. └─base::lapply(.x, .f, ...) 26. └─mlr3 (local) FUN(X[[i]], ...) 27. └─m$aggregate(rr) 28. └─mlr3:::.__Measure__aggregate(...) 29. └─mlr3:::score_measures(...) 30. └─mlr3misc::pmap_dbl(...) 31. └─mlr3misc:::mapply_list(.f, .x, list(...)) 32. └─base::.mapply(.f, .dots, .args) 33. └─mlr3 (local) `<fn>`(...) 34. └─mlr3:::score_single_measure(...) 35. └─get_private(measure)$.score(...) 36. └─mlr3fairness:::.__MeasureFairness__.score(...) 37. └─mlr3fairness:::score_groupwise(...) 38. └─mlr3misc::map_dbl(...) 39. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 40. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 41. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:33:3'): compare_metrics ─────────────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─mlr3fairness:::check_plots(compare_metrics(bmr, fairness_measures)) at test_visualizations.R:33:3 2. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at tests/testthat/helper_test.R:4:3 3. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─ggplot2::is.ggplot(ggplot_obj) 6. │ └─ggplot2::is_ggplot(x) 7. ├─mlr3fairness::compare_metrics(bmr, fairness_measures) 8. └─mlr3fairness:::compare_metrics.BenchmarkResult(bmr, fairness_measures) 9. └─object$aggregate(measures, ...) 10. └─mlr3:::.__BenchmarkResult__aggregate(...) 11. └─mlr3misc::map_dtr(...) 12. ├─data.table::rbindlist(...) 13. ├─base::unname(map(.x, .f, ...)) 14. └─mlr3misc::map(.x, .f, ...) 15. └─base::lapply(.x, .f, ...) 16. └─mlr3 (local) FUN(X[[i]], ...) 17. ├─base::as.list(resample_result_aggregate(rr, measures)) 18. └─mlr3:::resample_result_aggregate(rr, measures) 19. ├─... %??% set_names(numeric(), character()) 20. ├─base::unlist(...) 21. └─mlr3misc::map(...) 22. └─base::lapply(.x, .f, ...) 23. └─mlr3 (local) FUN(X[[i]], ...) 24. └─m$aggregate(rr) 25. └─mlr3:::.__Measure__aggregate(...) 26. └─mlr3:::score_measures(...) 27. └─mlr3misc::pmap_dbl(...) 28. └─mlr3misc:::mapply_list(.f, .x, list(...)) 29. └─base::.mapply(.f, .dots, .args) 30. └─mlr3 (local) `<fn>`(...) 31. └─mlr3:::score_single_measure(...) 32. └─get_private(measure)$.score(...) 33. └─mlr3fairness:::.__MeasureFairness__.score(...) 34. └─mlr3fairness:::score_groupwise(...) 35. └─mlr3misc::map_dbl(...) 36. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 37. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 38. └─mlr3fairness (local) FUN(X[[i]], ...) [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.3.2
Check: tests
Result: ERROR Running 'testthat.R' [11s] Running the tests in 'tests/testthat.R' failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3") + library("mlr3pipelines") + library("mlr3fairness") + test_check("mlr3fairness") + } INFO [15:45:19.283] [mlr3] Running benchmark with 12 resampling iterations INFO [15:45:19.428] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [15:45:19.470] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [15:45:19.498] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [15:45:19.540] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [15:45:19.576] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [15:45:19.617] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [15:45:19.652] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [15:45:19.679] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [15:45:19.702] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [15:45:19.725] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [15:45:19.751] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [15:45:19.783] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [15:45:19.813] [mlr3] Finished benchmark INFO [15:45:20.063] [mlr3] Running benchmark with 12 resampling iterations INFO [15:45:20.087] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [15:45:20.122] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [15:45:20.166] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [15:45:20.203] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [15:45:20.232] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [15:45:20.265] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [15:45:20.292] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [15:45:20.318] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [15:45:20.353] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [15:45:20.395] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [15:45:20.422] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [15:45:20.450] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [15:45:20.478] [mlr3] Finished benchmark INFO [15:45:20.635] [mlr3] Running benchmark with 12 resampling iterations INFO [15:45:20.653] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [15:45:20.684] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [15:45:20.717] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [15:45:20.751] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [15:45:20.788] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [15:45:20.819] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [15:45:20.850] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [15:45:20.890] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [15:45:20.929] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [15:45:20.967] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [15:45:20.996] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [15:45:21.035] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [15:45:21.062] [mlr3] Finished benchmark [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] ══ Skipped tests (30) ══════════════════════════════════════════════════════════ • On CRAN (30): 'test_datasets.R:16:3', 'test_datasets.R:32:3', 'test_datasets.R:47:3', 'test_learners_fairml.R:2:5', 'test_learners_fairml.R:12:5', 'test_learners_fairml.R:25:5', 'test_learners_fairml.R:39:5', 'test_learners_fairml.R:51:5', 'test_learners_fairml_ptas.R:2:5', 'test_learners_fairml_ptas.R:17:5', 'test_measure_subgroup.R:47:3', 'test_measure_subgroup.R:66:3', 'test_pipeop_eod.R:2:3', 'test_pipeop_eod.R:17:3', 'test_pipeop_eod.R:57:3', 'test_pipeop_explicit_pta.R:3:5', 'test_pipeop_explicit_pta.R:17:5', 'test_pipeop_reweighing.R:2:3', 'test_pipeop_reweighing.R:15:3', 'test_pipeop_reweighing.R:25:3', 'test_pipeop_reweighing.R:34:3', 'test_pipeop_reweighing.R:51:3', 'test_pipeop_reweighing.R:61:3', 'test_report_modelcard_datasheet.R:2:3', 'test_report_modelcard_datasheet.R:18:3', 'test_report_modelcard_datasheet.R:34:3', 'test_use_modelcard_datasheet.R:2:3', 'test_use_modelcard_datasheet.R:17:3', 'test_use_modelcard_datasheet.R:31:3', 'test_write_files.R:2:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_measure_subgroup.R:20:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:20:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measure_subgroup.R:32:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:32:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measures.R:51:9'): fairness measures work as expcted ─────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:51:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:71:9'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:71:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:92:3'): fairness errors on missing pta, works with ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:92:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(prd$score(msr("fairness.acc"), task = task)) 5. └─prd$score(msr("fairness.acc"), task = task) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:111:3'): fairness works with non-binary pta ───────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:111:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:129:3'): fairness works on non-binary target ──────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:129:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:140:3'): fairness.fpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:140:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(round(predictions$score(msr_obj, test_data), 4)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:145:3'): fairness.acc can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:145:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:150:3'): fairness.fnr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:150:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:155:3'): fairness.tpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:155:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:160:3'): fairness.ppv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:160:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:165:3'): fairness.npv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:165:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:170:3'): fairness.fp can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:170:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:175:3'): fairness.fn can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:175:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:180:3'): fairness.pp (disparate impact score) can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:180:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:194:7'): fairness constraint measures - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_measures.R:192:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. └─mlr3misc::map_dbl(...) at test_measures.R:193:5 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3fairness (local) FUN(X[[i]], ...) 8. └─prd$score(measures = msr(m), task = tsk) at test_measures.R:194:7 9. └─mlr3:::.__Prediction__score(...) 10. └─mlr3misc::map_dbl(...) 11. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 12. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 13. └─mlr3 (local) FUN(X[[i]], ...) 14. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 15. └─mlr3:::.__Measure__score(...) 16. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 17. └─get_private(measure)$.score(...) 18. └─mlr3fairness:::.__MeasureFairness__.score(...) 19. └─mlr3fairness:::score_groupwise(...) 20. └─mlr3misc::map_dbl(...) 21. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 22. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 23. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:249:3'): Args are passed on correctly ─────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(mfa, task = t, train_set = 1:10) at test_measures.R:249:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:271:11'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:271:11 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:10:5'): fairness_accuracy_tradeoff ──────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_visualizations.R:9:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. ├─mlr3fairness:::check_plots(fairness_accuracy_tradeoff(bmr, fmsr)) at test_visualizations.R:10:5 5. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at D:\RCompile\CRANpkg\local\4.6\mlr3fairness.Rcheck\tests\testthat\helper_test.R:4:3 6. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 7. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 8. │ └─ggplot2::is.ggplot(ggplot_obj) 9. │ └─ggplot2::is_ggplot(x) 10. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, fmsr) 11. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 12. └─object$aggregate(list(acc_measure, fairness_measure)) 13. └─mlr3:::.__BenchmarkResult__aggregate(...) 14. └─mlr3misc::map_dtr(...) 15. ├─data.table::rbindlist(...) 16. ├─base::unname(map(.x, .f, ...)) 17. └─mlr3misc::map(.x, .f, ...) 18. └─base::lapply(.x, .f, ...) 19. └─mlr3 (local) FUN(X[[i]], ...) 20. ├─base::as.list(resample_result_aggregate(rr, measures)) 21. └─mlr3:::resample_result_aggregate(rr, measures) 22. ├─... %??% set_names(numeric(), character()) 23. ├─base::unlist(...) 24. └─mlr3misc::map(...) 25. └─base::lapply(.x, .f, ...) 26. └─mlr3 (local) FUN(X[[i]], ...) 27. └─m$aggregate(rr) 28. └─mlr3:::.__Measure__aggregate(...) 29. └─mlr3:::score_measures(...) 30. └─mlr3misc::pmap_dbl(...) 31. └─mlr3misc:::mapply_list(.f, .x, list(...)) 32. └─base::.mapply(.f, .dots, .args) 33. └─mlr3 (local) `<fn>`(...) 34. └─mlr3:::score_single_measure(...) 35. └─get_private(measure)$.score(...) 36. └─mlr3fairness:::.__MeasureFairness__.score(...) 37. └─mlr3fairness:::score_groupwise(...) 38. └─mlr3misc::map_dbl(...) 39. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 40. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 41. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:33:3'): compare_metrics ─────────────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─mlr3fairness:::check_plots(compare_metrics(bmr, fairness_measures)) at test_visualizations.R:33:3 2. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at D:\RCompile\CRANpkg\local\4.6\mlr3fairness.Rcheck\tests\testthat\helper_test.R:4:3 3. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─ggplot2::is.ggplot(ggplot_obj) 6. │ └─ggplot2::is_ggplot(x) 7. ├─mlr3fairness::compare_metrics(bmr, fairness_measures) 8. └─mlr3fairness:::compare_metrics.BenchmarkResult(bmr, fairness_measures) 9. └─object$aggregate(measures, ...) 10. └─mlr3:::.__BenchmarkResult__aggregate(...) 11. └─mlr3misc::map_dtr(...) 12. ├─data.table::rbindlist(...) 13. ├─base::unname(map(.x, .f, ...)) 14. └─mlr3misc::map(.x, .f, ...) 15. └─base::lapply(.x, .f, ...) 16. └─mlr3 (local) FUN(X[[i]], ...) 17. ├─base::as.list(resample_result_aggregate(rr, measures)) 18. └─mlr3:::resample_result_aggregate(rr, measures) 19. ├─... %??% set_names(numeric(), character()) 20. ├─base::unlist(...) 21. └─mlr3misc::map(...) 22. └─base::lapply(.x, .f, ...) 23. └─mlr3 (local) FUN(X[[i]], ...) 24. └─m$aggregate(rr) 25. └─mlr3:::.__Measure__aggregate(...) 26. └─mlr3:::score_measures(...) 27. └─mlr3misc::pmap_dbl(...) 28. └─mlr3misc:::mapply_list(.f, .x, list(...)) 29. └─base::.mapply(.f, .dots, .args) 30. └─mlr3 (local) `<fn>`(...) 31. └─mlr3:::score_single_measure(...) 32. └─get_private(measure)$.score(...) 33. └─mlr3fairness:::.__MeasureFairness__.score(...) 34. └─mlr3fairness:::score_groupwise(...) 35. └─mlr3misc::map_dbl(...) 36. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 37. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 38. └─mlr3fairness (local) FUN(X[[i]], ...) [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] Error: Test failures Execution halted Flavor: r-devel-windows-x86_64

Version: 0.3.2
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building 'debiasing-vignette.Rmd' using rmarkdown Quitting from debiasing-vignette.Rmd:55-57 [unnamed-chunk-4] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `task_set_roles()`: ! Assertion on 'roles' failed: Must be a subset of {'feature','target','name','order','stratum','group','offset','weights_learner','weights_measure','pta'}, but has additional elements {'weight'}. This happened PipeOp reweighing_wts's $train() --- Backtrace: ▆ 1. ├─p1$train(list(task)) 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3fairness:::.__PipeOpReweighingWeights__.train_task(...) 8. │ └─task$set_col_roles(weightcolname, "weight") 9. │ └─mlr3:::.__Task__set_col_roles(...) 10. │ └─mlr3:::task_set_roles(...) 11. │ └─checkmate::assert_subset(roles, names(li)) 12. │ └─checkmate::makeAssertion(x, res, .var.name, add) 13. │ └─checkmate:::mstop(...) 14. │ └─base::stop(simpleError(sprintf(msg, ...), call.)) 15. └─mlr3pipelines (local) `<fn>`(`<smplErrr>`) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'debiasing-vignette.Rmd' failed with diagnostics: Assertion on 'roles' failed: Must be a subset of {'feature','target','name','order','stratum','group','offset','weights_learner','weights_measure','pta'}, but has additional elements {'weight'}. This happened PipeOp reweighing_wts's $train() --- failed re-building 'debiasing-vignette.Rmd' --- re-building 'measures-vignette.Rmd' using rmarkdown Quitting from measures-vignette.Rmd:88-90 [unnamed-chunk-6] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! unused argument (weights = NULL) --- Backtrace: ▆ 1. └─prd$score(msr("fairness.tpr"), task = test) 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'measures-vignette.Rmd' failed with diagnostics: unused argument (weights = NULL) --- failed re-building 'measures-vignette.Rmd' --- re-building 'reports-vignette.Rmd' using rmarkdown Quitting from reports-vignette.Rmd:69-75 [build_fairness_example_for_vignette] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! unused argument (weights = NULL) --- Backtrace: ▆ 1. ├─... %>% kable_paper("hover", full_width = F) 2. ├─kableExtra::kable_paper(., "hover", full_width = F) 3. │ └─kableExtra:::kable_light(...) 4. │ └─kableExtra::kable_styling(...) 5. ├─kableExtra::kbl(., col.names = c("value")) 6. │ └─knitr::kable(...) 7. └─resample_result$aggregate(fair_metrics) 8. └─mlr3:::.__ResampleResult__aggregate(...) 9. └─mlr3:::resample_result_aggregate(self, measures) 10. ├─... %??% set_names(numeric(), character()) 11. ├─base::unlist(...) 12. └─mlr3misc::map(...) 13. └─base::lapply(.x, .f, ...) 14. └─mlr3 (local) FUN(X[[i]], ...) 15. └─m$aggregate(rr) 16. └─mlr3:::.__Measure__aggregate(...) 17. └─mlr3:::score_measures(...) 18. └─mlr3misc::pmap_dbl(...) 19. └─mlr3misc:::mapply_list(.f, .x, list(...)) 20. └─base::.mapply(.f, .dots, .args) 21. └─mlr3 (local) `<fn>`(...) 22. └─mlr3:::score_single_measure(...) 23. └─get_private(measure)$.score(...) 24. └─mlr3fairness:::.__MeasureFairness__.score(...) 25. └─mlr3fairness:::score_groupwise(...) 26. └─mlr3misc::map_dbl(...) 27. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 28. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 29. └─mlr3fairness (local) FUN(X[[i]], ...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'reports-vignette.Rmd' failed with diagnostics: unused argument (weights = NULL) --- failed re-building 'reports-vignette.Rmd' --- re-building 'visualization-vignette.Rmd' using rmarkdown Quitting from visualization-vignette.Rmd:88-90 [unnamed-chunk-8] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! unused argument (weights = NULL) --- Backtrace: ▆ 1. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, msr("fairness.fpr")) 2. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 3. └─object$aggregate(list(acc_measure, fairness_measure)) 4. └─mlr3:::.__BenchmarkResult__aggregate(...) 5. └─mlr3misc::map_dtr(...) 6. ├─data.table::rbindlist(...) 7. ├─base::unname(map(.x, .f, ...)) 8. └─mlr3misc::map(.x, .f, ...) 9. └─base::lapply(.x, .f, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. ├─base::as.list(resample_result_aggregate(rr, measures)) 12. └─mlr3:::resample_result_aggregate(rr, measures) 13. ├─... %??% set_names(numeric(), character()) 14. ├─base::unlist(...) 15. └─mlr3misc::map(...) 16. └─base::lapply(.x, .f, ...) 17. └─mlr3 (local) FUN(X[[i]], ...) 18. └─m$aggregate(rr) 19. └─mlr3:::.__Measure__aggregate(...) 20. └─mlr3:::score_measures(...) 21. └─mlr3misc::pmap_dbl(...) 22. └─mlr3misc:::mapply_list(.f, .x, list(...)) 23. └─base::.mapply(.f, .dots, .args) 24. └─mlr3 (local) `<fn>`(...) 25. └─mlr3:::score_single_measure(...) 26. └─get_private(measure)$.score(...) 27. └─mlr3fairness:::.__MeasureFairness__.score(...) 28. └─mlr3fairness:::score_groupwise(...) 29. └─mlr3misc::map_dbl(...) 30. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 31. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 32. └─mlr3fairness (local) FUN(X[[i]], ...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'visualization-vignette.Rmd' failed with diagnostics: unused argument (weights = NULL) --- failed re-building 'visualization-vignette.Rmd' SUMMARY: processing the following files failed: 'debiasing-vignette.Rmd' 'measures-vignette.Rmd' 'reports-vignette.Rmd' 'visualization-vignette.Rmd' Error: Vignette re-building failed. Execution halted Flavors: r-devel-windows-x86_64, r-release-windows-x86_64, r-oldrel-windows-x86_64

Version: 0.3.2
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘debiasing-vignette.Rmd’ using rmarkdown ** Processing: /home/hornik/tmp/R.check/r-patched-gcc/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/debiasing-vignette_files/figure-html/unnamed-chunk-7-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 13804 bytes Input file size = 13894 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 10650 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 10650 Output IDAT size = 10650 bytes (3154 bytes decrease) Output file size = 10728 bytes (3166 bytes = 22.79% decrease) --- finished re-building ‘debiasing-vignette.Rmd’ --- re-building ‘measures-vignette.Rmd’ using rmarkdown --- finished re-building ‘measures-vignette.Rmd’ --- re-building ‘reports-vignette.Rmd’ using rmarkdown Quitting from reports-vignette.Rmd:51-54 [build_modelcard_example_for_vignette] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `loadNamespace()`: ! there is no package called 'posterdown' --- Backtrace: ▆ 1. ├─rmarkdown::render(rmdfile) 2. │ └─rmarkdown:::create_output_format(output_format$name, output_format$options) 3. │ └─rmarkdown:::create_output_format_function(name) 4. │ └─base::eval(xfun::parse_only(name)) 5. │ └─base::eval(xfun::parse_only(name)) 6. └─base::loadNamespace(x) 7. └─base::withRestarts(stop(cond), retry_loadNamespace = function() NULL) 8. └─base (local) withOneRestart(expr, restarts[[1L]]) 9. └─base (local) doWithOneRestart(return(expr), restart) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'reports-vignette.Rmd' failed with diagnostics: there is no package called 'posterdown' --- failed re-building ‘reports-vignette.Rmd’ --- re-building ‘visualization-vignette.Rmd’ using rmarkdown ** Processing: /home/hornik/tmp/R.check/r-patched-gcc/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-6-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 15644 bytes Input file size = 15734 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12463 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12463 Output IDAT size = 12463 bytes (3181 bytes decrease) Output file size = 12541 bytes (3193 bytes = 20.29% decrease) ** Processing: /home/hornik/tmp/R.check/r-patched-gcc/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-7-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 17998 bytes Input file size = 18100 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 13421 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 13421 Output IDAT size = 13421 bytes (4577 bytes decrease) Output file size = 13499 bytes (4601 bytes = 25.42% decrease) ** Processing: /home/hornik/tmp/R.check/r-patched-gcc/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-8-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 17899 bytes Input file size = 18001 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 13031 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 13031 Output IDAT size = 13031 bytes (4868 bytes decrease) Output file size = 13109 bytes (4892 bytes = 27.18% decrease) ** Processing: /home/hornik/tmp/R.check/r-patched-gcc/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-9-1.png 288x288 pixels, 8 bits/pixel, 234 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 2764 bytes Input file size = 3556 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 2595 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 2595 Output IDAT size = 2595 bytes (169 bytes decrease) Output file size = 2673 bytes (883 bytes = 24.83% decrease) ** Processing: /home/hornik/tmp/R.check/r-patched-gcc/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-10-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 10082 bytes Input file size = 10172 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 8053 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 8053 Output IDAT size = 8053 bytes (2029 bytes decrease) Output file size = 8131 bytes (2041 bytes = 20.06% decrease) ** Processing: /home/hornik/tmp/R.check/r-patched-gcc/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-12-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 12711 bytes Input file size = 12801 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9267 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9267 Output IDAT size = 9267 bytes (3444 bytes decrease) Output file size = 9345 bytes (3456 bytes = 27.00% decrease) --- finished re-building ‘visualization-vignette.Rmd’ SUMMARY: processing the following file failed: ‘reports-vignette.Rmd’ Error: Vignette re-building failed. Execution halted Flavor: r-patched-linux-x86_64

Version: 0.3.2
Check: tests
Result: ERROR Running ‘testthat.R’ [15s/26s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3") + library("mlr3pipelines") + library("mlr3fairness") + test_check("mlr3fairness") + } INFO [14:50:42.855] [mlr3] Running benchmark with 12 resampling iterations INFO [14:50:43.163] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [14:50:43.306] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [14:50:43.395] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [14:50:43.498] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [14:50:43.593] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [14:50:43.707] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [14:50:43.786] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [14:50:43.914] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [14:50:43.999] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [14:50:44.047] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [14:50:44.096] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [14:50:44.144] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [14:50:44.239] [mlr3] Finished benchmark INFO [14:50:45.005] [mlr3] Running benchmark with 12 resampling iterations INFO [14:50:45.096] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [14:50:45.180] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [14:50:45.267] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [14:50:45.361] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [14:50:45.452] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [14:50:45.536] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [14:50:45.622] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [14:50:45.768] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [14:50:45.853] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [14:50:45.928] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [14:50:46.059] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [14:50:46.146] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [14:50:46.241] [mlr3] Finished benchmark INFO [14:50:46.656] [mlr3] Running benchmark with 12 resampling iterations INFO [14:50:46.686] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [14:50:46.774] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [14:50:46.874] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [14:50:46.973] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [14:50:47.081] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [14:50:47.171] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [14:50:47.250] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [14:50:47.325] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [14:50:47.365] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [14:50:47.406] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [14:50:47.478] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [14:50:47.543] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [14:50:47.599] [mlr3] Finished benchmark [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] ══ Skipped tests (30) ══════════════════════════════════════════════════════════ • On CRAN (30): 'test_datasets.R:16:3', 'test_datasets.R:32:3', 'test_datasets.R:47:3', 'test_learners_fairml.R:2:5', 'test_learners_fairml.R:12:5', 'test_learners_fairml.R:25:5', 'test_learners_fairml.R:39:5', 'test_learners_fairml.R:51:5', 'test_learners_fairml_ptas.R:2:5', 'test_learners_fairml_ptas.R:17:5', 'test_measure_subgroup.R:47:3', 'test_measure_subgroup.R:66:3', 'test_pipeop_eod.R:2:3', 'test_pipeop_eod.R:17:3', 'test_pipeop_eod.R:57:3', 'test_pipeop_explicit_pta.R:3:5', 'test_pipeop_explicit_pta.R:17:5', 'test_pipeop_reweighing.R:2:3', 'test_pipeop_reweighing.R:15:3', 'test_pipeop_reweighing.R:25:3', 'test_pipeop_reweighing.R:34:3', 'test_pipeop_reweighing.R:51:3', 'test_pipeop_reweighing.R:61:3', 'test_report_modelcard_datasheet.R:2:3', 'test_report_modelcard_datasheet.R:18:3', 'test_report_modelcard_datasheet.R:34:3', 'test_use_modelcard_datasheet.R:2:3', 'test_use_modelcard_datasheet.R:17:3', 'test_use_modelcard_datasheet.R:31:3', 'test_write_files.R:2:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_measure_subgroup.R:20:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:20:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measure_subgroup.R:32:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:32:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measures.R:51:9'): fairness measures work as expcted ─────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:51:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:71:9'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:71:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:92:3'): fairness errors on missing pta, works with ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:92:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(prd$score(msr("fairness.acc"), task = task)) 5. └─prd$score(msr("fairness.acc"), task = task) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:111:3'): fairness works with non-binary pta ───────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:111:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:129:3'): fairness works on non-binary target ──────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:129:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:140:3'): fairness.fpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:140:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(round(predictions$score(msr_obj, test_data), 4)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:145:3'): fairness.acc can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:145:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:150:3'): fairness.fnr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:150:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:155:3'): fairness.tpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:155:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:160:3'): fairness.ppv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:160:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:165:3'): fairness.npv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:165:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:170:3'): fairness.fp can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:170:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:175:3'): fairness.fn can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:175:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:180:3'): fairness.pp (disparate impact score) can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:180:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:194:7'): fairness constraint measures - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_measures.R:192:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. └─mlr3misc::map_dbl(...) at test_measures.R:193:5 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3fairness (local) FUN(X[[i]], ...) 8. └─prd$score(measures = msr(m), task = tsk) at test_measures.R:194:7 9. └─mlr3:::.__Prediction__score(...) 10. └─mlr3misc::map_dbl(...) 11. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 12. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 13. └─mlr3 (local) FUN(X[[i]], ...) 14. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 15. └─mlr3:::.__Measure__score(...) 16. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 17. └─get_private(measure)$.score(...) 18. └─mlr3fairness:::.__MeasureFairness__.score(...) 19. └─mlr3fairness:::score_groupwise(...) 20. └─mlr3misc::map_dbl(...) 21. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 22. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 23. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:249:3'): Args are passed on correctly ─────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(mfa, task = t, train_set = 1:10) at test_measures.R:249:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:271:11'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:271:11 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:10:5'): fairness_accuracy_tradeoff ──────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_visualizations.R:9:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. ├─mlr3fairness:::check_plots(fairness_accuracy_tradeoff(bmr, fmsr)) at test_visualizations.R:10:5 5. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at tests/testthat/helper_test.R:4:3 6. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 7. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 8. │ └─ggplot2::is.ggplot(ggplot_obj) 9. │ └─ggplot2::is_ggplot(x) 10. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, fmsr) 11. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 12. └─object$aggregate(list(acc_measure, fairness_measure)) 13. └─mlr3:::.__BenchmarkResult__aggregate(...) 14. └─mlr3misc::map_dtr(...) 15. ├─data.table::rbindlist(...) 16. ├─base::unname(map(.x, .f, ...)) 17. └─mlr3misc::map(.x, .f, ...) 18. └─base::lapply(.x, .f, ...) 19. └─mlr3 (local) FUN(X[[i]], ...) 20. ├─base::as.list(resample_result_aggregate(rr, measures)) 21. └─mlr3:::resample_result_aggregate(rr, measures) 22. ├─... %??% set_names(numeric(), character()) 23. ├─base::unlist(...) 24. └─mlr3misc::map(...) 25. └─base::lapply(.x, .f, ...) 26. └─mlr3 (local) FUN(X[[i]], ...) 27. └─m$aggregate(rr) 28. └─mlr3:::.__Measure__aggregate(...) 29. └─mlr3:::score_measures(...) 30. └─mlr3misc::pmap_dbl(...) 31. └─mlr3misc:::mapply_list(.f, .x, list(...)) 32. └─base::.mapply(.f, .dots, .args) 33. └─mlr3 (local) `<fn>`(...) 34. └─mlr3:::score_single_measure(...) 35. └─get_private(measure)$.score(...) 36. └─mlr3fairness:::.__MeasureFairness__.score(...) 37. └─mlr3fairness:::score_groupwise(...) 38. └─mlr3misc::map_dbl(...) 39. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 40. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 41. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:33:3'): compare_metrics ─────────────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─mlr3fairness:::check_plots(compare_metrics(bmr, fairness_measures)) at test_visualizations.R:33:3 2. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at tests/testthat/helper_test.R:4:3 3. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─ggplot2::is.ggplot(ggplot_obj) 6. │ └─ggplot2::is_ggplot(x) 7. ├─mlr3fairness::compare_metrics(bmr, fairness_measures) 8. └─mlr3fairness:::compare_metrics.BenchmarkResult(bmr, fairness_measures) 9. └─object$aggregate(measures, ...) 10. └─mlr3:::.__BenchmarkResult__aggregate(...) 11. └─mlr3misc::map_dtr(...) 12. ├─data.table::rbindlist(...) 13. ├─base::unname(map(.x, .f, ...)) 14. └─mlr3misc::map(.x, .f, ...) 15. └─base::lapply(.x, .f, ...) 16. └─mlr3 (local) FUN(X[[i]], ...) 17. ├─base::as.list(resample_result_aggregate(rr, measures)) 18. └─mlr3:::resample_result_aggregate(rr, measures) 19. ├─... %??% set_names(numeric(), character()) 20. ├─base::unlist(...) 21. └─mlr3misc::map(...) 22. └─base::lapply(.x, .f, ...) 23. └─mlr3 (local) FUN(X[[i]], ...) 24. └─m$aggregate(rr) 25. └─mlr3:::.__Measure__aggregate(...) 26. └─mlr3:::score_measures(...) 27. └─mlr3misc::pmap_dbl(...) 28. └─mlr3misc:::mapply_list(.f, .x, list(...)) 29. └─base::.mapply(.f, .dots, .args) 30. └─mlr3 (local) `<fn>`(...) 31. └─mlr3:::score_single_measure(...) 32. └─get_private(measure)$.score(...) 33. └─mlr3fairness:::.__MeasureFairness__.score(...) 34. └─mlr3fairness:::score_groupwise(...) 35. └─mlr3misc::map_dbl(...) 36. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 37. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 38. └─mlr3fairness (local) FUN(X[[i]], ...) [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] Error: Test failures Execution halted Flavor: r-release-linux-x86_64

Version: 0.3.2
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘debiasing-vignette.Rmd’ using rmarkdown Quitting from debiasing-vignette.Rmd:55-57 [unnamed-chunk-4] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `task_set_roles()`: ! Assertion on 'roles' failed: Must be a subset of {'feature','target','name','order','stratum','group','offset','weights_learner','weights_measure','pta'}, but has additional elements {'weight'}. This happened PipeOp reweighing_wts's $train() --- Backtrace: ▆ 1. ├─p1$train(list(task)) 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3fairness:::.__PipeOpReweighingWeights__.train_task(...) 8. │ └─task$set_col_roles(weightcolname, "weight") 9. │ └─mlr3:::.__Task__set_col_roles(...) 10. │ └─mlr3:::task_set_roles(...) 11. │ └─checkmate::assert_subset(roles, names(li)) 12. │ └─checkmate::makeAssertion(x, res, .var.name, add) 13. │ └─checkmate:::mstop(...) 14. │ └─base::stop(simpleError(sprintf(msg, ...), call.)) 15. └─mlr3pipelines (local) `<fn>`(`<smplErrr>`) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'debiasing-vignette.Rmd' failed with diagnostics: Assertion on 'roles' failed: Must be a subset of {'feature','target','name','order','stratum','group','offset','weights_learner','weights_measure','pta'}, but has additional elements {'weight'}. This happened PipeOp reweighing_wts's $train() --- failed re-building ‘debiasing-vignette.Rmd’ --- re-building ‘measures-vignette.Rmd’ using rmarkdown Quitting from measures-vignette.Rmd:88-90 [unnamed-chunk-6] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! unused argument (weights = NULL) --- Backtrace: ▆ 1. └─prd$score(msr("fairness.tpr"), task = test) 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'measures-vignette.Rmd' failed with diagnostics: unused argument (weights = NULL) --- failed re-building ‘measures-vignette.Rmd’ --- re-building ‘reports-vignette.Rmd’ using rmarkdown Quitting from reports-vignette.Rmd:51-54 [build_modelcard_example_for_vignette] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `loadNamespace()`: ! there is no package called 'posterdown' --- Backtrace: ▆ 1. ├─rmarkdown::render(rmdfile) 2. │ └─rmarkdown:::create_output_format(output_format$name, output_format$options) 3. │ └─rmarkdown:::create_output_format_function(name) 4. │ └─base::eval(xfun::parse_only(name)) 5. │ └─base::eval(xfun::parse_only(name)) 6. └─base::loadNamespace(x) 7. └─base::withRestarts(stop(cond), retry_loadNamespace = function() NULL) 8. └─base (local) withOneRestart(expr, restarts[[1L]]) 9. └─base (local) doWithOneRestart(return(expr), restart) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'reports-vignette.Rmd' failed with diagnostics: there is no package called 'posterdown' --- failed re-building ‘reports-vignette.Rmd’ --- re-building ‘visualization-vignette.Rmd’ using rmarkdown ** Processing: /home/hornik/tmp/R.check/r-release-gcc/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-6-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 15294 bytes Input file size = 15384 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12085 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12085 Output IDAT size = 12085 bytes (3209 bytes decrease) Output file size = 12163 bytes (3221 bytes = 20.94% decrease) ** Processing: /home/hornik/tmp/R.check/r-release-gcc/Work/PKGS/mlr3fairness.Rcheck/vign_test/mlr3fairness/vignettes/visualization-vignette_files/figure-html/unnamed-chunk-7-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 16912 bytes Input file size = 17014 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12906 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 12906 Output IDAT size = 12906 bytes (4006 bytes decrease) Output file size = 12984 bytes (4030 bytes = 23.69% decrease) Quitting from visualization-vignette.Rmd:88-90 [unnamed-chunk-8] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! unused argument (weights = NULL) --- Backtrace: ▆ 1. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, msr("fairness.fpr")) 2. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 3. └─object$aggregate(list(acc_measure, fairness_measure)) 4. └─mlr3:::.__BenchmarkResult__aggregate(...) 5. └─mlr3misc::map_dtr(...) 6. ├─data.table::rbindlist(...) 7. ├─base::unname(map(.x, .f, ...)) 8. └─mlr3misc::map(.x, .f, ...) 9. └─base::lapply(.x, .f, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. ├─base::as.list(resample_result_aggregate(rr, measures)) 12. └─mlr3:::resample_result_aggregate(rr, measures) 13. ├─... %??% set_names(numeric(), character()) 14. ├─base::unlist(...) 15. └─mlr3misc::map(...) 16. └─base::lapply(.x, .f, ...) 17. └─mlr3 (local) FUN(X[[i]], ...) 18. └─m$aggregate(rr) 19. └─mlr3:::.__Measure__aggregate(...) 20. └─mlr3:::score_measures(...) 21. └─mlr3misc::pmap_dbl(...) 22. └─mlr3misc:::mapply_list(.f, .x, list(...)) 23. └─base::.mapply(.f, .dots, .args) 24. └─mlr3 (local) `<fn>`(...) 25. └─mlr3:::score_single_measure(...) 26. └─get_private(measure)$.score(...) 27. └─mlr3fairness:::.__MeasureFairness__.score(...) 28. └─mlr3fairness:::score_groupwise(...) 29. └─mlr3misc::map_dbl(...) 30. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 31. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 32. └─mlr3fairness (local) FUN(X[[i]], ...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'visualization-vignette.Rmd' failed with diagnostics: unused argument (weights = NULL) --- failed re-building ‘visualization-vignette.Rmd’ SUMMARY: processing the following files failed: ‘debiasing-vignette.Rmd’ ‘measures-vignette.Rmd’ ‘reports-vignette.Rmd’ ‘visualization-vignette.Rmd’ Error: Vignette re-building failed. Execution halted Flavor: r-release-linux-x86_64

Version: 0.3.2
Check: tests
Result: ERROR Running 'testthat.R' [11s] Running the tests in 'tests/testthat.R' failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3") + library("mlr3pipelines") + library("mlr3fairness") + test_check("mlr3fairness") + } INFO [06:44:48.649] [mlr3] Running benchmark with 12 resampling iterations INFO [06:44:48.832] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [06:44:48.900] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [06:44:48.952] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [06:44:49.006] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [06:44:49.037] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [06:44:49.069] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [06:44:49.098] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [06:44:49.133] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [06:44:49.166] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [06:44:49.202] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [06:44:49.235] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [06:44:49.265] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [06:44:49.298] [mlr3] Finished benchmark INFO [06:44:49.540] [mlr3] Running benchmark with 12 resampling iterations INFO [06:44:49.580] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [06:44:49.621] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [06:44:49.667] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [06:44:49.708] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [06:44:49.738] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [06:44:49.770] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [06:44:49.797] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [06:44:49.840] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [06:44:49.885] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [06:44:49.940] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [06:44:49.974] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [06:44:50.010] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [06:44:50.037] [mlr3] Finished benchmark INFO [06:44:50.216] [mlr3] Running benchmark with 12 resampling iterations INFO [06:44:50.239] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [06:44:50.283] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [06:44:50.331] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [06:44:50.382] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [06:44:50.430] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [06:44:50.459] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [06:44:50.487] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [06:44:50.522] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [06:44:50.564] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [06:44:50.609] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [06:44:50.640] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [06:44:50.668] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [06:44:50.700] [mlr3] Finished benchmark [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] ══ Skipped tests (30) ══════════════════════════════════════════════════════════ • On CRAN (30): 'test_datasets.R:16:3', 'test_datasets.R:32:3', 'test_datasets.R:47:3', 'test_learners_fairml.R:2:5', 'test_learners_fairml.R:12:5', 'test_learners_fairml.R:25:5', 'test_learners_fairml.R:39:5', 'test_learners_fairml.R:51:5', 'test_learners_fairml_ptas.R:2:5', 'test_learners_fairml_ptas.R:17:5', 'test_measure_subgroup.R:47:3', 'test_measure_subgroup.R:66:3', 'test_pipeop_eod.R:2:3', 'test_pipeop_eod.R:17:3', 'test_pipeop_eod.R:57:3', 'test_pipeop_explicit_pta.R:3:5', 'test_pipeop_explicit_pta.R:17:5', 'test_pipeop_reweighing.R:2:3', 'test_pipeop_reweighing.R:15:3', 'test_pipeop_reweighing.R:25:3', 'test_pipeop_reweighing.R:34:3', 'test_pipeop_reweighing.R:51:3', 'test_pipeop_reweighing.R:61:3', 'test_report_modelcard_datasheet.R:2:3', 'test_report_modelcard_datasheet.R:18:3', 'test_report_modelcard_datasheet.R:34:3', 'test_use_modelcard_datasheet.R:2:3', 'test_use_modelcard_datasheet.R:17:3', 'test_use_modelcard_datasheet.R:31:3', 'test_write_files.R:2:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_measure_subgroup.R:20:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:20:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measure_subgroup.R:32:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:32:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measures.R:51:9'): fairness measures work as expcted ─────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:51:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:71:9'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:71:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:92:3'): fairness errors on missing pta, works with ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:92:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(prd$score(msr("fairness.acc"), task = task)) 5. └─prd$score(msr("fairness.acc"), task = task) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:111:3'): fairness works with non-binary pta ───────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:111:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:129:3'): fairness works on non-binary target ──────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:129:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:140:3'): fairness.fpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:140:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(round(predictions$score(msr_obj, test_data), 4)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:145:3'): fairness.acc can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:145:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:150:3'): fairness.fnr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:150:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:155:3'): fairness.tpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:155:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:160:3'): fairness.ppv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:160:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:165:3'): fairness.npv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:165:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:170:3'): fairness.fp can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:170:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:175:3'): fairness.fn can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:175:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:180:3'): fairness.pp (disparate impact score) can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:180:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:194:7'): fairness constraint measures - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_measures.R:192:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. └─mlr3misc::map_dbl(...) at test_measures.R:193:5 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3fairness (local) FUN(X[[i]], ...) 8. └─prd$score(measures = msr(m), task = tsk) at test_measures.R:194:7 9. └─mlr3:::.__Prediction__score(...) 10. └─mlr3misc::map_dbl(...) 11. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 12. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 13. └─mlr3 (local) FUN(X[[i]], ...) 14. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 15. └─mlr3:::.__Measure__score(...) 16. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 17. └─get_private(measure)$.score(...) 18. └─mlr3fairness:::.__MeasureFairness__.score(...) 19. └─mlr3fairness:::score_groupwise(...) 20. └─mlr3misc::map_dbl(...) 21. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 22. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 23. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:249:3'): Args are passed on correctly ─────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(mfa, task = t, train_set = 1:10) at test_measures.R:249:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:271:11'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:271:11 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:10:5'): fairness_accuracy_tradeoff ──────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_visualizations.R:9:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. ├─mlr3fairness:::check_plots(fairness_accuracy_tradeoff(bmr, fmsr)) at test_visualizations.R:10:5 5. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at D:\RCompile\CRANpkg\local\4.5\mlr3fairness.Rcheck\tests\testthat\helper_test.R:4:3 6. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 7. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 8. │ └─ggplot2::is.ggplot(ggplot_obj) 9. │ └─ggplot2::is_ggplot(x) 10. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, fmsr) 11. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 12. └─object$aggregate(list(acc_measure, fairness_measure)) 13. └─mlr3:::.__BenchmarkResult__aggregate(...) 14. └─mlr3misc::map_dtr(...) 15. ├─data.table::rbindlist(...) 16. ├─base::unname(map(.x, .f, ...)) 17. └─mlr3misc::map(.x, .f, ...) 18. └─base::lapply(.x, .f, ...) 19. └─mlr3 (local) FUN(X[[i]], ...) 20. ├─base::as.list(resample_result_aggregate(rr, measures)) 21. └─mlr3:::resample_result_aggregate(rr, measures) 22. ├─... %??% set_names(numeric(), character()) 23. ├─base::unlist(...) 24. └─mlr3misc::map(...) 25. └─base::lapply(.x, .f, ...) 26. └─mlr3 (local) FUN(X[[i]], ...) 27. └─m$aggregate(rr) 28. └─mlr3:::.__Measure__aggregate(...) 29. └─mlr3:::score_measures(...) 30. └─mlr3misc::pmap_dbl(...) 31. └─mlr3misc:::mapply_list(.f, .x, list(...)) 32. └─base::.mapply(.f, .dots, .args) 33. └─mlr3 (local) `<fn>`(...) 34. └─mlr3:::score_single_measure(...) 35. └─get_private(measure)$.score(...) 36. └─mlr3fairness:::.__MeasureFairness__.score(...) 37. └─mlr3fairness:::score_groupwise(...) 38. └─mlr3misc::map_dbl(...) 39. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 40. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 41. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:33:3'): compare_metrics ─────────────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─mlr3fairness:::check_plots(compare_metrics(bmr, fairness_measures)) at test_visualizations.R:33:3 2. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at D:\RCompile\CRANpkg\local\4.5\mlr3fairness.Rcheck\tests\testthat\helper_test.R:4:3 3. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─ggplot2::is.ggplot(ggplot_obj) 6. │ └─ggplot2::is_ggplot(x) 7. ├─mlr3fairness::compare_metrics(bmr, fairness_measures) 8. └─mlr3fairness:::compare_metrics.BenchmarkResult(bmr, fairness_measures) 9. └─object$aggregate(measures, ...) 10. └─mlr3:::.__BenchmarkResult__aggregate(...) 11. └─mlr3misc::map_dtr(...) 12. ├─data.table::rbindlist(...) 13. ├─base::unname(map(.x, .f, ...)) 14. └─mlr3misc::map(.x, .f, ...) 15. └─base::lapply(.x, .f, ...) 16. └─mlr3 (local) FUN(X[[i]], ...) 17. ├─base::as.list(resample_result_aggregate(rr, measures)) 18. └─mlr3:::resample_result_aggregate(rr, measures) 19. ├─... %??% set_names(numeric(), character()) 20. ├─base::unlist(...) 21. └─mlr3misc::map(...) 22. └─base::lapply(.x, .f, ...) 23. └─mlr3 (local) FUN(X[[i]], ...) 24. └─m$aggregate(rr) 25. └─mlr3:::.__Measure__aggregate(...) 26. └─mlr3:::score_measures(...) 27. └─mlr3misc::pmap_dbl(...) 28. └─mlr3misc:::mapply_list(.f, .x, list(...)) 29. └─base::.mapply(.f, .dots, .args) 30. └─mlr3 (local) `<fn>`(...) 31. └─mlr3:::score_single_measure(...) 32. └─get_private(measure)$.score(...) 33. └─mlr3fairness:::.__MeasureFairness__.score(...) 34. └─mlr3fairness:::score_groupwise(...) 35. └─mlr3misc::map_dbl(...) 36. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 37. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 38. └─mlr3fairness (local) FUN(X[[i]], ...) [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] Error: Test failures Execution halted Flavor: r-release-windows-x86_64

Version: 0.3.2
Check: tests
Result: ERROR Running 'testthat.R' [18s] Running the tests in 'tests/testthat.R' failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3") + library("mlr3pipelines") + library("mlr3fairness") + test_check("mlr3fairness") + } INFO [17:05:38.678] [mlr3] Running benchmark with 12 resampling iterations INFO [17:05:38.920] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [17:05:39.030] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [17:05:39.088] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [17:05:39.148] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [17:05:39.192] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [17:05:39.237] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [17:05:39.282] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [17:05:39.341] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [17:05:39.400] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [17:05:39.458] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [17:05:39.513] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [17:05:39.559] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [17:05:39.607] [mlr3] Finished benchmark INFO [17:05:40.076] [mlr3] Running benchmark with 12 resampling iterations INFO [17:05:40.140] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [17:05:40.200] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [17:05:40.260] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [17:05:40.335] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [17:05:40.399] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [17:05:40.448] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [17:05:40.496] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [17:05:40.563] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [17:05:40.634] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [17:05:40.704] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [17:05:40.754] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [17:05:40.801] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [17:05:40.850] [mlr3] Finished benchmark INFO [17:05:41.184] [mlr3] Running benchmark with 12 resampling iterations INFO [17:05:41.211] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 1/3) INFO [17:05:41.262] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 2/3) INFO [17:05:41.329] [mlr3] Applying learner 'classif.rpart' on task 'adult_train' (iter 3/3) INFO [17:05:41.400] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 1/3) INFO [17:05:41.454] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 2/3) INFO [17:05:41.504] [mlr3] Applying learner 'classif.featureless' on task 'adult_train' (iter 3/3) INFO [17:05:41.555] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 1/3) INFO [17:05:41.622] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 2/3) INFO [17:05:41.694] [mlr3] Applying learner 'classif.rpart' on task 'compas' (iter 3/3) INFO [17:05:41.758] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 1/3) INFO [17:05:41.810] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 2/3) INFO [17:05:41.876] [mlr3] Applying learner 'classif.featureless' on task 'compas' (iter 3/3) INFO [17:05:41.936] [mlr3] Finished benchmark [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] ══ Skipped tests (30) ══════════════════════════════════════════════════════════ • On CRAN (30): 'test_datasets.R:16:3', 'test_datasets.R:32:3', 'test_datasets.R:47:3', 'test_learners_fairml.R:2:5', 'test_learners_fairml.R:12:5', 'test_learners_fairml.R:25:5', 'test_learners_fairml.R:39:5', 'test_learners_fairml.R:51:5', 'test_learners_fairml_ptas.R:2:5', 'test_learners_fairml_ptas.R:17:5', 'test_measure_subgroup.R:47:3', 'test_measure_subgroup.R:66:3', 'test_pipeop_eod.R:2:3', 'test_pipeop_eod.R:17:3', 'test_pipeop_eod.R:57:3', 'test_pipeop_explicit_pta.R:3:5', 'test_pipeop_explicit_pta.R:17:5', 'test_pipeop_reweighing.R:2:3', 'test_pipeop_reweighing.R:15:3', 'test_pipeop_reweighing.R:25:3', 'test_pipeop_reweighing.R:34:3', 'test_pipeop_reweighing.R:51:3', 'test_pipeop_reweighing.R:61:3', 'test_report_modelcard_datasheet.R:2:3', 'test_report_modelcard_datasheet.R:18:3', 'test_report_modelcard_datasheet.R:34:3', 'test_use_modelcard_datasheet.R:2:3', 'test_use_modelcard_datasheet.R:17:3', 'test_use_modelcard_datasheet.R:31:3', 'test_write_files.R:2:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_measure_subgroup.R:20:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:20:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measure_subgroup.R:32:3'): measure ───────────────────────────── Error in `prediction$clone()$filter(rws)$score(self$base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─l$train(t)$predict(t)$score(m, t) at test_measure_subgroup.R:32:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureSubgroup__.score(...) ── Error ('test_measures.R:51:9'): fairness measures work as expcted ─────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:51:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:71:9'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:71:9 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:92:3'): fairness errors on missing pta, works with ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:92:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(prd$score(msr("fairness.acc"), task = task)) 5. └─prd$score(msr("fairness.acc"), task = task) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:111:3'): fairness works with non-binary pta ───────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:111:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:129:3'): fairness works on non-binary target ──────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─checkmate::expect_number(...) at test_measures.R:129:3 2. └─prd$score(msr("fairness.acc"), task = task) 3. └─mlr3:::.__Prediction__score(...) 4. └─mlr3misc::map_dbl(...) 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3 (local) FUN(X[[i]], ...) 8. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 9. └─mlr3:::.__Measure__score(...) 10. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 11. └─get_private(measure)$.score(...) 12. └─mlr3fairness:::.__MeasureFairness__.score(...) 13. └─mlr3fairness:::score_groupwise(...) 14. └─mlr3misc::map_dbl(...) 15. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 16. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 17. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:140:3'): fairness.fpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:140:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(round(predictions$score(msr_obj, test_data), 4)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:145:3'): fairness.acc can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:145:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:150:3'): fairness.fnr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:150:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:155:3'): fairness.tpr can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:155:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:160:3'): fairness.ppv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:160:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:165:3'): fairness.npv can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_lt(...) at test_measures.R:165:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─predictions$score(msr_obj, test_data) 5. └─mlr3:::.__Prediction__score(...) 6. └─mlr3misc::map_dbl(...) 7. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 8. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 9. └─mlr3 (local) FUN(X[[i]], ...) 10. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 11. └─mlr3:::.__Measure__score(...) 12. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 13. └─get_private(measure)$.score(...) 14. └─mlr3fairness:::.__MeasureFairness__.score(...) 15. └─mlr3fairness:::score_groupwise(...) 16. └─mlr3misc::map_dbl(...) 17. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 18. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 19. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:170:3'): fairness.fp can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:170:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:175:3'): fairness.fn can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:175:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:180:3'): fairness.pp (disparate impact score) can be loaded and work as expected ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─testthat::expect_equal(...) at test_measures.R:180:3 2. │ └─testthat::quasi_label(enquo(object), label, arg = "object") 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─base::unname(predictions$score(msr_obj, test_data)) 5. └─predictions$score(msr_obj, test_data) 6. └─mlr3:::.__Prediction__score(...) 7. └─mlr3misc::map_dbl(...) 8. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 9. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 10. └─mlr3 (local) FUN(X[[i]], ...) 11. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 12. └─mlr3:::.__Measure__score(...) 13. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 14. └─get_private(measure)$.score(...) 15. └─mlr3fairness:::.__MeasureFairness__.score(...) 16. └─mlr3fairness:::score_groupwise(...) 17. └─mlr3misc::map_dbl(...) 18. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 19. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 20. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:194:7'): fairness constraint measures - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_measures.R:192:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. └─mlr3misc::map_dbl(...) at test_measures.R:193:5 5. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 6. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 7. └─mlr3fairness (local) FUN(X[[i]], ...) 8. └─prd$score(measures = msr(m), task = tsk) at test_measures.R:194:7 9. └─mlr3:::.__Prediction__score(...) 10. └─mlr3misc::map_dbl(...) 11. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 12. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 13. └─mlr3 (local) FUN(X[[i]], ...) 14. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 15. └─mlr3:::.__Measure__score(...) 16. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 17. └─get_private(measure)$.score(...) 18. └─mlr3fairness:::.__MeasureFairness__.score(...) 19. └─mlr3fairness:::score_groupwise(...) 20. └─mlr3misc::map_dbl(...) 21. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 22. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 23. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:249:3'): Args are passed on correctly ─────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(mfa, task = t, train_set = 1:10) at test_measures.R:249:3 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_measures.R:271:11'): fairness measures work as expected - simulated data ── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─prd$score(measures = ms, task = tsk) at test_measures.R:271:11 2. └─mlr3:::.__Prediction__score(...) 3. └─mlr3misc::map_dbl(...) 4. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 5. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 6. └─mlr3 (local) FUN(X[[i]], ...) 7. └─m$score(prediction = self, task = task, learner = learner, train_set = train_set) 8. └─mlr3:::.__Measure__score(...) 9. └─mlr3:::score_single_measure(self, task, learner, train_set, prediction) 10. └─get_private(measure)$.score(...) 11. └─mlr3fairness:::.__MeasureFairness__.score(...) 12. └─mlr3fairness:::score_groupwise(...) 13. └─mlr3misc::map_dbl(...) 14. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 15. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 16. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:10:5'): fairness_accuracy_tradeoff ──────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. └─mlr3misc::map(...) at test_visualizations.R:9:3 2. └─base::lapply(.x, .f, ...) 3. └─mlr3fairness (local) FUN(X[[i]], ...) 4. ├─mlr3fairness:::check_plots(fairness_accuracy_tradeoff(bmr, fmsr)) at test_visualizations.R:10:5 5. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at D:\RCompile\CRANpkg\local\4.4\mlr3fairness.Rcheck\tests\testthat\helper_test.R:4:3 6. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 7. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 8. │ └─ggplot2::is.ggplot(ggplot_obj) 9. │ └─ggplot2::is_ggplot(x) 10. ├─mlr3fairness::fairness_accuracy_tradeoff(bmr, fmsr) 11. └─mlr3fairness:::fairness_accuracy_tradeoff.BenchmarkResult(...) 12. └─object$aggregate(list(acc_measure, fairness_measure)) 13. └─mlr3:::.__BenchmarkResult__aggregate(...) 14. └─mlr3misc::map_dtr(...) 15. ├─data.table::rbindlist(...) 16. ├─base::unname(map(.x, .f, ...)) 17. └─mlr3misc::map(.x, .f, ...) 18. └─base::lapply(.x, .f, ...) 19. └─mlr3 (local) FUN(X[[i]], ...) 20. ├─base::as.list(resample_result_aggregate(rr, measures)) 21. └─mlr3:::resample_result_aggregate(rr, measures) 22. ├─... %??% set_names(numeric(), character()) 23. ├─base::unlist(...) 24. └─mlr3misc::map(...) 25. └─base::lapply(.x, .f, ...) 26. └─mlr3 (local) FUN(X[[i]], ...) 27. └─m$aggregate(rr) 28. └─mlr3:::.__Measure__aggregate(...) 29. └─mlr3:::score_measures(...) 30. └─mlr3misc::pmap_dbl(...) 31. └─mlr3misc:::mapply_list(.f, .x, list(...)) 32. └─base::.mapply(.f, .dots, .args) 33. └─mlr3 (local) `<fn>`(...) 34. └─mlr3:::score_single_measure(...) 35. └─get_private(measure)$.score(...) 36. └─mlr3fairness:::.__MeasureFairness__.score(...) 37. └─mlr3fairness:::score_groupwise(...) 38. └─mlr3misc::map_dbl(...) 39. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 40. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 41. └─mlr3fairness (local) FUN(X[[i]], ...) ── Error ('test_visualizations.R:33:3'): compare_metrics ─────────────────────── Error in `prediction$clone()$filter(rws)$score(base_measure, task = task, ...)`: unused argument (weights = NULL) Backtrace: ▆ 1. ├─mlr3fairness:::check_plots(compare_metrics(bmr, fairness_measures)) at test_visualizations.R:33:3 2. │ ├─testthat::expect_true(is.ggplot(ggplot_obj)) at D:\RCompile\CRANpkg\local\4.4\mlr3fairness.Rcheck\tests\testthat\helper_test.R:4:3 3. │ │ └─testthat::quasi_label(enquo(object), label, arg = "object") 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─ggplot2::is.ggplot(ggplot_obj) 6. │ └─ggplot2::is_ggplot(x) 7. ├─mlr3fairness::compare_metrics(bmr, fairness_measures) 8. └─mlr3fairness:::compare_metrics.BenchmarkResult(bmr, fairness_measures) 9. └─object$aggregate(measures, ...) 10. └─mlr3:::.__BenchmarkResult__aggregate(...) 11. └─mlr3misc::map_dtr(...) 12. ├─data.table::rbindlist(...) 13. ├─base::unname(map(.x, .f, ...)) 14. └─mlr3misc::map(.x, .f, ...) 15. └─base::lapply(.x, .f, ...) 16. └─mlr3 (local) FUN(X[[i]], ...) 17. ├─base::as.list(resample_result_aggregate(rr, measures)) 18. └─mlr3:::resample_result_aggregate(rr, measures) 19. ├─... %??% set_names(numeric(), character()) 20. ├─base::unlist(...) 21. └─mlr3misc::map(...) 22. └─base::lapply(.x, .f, ...) 23. └─mlr3 (local) FUN(X[[i]], ...) 24. └─m$aggregate(rr) 25. └─mlr3:::.__Measure__aggregate(...) 26. └─mlr3:::score_measures(...) 27. └─mlr3misc::pmap_dbl(...) 28. └─mlr3misc:::mapply_list(.f, .x, list(...)) 29. └─base::.mapply(.f, .dots, .args) 30. └─mlr3 (local) `<fn>`(...) 31. └─mlr3:::score_single_measure(...) 32. └─get_private(measure)$.score(...) 33. └─mlr3fairness:::.__MeasureFairness__.score(...) 34. └─mlr3fairness:::score_groupwise(...) 35. └─mlr3misc::map_dbl(...) 36. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 37. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 38. └─mlr3fairness (local) FUN(X[[i]], ...) [ FAIL 21 | WARN 14 | SKIP 30 | PASS 99 ] Error: Test failures Execution halted Flavor: r-oldrel-windows-x86_64